ngspice/src/maths/cmaths/cmath3.c

463 lines
13 KiB
C
Raw Normal View History

2000-04-27 22:03:57 +02:00
/**********
Copyright 1990 Regents of the University of California. All rights reserved.
Author: 1985 Wayne A. Christopher, U. C. Berkeley CAD Group
**********/
/*
* Routines to do complex mathematical functions. These routines require
* the -lm libraries. We sacrifice a lot of space to be able
* to avoid having to do a seperate call for every vector element,
* but it pays off in time savings. These routines should never
* allow FPE's to happen.
*
* Complex functions are called as follows:
* cx_something(data, type, length, &newlength, &newtype),
* and return a char * that is cast to complex or double.
*/
#include <ngspice.h>
#include <cpdefs.h>
#include <dvec.h>
2000-04-27 22:03:57 +02:00
#include "cmath3.h"
static complex *cexp(complex *c);
static complex *cln(complex *c);
static complex *ctimes(complex *c1, complex *c2);
void *
cx_divide(void *data1, void *data2, short int datatype1, short int datatype2, int length)
{
double *dd1 = (double *) data1;
double *dd2 = (double *) data2;
double *d;
complex *cc1 = (complex *) data1;
complex *cc2 = (complex *) data2;
complex *c, c1, c2;
int i;
if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) {
d = alloc_d(length);
for (i = 0; i < length; i++) {
rcheck(dd2[i] != 0, "divide");
d[i] = dd1[i] / dd2[i];
}
return ((void *) d);
} else {
c = alloc_c(length);
for (i = 0; i < length; i++) {
if (datatype1 == VF_REAL) {
realpart(&c1) = dd1[i];
imagpart(&c1) = 0.0;
} else {
realpart(&c1) = realpart(&cc1[i]);
imagpart(&c1) = imagpart(&cc1[i]);
}
if (datatype2 == VF_REAL) {
realpart(&c2) = dd2[i];
imagpart(&c2) = 0.0;
} else {
realpart(&c2) = realpart(&cc2[i]);
imagpart(&c2) = imagpart(&cc2[i]);
}
rcheck((realpart(&c2) != 0) || (imagpart(&c2) != 0), "divide");
#define xx5 realpart(&c1)
#define xx6 imagpart(&c1)
cdiv(xx5, xx6, realpart(&c2), imagpart(&c2), realpart(&c[i]), imagpart(&c[i]));
}
return ((void *) c);
}
}
/* Should just use "j( )" */
/* The comma operator. What this does (unless it is part of the argument
* list of a user-defined function) is arg1 + j(arg2).
*/
void *
cx_comma(void *data1, void *data2, short int datatype1, short int datatype2, int length)
{
double *dd1 = (double *) data1;
double *dd2 = (double *) data2;
complex *cc1 = (complex *) data1;
complex *cc2 = (complex *) data2;
complex *c, c1, c2;
int i;
c = alloc_c(length);
for (i = 0; i < length; i++) {
if (datatype1 == VF_REAL) {
realpart(&c1) = dd1[i];
imagpart(&c1) = 0.0;
} else {
realpart(&c1) = realpart(&cc1[i]);
imagpart(&c1) = imagpart(&cc1[i]);
}
if (datatype2 == VF_REAL) {
realpart(&c2) = dd2[i];
imagpart(&c2) = 0.0;
} else {
realpart(&c2) = realpart(&cc2[i]);
imagpart(&c2) = imagpart(&cc2[i]);
}
realpart(&c[i]) = realpart(&c1) + imagpart(&c2);
imagpart(&c[i]) = imagpart(&c1) + realpart(&c2);
}
return ((void *) c);
}
void *
cx_power(void *data1, void *data2, short int datatype1, short int datatype2, int length)
{
double *dd1 = (double *) data1;
double *dd2 = (double *) data2;
double *d;
complex *cc1 = (complex *) data1;
complex *cc2 = (complex *) data2;
complex *c, c1, c2, *t;
int i;
if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) {
d = alloc_d(length);
for (i = 0; i < length; i++) {
rcheck((dd1[i] >= 0) || (floor(dd2[i]) == ceil(dd2[i])), "power");
d[i] = pow(dd1[i], dd2[i]);
}
return ((void *) d);
} else {
c = alloc_c(length);
for (i = 0; i < length; i++) {
if (datatype1 == VF_REAL) {
realpart(&c1) = dd1[i];
imagpart(&c1) = 0.0;
} else {
realpart(&c1) = realpart(&cc1[i]);
imagpart(&c1) = imagpart(&cc1[i]);
}
if (datatype2 == VF_REAL) {
realpart(&c2) = dd2[i];
imagpart(&c2) = 0.0;
} else {
realpart(&c2) = realpart(&cc2[i]);
imagpart(&c2) = imagpart(&cc2[i]);
}
if ((realpart(&c1) == 0.0) && (imagpart(&c1) == 0.0)) {
realpart(&c[i]) = 0.0;
imagpart(&c[i]) = 0.0;
} else { /* if ((imagpart(&c1) != 0.0) &&
(imagpart(&c2) != 0.0)) */
t = cexp(ctimes(&c2, cln(&c1)));
realpart(&c[i]) = realpart(t);
imagpart(&c[i]) = imagpart(t);
/*
} else {
realpart(&c[i]) = pow(realpart(&c1),
realpart(&c2));
imagpart(&c[i]) = 0.0;
*/
}
}
return ((void *) c);
}
}
/* These are unnecessary... Only cx_power uses them... */
static complex *
cexp(complex *c)
{
static complex r;
double d;
d = exp(realpart(c));
realpart(&r) = d * cos(imagpart(c));
if (imagpart(c) != 0.0)
imagpart(&r) = d * sin(imagpart(c));
else
imagpart(&r) = 0.0;
return (&r);
}
static complex *
cln(complex *c)
{
static complex r;
rcheck(cmag(c) != 0, "ln");
realpart(&r) = log(cmag(c));
if (imagpart(c) != 0.0)
imagpart(&r) = atan2(imagpart(c), realpart(c));
else
imagpart(&r) = 0.0;
return (&r);
}
static complex *
ctimes(complex *c1, complex *c2)
{
static complex r;
realpart(&r) = realpart(c1) * realpart(c2) -
imagpart(c1) * imagpart(c2);
imagpart(&r) = imagpart(c1) * realpart(c2) +
realpart(c1) * imagpart(c2);
return (&r);
}
/* Now come all the relational and logical functions. It's overkill to put
* them here, but... Note that they always return a real value, with the
* result the same length as the arguments.
*/
void *
cx_eq(void *data1, void *data2, short int datatype1, short int datatype2, int length)
{
double *dd1 = (double *) data1;
double *dd2 = (double *) data2;
double *d;
complex *cc1 = (complex *) data1;
complex *cc2 = (complex *) data2;
complex c1, c2;
int i;
d = alloc_d(length);
if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) {
for (i = 0; i < length; i++)
if (dd1[i] == dd2[i])
d[i] = 1.0;
else
d[i] = 0.0;
} else {
for (i = 0; i < length; i++) {
if (datatype1 == VF_REAL) {
realpart(&c1) = dd1[i];
imagpart(&c1) = 0.0;
} else {
realpart(&c1) = realpart(&cc1[i]);
imagpart(&c1) = imagpart(&cc1[i]);
}
if (datatype2 == VF_REAL) {
realpart(&c2) = dd2[i];
imagpart(&c2) = 0.0;
} else {
realpart(&c2) = realpart(&cc2[i]);
imagpart(&c2) = imagpart(&cc2[i]);
}
d[i] = ((realpart(&c1) == realpart(&c2)) &&
(imagpart(&c1) == imagpart(&c2)));
}
}
return ((void *) d);
}
void *
cx_gt(void *data1, void *data2, short int datatype1, short int datatype2, int length)
{
double *dd1 = (double *) data1;
double *dd2 = (double *) data2;
double *d;
complex *cc1 = (complex *) data1;
complex *cc2 = (complex *) data2;
complex c1, c2;
int i;
d = alloc_d(length);
if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) {
for (i = 0; i < length; i++)
if (dd1[i] > dd2[i])
d[i] = 1.0;
else
d[i] = 0.0;
} else {
for (i = 0; i < length; i++) {
if (datatype1 == VF_REAL) {
realpart(&c1) = dd1[i];
imagpart(&c1) = 0.0;
} else {
realpart(&c1) = realpart(&cc1[i]);
imagpart(&c1) = imagpart(&cc1[i]);
}
if (datatype2 == VF_REAL) {
realpart(&c2) = dd2[i];
imagpart(&c2) = 0.0;
} else {
realpart(&c2) = realpart(&cc2[i]);
imagpart(&c2) = imagpart(&cc2[i]);
}
d[i] = ((realpart(&c1) > realpart(&c2)) &&
(imagpart(&c1) > imagpart(&c2)));
}
}
return ((void *) d);
}
void *
cx_lt(void *data1, void *data2, short int datatype1, short int datatype2, int length)
{
double *dd1 = (double *) data1;
double *dd2 = (double *) data2;
double *d;
complex *cc1 = (complex *) data1;
complex *cc2 = (complex *) data2;
complex c1, c2;
int i;
d = alloc_d(length);
if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) {
for (i = 0; i < length; i++)
if (dd1[i] < dd2[i])
d[i] = 1.0;
else
d[i] = 0.0;
} else {
for (i = 0; i < length; i++) {
if (datatype1 == VF_REAL) {
realpart(&c1) = dd1[i];
imagpart(&c1) = 0.0;
} else {
realpart(&c1) = realpart(&cc1[i]);
imagpart(&c1) = imagpart(&cc1[i]);
}
if (datatype2 == VF_REAL) {
realpart(&c2) = dd2[i];
imagpart(&c2) = 0.0;
} else {
realpart(&c2) = realpart(&cc2[i]);
imagpart(&c2) = imagpart(&cc2[i]);
}
d[i] = ((realpart(&c1) < realpart(&c2)) &&
(imagpart(&c1) < imagpart(&c2)));
}
}
return ((void *) d);
}
void *
cx_ge(void *data1, void *data2, short int datatype1, short int datatype2, int length)
{
double *dd1 = (double *) data1;
double *dd2 = (double *) data2;
double *d;
complex *cc1 = (complex *) data1;
complex *cc2 = (complex *) data2;
complex c1, c2;
int i;
d = alloc_d(length);
if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) {
for (i = 0; i < length; i++)
if (dd1[i] >= dd2[i])
d[i] = 1.0;
else
d[i] = 0.0;
} else {
for (i = 0; i < length; i++) {
if (datatype1 == VF_REAL) {
realpart(&c1) = dd1[i];
imagpart(&c1) = 0.0;
} else {
realpart(&c1) = realpart(&cc1[i]);
imagpart(&c1) = imagpart(&cc1[i]);
}
if (datatype2 == VF_REAL) {
realpart(&c2) = dd2[i];
imagpart(&c2) = 0.0;
} else {
realpart(&c2) = realpart(&cc2[i]);
imagpart(&c2) = imagpart(&cc2[i]);
}
d[i] = ((realpart(&c1) >= realpart(&c2)) &&
(imagpart(&c1) >= imagpart(&c2)));
}
}
return ((void *) d);
}
void *
cx_le(void *data1, void *data2, short int datatype1, short int datatype2, int length)
{
double *dd1 = (double *) data1;
double *dd2 = (double *) data2;
double *d;
complex *cc1 = (complex *) data1;
complex *cc2 = (complex *) data2;
complex c1, c2;
int i;
d = alloc_d(length);
if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) {
for (i = 0; i < length; i++)
if (dd1[i] <= dd2[i])
d[i] = 1.0;
else
d[i] = 0.0;
} else {
for (i = 0; i < length; i++) {
if (datatype1 == VF_REAL) {
realpart(&c1) = dd1[i];
imagpart(&c1) = 0.0;
} else {
realpart(&c1) = realpart(&cc1[i]);
imagpart(&c1) = imagpart(&cc1[i]);
}
if (datatype2 == VF_REAL) {
realpart(&c2) = dd2[i];
imagpart(&c2) = 0.0;
} else {
realpart(&c2) = realpart(&cc2[i]);
imagpart(&c2) = imagpart(&cc2[i]);
}
d[i] = ((realpart(&c1) <= realpart(&c2)) &&
(imagpart(&c1) <= imagpart(&c2)));
}
}
return ((void *) d);
}
void *
cx_ne(void *data1, void *data2, short int datatype1, short int datatype2, int length)
{
double *dd1 = (double *) data1;
double *dd2 = (double *) data2;
double *d;
complex *cc1 = (complex *) data1;
complex *cc2 = (complex *) data2;
complex c1, c2;
int i;
d = alloc_d(length);
if ((datatype1 == VF_REAL) && (datatype2 == VF_REAL)) {
for (i = 0; i < length; i++)
if (dd1[i] != dd2[i])
d[i] = 1.0;
else
d[i] = 0.0;
} else {
for (i = 0; i < length; i++) {
if (datatype1 == VF_REAL) {
realpart(&c1) = dd1[i];
imagpart(&c1) = 0.0;
} else {
realpart(&c1) = realpart(&cc1[i]);
imagpart(&c1) = imagpart(&cc1[i]);
}
if (datatype2 == VF_REAL) {
realpart(&c2) = dd2[i];
imagpart(&c2) = 0.0;
} else {
realpart(&c2) = realpart(&cc2[i]);
imagpart(&c2) = imagpart(&cc2[i]);
}
d[i] = ((realpart(&c1) != realpart(&c2)) &&
(imagpart(&c1) != imagpart(&c2)));
}
}
return ((void *) d);
}