ngspice/src/frontend/com_fft.c

338 lines
9.1 KiB
C
Raw Normal View History

/**********
Copyright 2008 Holger Vogt. All rights reserved.
Author: 2008 Holger Vogt
**********/
/*
* Code to do fast fourier transform on data.
*/
#include "ngspice.h"
#include "ftedefs.h"
#include "dvec.h"
#include "sim.h"
#include "com_fft.h"
#include "variable.h"
2010-10-15 20:22:39 +02:00
#include "parse.h"
#include "../misc/misc_time.h"
static void fftext(double*, double*, long int, long int, int);
void
com_fft(wordlist *wl)
{
2010-10-24 14:45:05 +02:00
ngcomplex_t **fdvec;
double **tdvec;
double *freq, *win, *time;
double delta_t, span;
int fpts, i, j, tlen, ngood;
2009-10-04 13:48:37 +02:00
struct dvec *f, *vlist, *lv = NULL, *vec;
struct pnode *names, *first_name;
2010-02-28 18:52:09 +01:00
double *reald, *imagd;
int size, sign, order;
double scale, sigma;
if (!plot_cur || !plot_cur->pl_scale) {
fprintf(cp_err, "Error: no vectors loaded.\n");
return;
}
2010-02-28 18:52:09 +01:00
if (!isreal(plot_cur->pl_scale) ||
((plot_cur->pl_scale)->v_type != SV_TIME)) {
fprintf(cp_err, "Error: fft needs real time scale\n");
return;
}
tlen = (plot_cur->pl_scale)->v_length;
time = (plot_cur->pl_scale)->v_realdata;
span = time[tlen-1] - time[0];
delta_t = span/(tlen - 1);
2010-02-28 18:52:09 +01:00
/* size of input vector is power of two and larger than spice vector */
size = 1;
while (size < tlen)
size *= 2;
2010-02-28 18:52:09 +01:00
/* output vector has length of size/2 */
fpts = size/2;
2010-02-28 18:52:09 +01:00
/* window functions - should have an average of one */
win = (double *) tmalloc(tlen * sizeof (double));
{
char window[BSIZE_SP];
double maxt = time[tlen-1];
if (!cp_getvar("specwindow", CP_STRING, window))
strcpy(window,"blackman");
if (eq(window, "none"))
for(i=0; i<tlen; i++) {
2010-02-28 18:52:09 +01:00
win[i] = 1.0;
}
else if (eq(window, "rectangular"))
2010-02-28 18:52:09 +01:00
for(i=0; i<tlen; i++) {
if (maxt-time[i] > span) {
2010-02-28 18:52:09 +01:00
win[i] = 0.0;
} else {
2010-02-28 18:52:09 +01:00
win[i] = 1.0;
}
}
2010-02-28 18:52:09 +01:00
else if (eq(window, "triangle") || eq(window, "bartlet") || eq(window, "bartlett"))
for(i=0; i<tlen; i++) {
if (maxt-time[i] > span) {
2010-02-28 18:52:09 +01:00
win[i] = 0.0;
} else {
2010-02-28 18:52:09 +01:00
win[i] = 2.0 - fabs(2+4*(time[i]-maxt)/span);
}
}
2010-02-28 18:52:09 +01:00
else if (eq(window, "hann") || eq(window, "hanning") || eq(window, "cosine"))
for(i=0; i<tlen; i++) {
if (maxt-time[i] > span) {
2010-02-28 18:52:09 +01:00
win[i] = 0.0;
} else {
2010-02-28 18:52:09 +01:00
win[i] = 1.0 - cos(2*M_PI*(time[i]-maxt)/span);
}
}
2010-02-28 18:52:09 +01:00
else if (eq(window, "hamming"))
for(i=0; i<tlen; i++) {
if (maxt-time[i] > span) {
2010-02-28 18:52:09 +01:00
win[i] = 0.0;
} else {
2010-02-28 18:52:09 +01:00
win[i] = 1.0 - 0.46/0.54*cos(2*M_PI*(time[i]-maxt)/span);
}
}
2010-02-28 18:52:09 +01:00
else if (eq(window, "blackman"))
for(i=0; i<tlen; i++) {
if (maxt-time[i] > span) {
win[i] = 0;
} else {
2010-02-28 18:52:09 +01:00
win[i] = 1.0;
win[i] -= 0.50/0.42*cos(2*M_PI*(time[i]-maxt)/span);
win[i] += 0.08/0.42*cos(4*M_PI*(time[i]-maxt)/span);
}
}
2010-02-28 18:52:09 +01:00
else if (eq(window, "flattop"))
for(i=0; i<tlen; i++) {
if (maxt-time[i] > span) {
win[i] = 0;
} else {
win[i] = 1.0;
win[i] -= 1.93*cos(2*M_PI*(time[i]-maxt)/span);
win[i] += 1.29*cos(4*M_PI*(time[i]-maxt)/span);
win[i] -= 0.388*cos(6*M_PI*(time[i]-maxt)/span);
win[i] += 0.032*cos(8*M_PI*(time[i]-maxt)/span);
}
}
else if (eq(window, "gaussian")) {
if (!cp_getvar("specwindoworder", CP_NUM, &order)) order = 2;
if (order < 2) order = 2;
2010-02-28 18:52:09 +01:00
sigma=1.0/order;
scale=0.83/sigma;
for(i=0; i<tlen; i++) {
if (maxt-time[i] > span) {
win[i] = 0;
} else {
2010-02-28 18:52:09 +01:00
win[i] = scale*exp(-0.5*pow((time[i]-maxt/2)/(sigma*maxt/2),2));
}
}
2010-02-28 18:52:09 +01:00
} else {
fprintf(cp_err, "Warning: unknown window type %s\n", window);
tfree(win);
return;
}
}
names = ft_getpnames(wl, TRUE);
first_name = names;
vlist = NULL;
ngood = 0;
while (names) {
vec = ft_evaluate(names);
names = names->pn_next;
while (vec) {
if (vec->v_length != tlen) {
fprintf(cp_err, "Error: lengths of %s vectors don't match: %d, %d\n",
vec->v_name, vec->v_length, tlen);
vec = vec->v_link2;
continue;
}
if (!isreal(vec)) {
2010-02-28 18:52:09 +01:00
fprintf(cp_err, "Error: %s isn't real!\n",
vec->v_name);
vec = vec->v_link2;
continue;
}
if (vec->v_type == SV_TIME) {
vec = vec->v_link2;
continue;
}
if (!vlist)
vlist = vec;
else
lv->v_link2 = vec;
lv = vec;
vec = vec->v_link2;
ngood++;
}
}
2010-02-28 18:52:09 +01:00
free_pnode_o(first_name);
if (!ngood) {
2009-04-05 10:02:03 +02:00
tfree(win);
return;
}
2010-02-28 18:52:09 +01:00
plot_cur = plot_alloc("spectrum");
plot_cur->pl_next = plot_list;
plot_list = plot_cur;
plot_cur->pl_title = copy((plot_cur->pl_next)->pl_title);
plot_cur->pl_name = copy("Spectrum");
plot_cur->pl_date = copy(datestring( ));
freq = (double *) tmalloc(fpts * sizeof(double));
f = alloc(struct dvec);
ZERO(f, struct dvec);
f->v_name = copy("frequency");
f->v_type = SV_FREQUENCY;
f->v_flags = (VF_REAL | VF_PERMANENT | VF_PRINT);
f->v_length = fpts;
f->v_realdata = freq;
vec_new(f);
2010-02-28 18:52:09 +01:00
for (i = 0; i<fpts; i++) freq[i] = i*1.0/span*tlen/size;
tdvec = (double **) tmalloc(ngood * sizeof(double *));
2010-10-24 14:45:05 +02:00
fdvec = (ngcomplex_t **) tmalloc(ngood * sizeof(ngcomplex_t *));
for (i = 0, vec = vlist; i<ngood; i++) {
tdvec[i] = vec->v_realdata; /* real input data */
2010-10-24 14:45:05 +02:00
fdvec[i] = (ngcomplex_t *) tmalloc(fpts * sizeof(ngcomplex_t)); /* complex output data */
f = alloc(struct dvec);
ZERO(f, struct dvec);
f->v_name = vec_basename(vec);
2010-02-28 18:52:09 +01:00
f->v_type = SV_NOTYPE;
f->v_flags = (VF_COMPLEX | VF_PERMANENT);
f->v_length = fpts;
f->v_compdata = fdvec[i];
vec_new(f);
vec = vec->v_link2;
}
sign = 1;
2010-02-28 18:52:09 +01:00
printf("FFT: Time span: %g s, input length: %d, zero padding: %d\n", span, size, size-tlen);
printf("FFT: Freq. resolution: %g Hz, output length: %d\n", 1.0/span*tlen/size, fpts);
reald = (double*)tmalloc(size*sizeof(double));
imagd = (double*)tmalloc(size*sizeof(double));
for (i = 0; i<ngood; i++) {
for (j = 0; j < tlen; j++){
2010-02-28 18:52:09 +01:00
reald[j] = tdvec[i][j]*win[j];
imagd[j] = 0.0;
}
for (j = tlen; j < size; j++){
2010-02-28 18:52:09 +01:00
reald[j] = 0.0;
imagd[j] = 0.0;
}
fftext(reald, imagd, size, tlen, sign);
scale = 0.66;
for (j=0;j<fpts;j++){
2010-02-28 18:52:09 +01:00
fdvec[i][j].cx_real = reald[j]/scale;
fdvec[i][j].cx_imag = imagd[j]/scale;
}
}
2008-11-23 10:37:13 +01:00
tfree(reald);
tfree(imagd);
2010-02-28 18:52:09 +01:00
tfree(tdvec);
2009-04-05 10:02:03 +02:00
tfree(fdvec);
2010-02-28 18:52:09 +01:00
tfree(win);
}
2010-02-28 18:52:09 +01:00
static void fftext(double* x, double* y, long int n, long int nn, int dir)
{
/*
http://local.wasp.uwa.edu.au/~pbourke/other/dft/
download 22.05.08
2008-11-23 10:37:13 +01:00
Used with permission from the author Paul Bourke
2010-02-28 18:52:09 +01:00
*/
/*
2010-02-28 18:52:09 +01:00
This computes an in-place complex-to-complex FFT
x and y are the real and imaginary arrays
n is the number of points, has to be to the power of 2
2010-02-28 18:52:09 +01:00
nn is the number of points w/o zero padded values
dir = 1 gives forward transform
2010-02-28 18:52:09 +01:00
dir = -1 gives reverse transform
*/
long i,i1,j,k,i2,l,l1,l2;
double c1,c2,tx,ty,t1,t2,u1,u2,z;
int m=0, mm=1;
2010-02-28 18:52:09 +01:00
/* get the exponent to the base of 2 from the number of points */
while (mm < n) {
mm *= 2;
m++;
}
/* Do the bit reversal */
i2 = n >> 1;
j = 0;
for (i=0;i<n-1;i++) {
if (i < j) {
tx = x[i];
ty = y[i];
x[i] = x[j];
y[i] = y[j];
x[j] = tx;
y[j] = ty;
}
k = i2;
while (k <= j) {
j -= k;
k >>= 1;
}
j += k;
}
/* Compute the FFT */
2010-02-28 18:52:09 +01:00
c1 = -1.0;
c2 = 0.0;
l2 = 1;
for (l=0;l<m;l++) {
l1 = l2;
l2 <<= 1;
2010-02-28 18:52:09 +01:00
u1 = 1.0;
u2 = 0.0;
for (j=0;j<l1;j++) {
for (i=j;i<n;i+=l2) {
i1 = i + l1;
t1 = u1 * x[i1] - u2 * y[i1];
t2 = u1 * y[i1] + u2 * x[i1];
2010-02-28 18:52:09 +01:00
x[i1] = x[i] - t1;
y[i1] = y[i] - t2;
x[i] += t1;
y[i] += t2;
}
z = u1 * c1 - u2 * c2;
u2 = u1 * c2 + u2 * c1;
u1 = z;
}
c2 = sqrt((1.0 - c1) / 2.0);
2010-02-28 18:52:09 +01:00
if (dir == 1)
c2 = -c2;
c1 = sqrt((1.0 + c1) / 2.0);
}
/* Scaling for forward transform */
if (dir == 1) {
for (i=0;i<n;i++) {
2010-02-28 18:52:09 +01:00
x[i] /= nn; /* don't consider zero padded values */
y[i] /= nn;
}
}
}