339 lines
9.5 KiB
C
339 lines
9.5 KiB
C
|
|
/**********
|
||
|
|
Copyright 1990 Regents of the University of California. All rights reserved.
|
||
|
|
Author: 1985 Wayne A. Christopher, U. C. Berkeley CAD Group
|
||
|
|
**********/
|
||
|
|
|
||
|
|
/*
|
||
|
|
* Polynomial interpolation code.
|
||
|
|
*/
|
||
|
|
|
||
|
|
#include "ngspice.h"
|
||
|
|
#include "cpdefs.h"
|
||
|
|
#include "ftedefs.h"
|
||
|
|
#include "ftedata.h"
|
||
|
|
#include "interp.h"
|
||
|
|
|
||
|
|
|
||
|
|
/* Interpolate data from oscale to nscale. data is assumed to be olen long,
|
||
|
|
* ndata will be nlen long. Returns FALSE if the scales are too strange
|
||
|
|
* to deal with. Note that we are guaranteed that either both scales are
|
||
|
|
* strictly increasing or both are strictly decreasing.
|
||
|
|
*/
|
||
|
|
|
||
|
|
|
||
|
|
/* static declarations */
|
||
|
|
static int putinterval(double *poly, int degree, double *nvec, int last, double *nscale,
|
||
|
|
int nlen, double oval, int sign);
|
||
|
|
static void printmat(char *name, double *mat, int m, int n);
|
||
|
|
|
||
|
|
|
||
|
|
bool
|
||
|
|
ft_interpolate(double *data, double *ndata, double *oscale, int olen, double *nscale, int nlen, int degree)
|
||
|
|
{
|
||
|
|
double *result, *scratch, *xdata, *ydata;
|
||
|
|
int sign, lastone, i, l;
|
||
|
|
|
||
|
|
if ((olen < 2) || (nlen < 2)) {
|
||
|
|
fprintf(cp_err, "Error: lengths too small to interpolate.\n");
|
||
|
|
return (FALSE);
|
||
|
|
}
|
||
|
|
if ((degree < 1) || (degree > olen)) {
|
||
|
|
fprintf(cp_err, "Error: degree is %d, can't interpolate.\n",
|
||
|
|
degree);
|
||
|
|
return (FALSE);
|
||
|
|
}
|
||
|
|
|
||
|
|
if (oscale[1] < oscale[0])
|
||
|
|
sign = -1;
|
||
|
|
else
|
||
|
|
sign = 1;
|
||
|
|
|
||
|
|
scratch = (double *) tmalloc((degree + 1) * (degree + 2) *
|
||
|
|
sizeof (double));
|
||
|
|
result = (double *) tmalloc((degree + 1) * sizeof (double));
|
||
|
|
xdata = (double *) tmalloc((degree + 1) * sizeof (double));
|
||
|
|
ydata = (double *) tmalloc((degree + 1) * sizeof (double));
|
||
|
|
|
||
|
|
/* Deal with the first degree pieces. */
|
||
|
|
bcopy((char *) data, (char *) ydata, (degree + 1) * sizeof (double));
|
||
|
|
bcopy((char *) oscale, (char *) xdata, (degree + 1) * sizeof (double));
|
||
|
|
|
||
|
|
while (!ft_polyfit(xdata, ydata, result, degree, scratch)) {
|
||
|
|
/* If it doesn't work this time, bump the interpolation
|
||
|
|
* degree down by one.
|
||
|
|
*/
|
||
|
|
|
||
|
|
if (--degree == 0) {
|
||
|
|
fprintf(cp_err, "ft_interpolate: Internal Error.\n");
|
||
|
|
return (FALSE);
|
||
|
|
}
|
||
|
|
|
||
|
|
}
|
||
|
|
|
||
|
|
/* Add this part of the curve. What we do is evaluate the polynomial
|
||
|
|
* at those points between the last one and the one that is greatest,
|
||
|
|
* without being greater than the leftmost old scale point, or least
|
||
|
|
* if the scale is decreasing at the end of the interval we are looking
|
||
|
|
* at.
|
||
|
|
*/
|
||
|
|
lastone = -1;
|
||
|
|
for (i = 0; i < degree; i++) {
|
||
|
|
lastone = putinterval(result, degree, ndata, lastone,
|
||
|
|
nscale, nlen, xdata[i], sign);
|
||
|
|
}
|
||
|
|
|
||
|
|
/* Now plot the rest, piece by piece. l is the
|
||
|
|
* last element under consideration.
|
||
|
|
*/
|
||
|
|
for (l = degree + 1; l < olen; l++) {
|
||
|
|
|
||
|
|
/* Shift the old stuff by one and get another value. */
|
||
|
|
for (i = 0; i < degree; i++) {
|
||
|
|
xdata[i] = xdata[i + 1];
|
||
|
|
ydata[i] = ydata[i + 1];
|
||
|
|
}
|
||
|
|
ydata[i] = data[l];
|
||
|
|
xdata[i] = oscale[l];
|
||
|
|
|
||
|
|
while (!ft_polyfit(xdata, ydata, result, degree, scratch)) {
|
||
|
|
if (--degree == 0) {
|
||
|
|
fprintf(cp_err,
|
||
|
|
"interpolate: Internal Error.\n");
|
||
|
|
return (FALSE);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
lastone = putinterval(result, degree, ndata, lastone,
|
||
|
|
nscale, nlen, xdata[i], sign);
|
||
|
|
}
|
||
|
|
if (lastone < nlen - 1) /* ??? */
|
||
|
|
ndata[nlen - 1] = data[olen - 1];
|
||
|
|
tfree(scratch);
|
||
|
|
tfree(xdata);
|
||
|
|
tfree(ydata);
|
||
|
|
tfree(result);
|
||
|
|
return (TRUE);
|
||
|
|
}
|
||
|
|
|
||
|
|
/* Takes n = (degree+1) doubles, and fills in result with the n coefficients
|
||
|
|
* of the polynomial that will fit them. It also takes a pointer to an
|
||
|
|
* array of n ^ 2 + n doubles to use for scratch -- we want to make this
|
||
|
|
* fast and avoid doing mallocs for each call.
|
||
|
|
*/
|
||
|
|
|
||
|
|
bool
|
||
|
|
ft_polyfit(double *xdata, double *ydata, double *result, int degree, double *scratch)
|
||
|
|
{
|
||
|
|
register double *mat1 = scratch;
|
||
|
|
register int l, k, j, i;
|
||
|
|
register int n = degree + 1;
|
||
|
|
register double *mat2 = scratch + n * n; /* XXX These guys are hacks! */
|
||
|
|
double d;
|
||
|
|
|
||
|
|
/*
|
||
|
|
fprintf(cp_err, "n = %d, xdata = ( ", n);
|
||
|
|
for (i = 0; i < n; i++)
|
||
|
|
fprintf(cp_err, "%G ", xdata[i]);
|
||
|
|
fprintf(cp_err, ")\n");
|
||
|
|
fprintf(cp_err, "ydata = ( ");
|
||
|
|
for (i = 0; i < n; i++)
|
||
|
|
fprintf(cp_err, "%G ", ydata[i]);
|
||
|
|
fprintf(cp_err, ")\n");
|
||
|
|
*/
|
||
|
|
|
||
|
|
bzero((char *) result, n * sizeof(double));
|
||
|
|
bzero((char *) mat1, n * n * sizeof (double));
|
||
|
|
bcopy((char *) ydata, (char *) mat2, n * sizeof (double));
|
||
|
|
|
||
|
|
/* Fill in the matrix with x^k for 0 <= k <= degree for each point */
|
||
|
|
l = 0;
|
||
|
|
for (i = 0; i < n; i++) {
|
||
|
|
d = 1.0;
|
||
|
|
for (j = 0; j < n; j++) {
|
||
|
|
mat1[l] = d;
|
||
|
|
d *= xdata[i];
|
||
|
|
l += 1;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
/* Do Gauss-Jordan elimination on mat1. */
|
||
|
|
for (i = 0; i < n; i++) {
|
||
|
|
int lindex;
|
||
|
|
double largest;
|
||
|
|
/* choose largest pivot */
|
||
|
|
for (j=i, largest = mat1[i * n + i], lindex = i; j < n; j++) {
|
||
|
|
if (fabs(mat1[j * n + i]) > largest) {
|
||
|
|
largest = fabs(mat1[j * n + i]);
|
||
|
|
lindex = j;
|
||
|
|
}
|
||
|
|
}
|
||
|
|
if (lindex != i) {
|
||
|
|
/* swap rows i and lindex */
|
||
|
|
for (k = 0; k < n; k++) {
|
||
|
|
d = mat1[i * n + k];
|
||
|
|
mat1[i * n + k] = mat1[lindex * n + k];
|
||
|
|
mat1[lindex * n + k] = d;
|
||
|
|
}
|
||
|
|
d = mat2[i];
|
||
|
|
mat2[i] = mat2[lindex];
|
||
|
|
mat2[lindex] = d;
|
||
|
|
}
|
||
|
|
/* Make sure we have a non-zero pivot. */
|
||
|
|
if (mat1[i * n + i] == 0.0) {
|
||
|
|
/* this should be rotated. */
|
||
|
|
return (FALSE);
|
||
|
|
}
|
||
|
|
for (j = i + 1; j < n; j++) {
|
||
|
|
d = mat1[j * n + i] / mat1[i * n + i];
|
||
|
|
for (k = 0; k < n; k++)
|
||
|
|
mat1[j * n + k] -= d * mat1[i * n + k];
|
||
|
|
mat2[j] -= d * mat2[i];
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
for (i = n - 1; i > 0; i--)
|
||
|
|
for (j = i - 1; j >= 0; j--) {
|
||
|
|
d = mat1[j * n + i] / mat1[i * n + i];
|
||
|
|
for (k = 0; k < n; k++)
|
||
|
|
mat1[j * n + k] -=
|
||
|
|
d * mat1[i * n + k];
|
||
|
|
mat2[j] -= d * mat2[i];
|
||
|
|
}
|
||
|
|
|
||
|
|
/* Now write the stuff into the result vector. */
|
||
|
|
for (i = 0; i < n; i++) {
|
||
|
|
result[i] = mat2[i] / mat1[i * n + i];
|
||
|
|
/* printf(cp_err, "result[%d] = %G\n", i, result[i]);*/
|
||
|
|
}
|
||
|
|
|
||
|
|
#define ABS_TOL 0.001
|
||
|
|
#define REL_TOL 0.001
|
||
|
|
|
||
|
|
/* Let's check and make sure the coefficients are ok. If they aren't,
|
||
|
|
* just return FALSE. This is not the best way to do it.
|
||
|
|
*/
|
||
|
|
for (i = 0; i < n; i++) {
|
||
|
|
d = ft_peval(xdata[i], result, degree);
|
||
|
|
if (fabs(d - ydata[i]) > ABS_TOL) {
|
||
|
|
/*
|
||
|
|
fprintf(cp_err,
|
||
|
|
"Error: polyfit: x = %le, y = %le, int = %le\n",
|
||
|
|
xdata[i], ydata[i], d);
|
||
|
|
printmat("mat1", mat1, n, n);
|
||
|
|
printmat("mat2", mat2, n, 1);
|
||
|
|
*/
|
||
|
|
return (FALSE);
|
||
|
|
} else if (fabs(d - ydata[i]) / (fabs(d) > ABS_TOL ? fabs(d) :
|
||
|
|
ABS_TOL) > REL_TOL) {
|
||
|
|
/*
|
||
|
|
fprintf(cp_err,
|
||
|
|
"Error: polyfit: x = %le, y = %le, int = %le\n",
|
||
|
|
xdata[i], ydata[i], d);
|
||
|
|
printmat("mat1", mat1, n, n);
|
||
|
|
printmat("mat2", mat2, n, 1);
|
||
|
|
*/
|
||
|
|
return (FALSE);
|
||
|
|
}
|
||
|
|
}
|
||
|
|
|
||
|
|
return (TRUE);
|
||
|
|
}
|
||
|
|
|
||
|
|
/* Returns thestrchr of the last element that was calculated. oval is the
|
||
|
|
* value of the old scale at the end of the interval that is being interpolated
|
||
|
|
* from, and sign is 1 if the old scale was increasing, and -1 if it was
|
||
|
|
* decreasing.
|
||
|
|
*/
|
||
|
|
|
||
|
|
static int
|
||
|
|
putinterval(double *poly, int degree, double *nvec, int last, double *nscale, int nlen, double oval, int sign)
|
||
|
|
{
|
||
|
|
int end, i;
|
||
|
|
|
||
|
|
/* See how far we have to go. */
|
||
|
|
for (end = last + 1; end < nlen; end++)
|
||
|
|
if (nscale[end] * sign > oval * sign)
|
||
|
|
break;
|
||
|
|
end--;
|
||
|
|
|
||
|
|
for (i = last + 1; i <= end; i++)
|
||
|
|
nvec[i] = ft_peval(nscale[i], poly, degree);
|
||
|
|
return (end);
|
||
|
|
}
|
||
|
|
|
||
|
|
static void
|
||
|
|
printmat(char *name, double *mat, int m, int n)
|
||
|
|
{
|
||
|
|
int i, j;
|
||
|
|
|
||
|
|
printf("\n\r=== Matrix: %s ===\n\r", name);
|
||
|
|
for (i = 0; i < m; i++) {
|
||
|
|
printf(" | ");
|
||
|
|
for (j = 0; j < n; j++)
|
||
|
|
printf("%G ", mat[i * n + j]);
|
||
|
|
printf("|\n\r");
|
||
|
|
}
|
||
|
|
printf("===\n\r");
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
|
||
|
|
double
|
||
|
|
ft_peval(double x, double *coeffs, int degree)
|
||
|
|
{
|
||
|
|
double y;
|
||
|
|
int i;
|
||
|
|
|
||
|
|
if (!coeffs)
|
||
|
|
return 0.0; /* XXX Should not happen */
|
||
|
|
|
||
|
|
y = coeffs[degree]; /* there are (degree+1) coeffs */
|
||
|
|
|
||
|
|
for (i = degree - 1; i >= 0; i--) {
|
||
|
|
y *= x;
|
||
|
|
y += coeffs[i];
|
||
|
|
}
|
||
|
|
|
||
|
|
return y;
|
||
|
|
}
|
||
|
|
|
||
|
|
void
|
||
|
|
lincopy(struct dvec *ov, double *newscale, int newlen, struct dvec *oldscale)
|
||
|
|
{
|
||
|
|
struct dvec *v;
|
||
|
|
double *nd;
|
||
|
|
|
||
|
|
if (!isreal(ov)) {
|
||
|
|
fprintf(cp_err, "Warning: %s is not real\n", ov->v_name);
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
if (ov->v_length < oldscale->v_length) {
|
||
|
|
fprintf(cp_err, "Warning: %s is too short\n", ov->v_name);
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
v = alloc(struct dvec);
|
||
|
|
v->v_name = copy(ov->v_name);
|
||
|
|
v->v_type = ov->v_type;
|
||
|
|
v->v_flags = ov->v_flags;
|
||
|
|
v->v_flags |= VF_PERMANENT;
|
||
|
|
v->v_length = newlen;
|
||
|
|
|
||
|
|
nd = (double *) tmalloc(newlen * sizeof (double));
|
||
|
|
if (!ft_interpolate(ov->v_realdata, nd, oldscale->v_realdata,
|
||
|
|
oldscale->v_length, newscale, newlen, 1)) {
|
||
|
|
fprintf(cp_err, "Error: can't interpolate %s\n", ov->v_name);
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
v->v_realdata = nd;
|
||
|
|
vec_new(v);
|
||
|
|
return;
|
||
|
|
}
|
||
|
|
|
||
|
|
void
|
||
|
|
ft_polyderiv(double *coeffs, int degree)
|
||
|
|
{
|
||
|
|
int i;
|
||
|
|
|
||
|
|
for (i = 0; i < degree; i++) {
|
||
|
|
coeffs[i] = (i + 1) * coeffs[i + 1];
|
||
|
|
}
|
||
|
|
}
|