nextpnr/himbaechel/uarch/gatemate/gatemate.cc

427 lines
16 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2024 The Project Peppercorn Authors.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include "gatemate.h"
#include "design_utils.h"
#include "log.h"
#include "placer_heap.h"
#define GEN_INIT_CONSTIDS
#define HIMBAECHEL_CONSTIDS "uarch/gatemate/constids.inc"
#include "himbaechel_constids.h"
NEXTPNR_NAMESPACE_BEGIN
GateMateImpl::~GateMateImpl() {};
void GateMateImpl::init_database(Arch *arch)
{
const ArchArgs &args = arch->args;
init_uarch_constids(arch);
arch->load_chipdb(stringf("gatemate/chipdb-%s.bin", args.device.c_str()));
arch->set_package("FBGA324");
arch->set_speed_grade("DEFAULT");
}
void GateMateImpl::init(Context *ctx)
{
HimbaechelAPI::init(ctx);
for (const auto &pad : ctx->package_info->pads) {
available_pads.emplace(IdString(pad.package_pin));
BelId bel = ctx->getBelByName(IdStringList::concat(IdString(pad.tile), IdString(pad.bel)));
bel_to_pad.emplace(bel, &pad);
}
for (auto bel : ctx->getBels()) {
auto *ptr = bel_extra_data(bel);
std::map<IdString, const GateMateBelPinConstraintPOD *> pins;
for (const auto &p : ptr->constraints)
pins.emplace(IdString(p.name), &p);
pin_to_constr.emplace(bel, pins);
}
}
delay_t GateMateImpl::estimateDelay(WireId src, WireId dst) const
{
int sx, sy, dx, dy;
tile_xy(ctx->chip_info, src.tile, sx, sy);
tile_xy(ctx->chip_info, dst.tile, dx, dy);
return 100 + 100 * (std::abs(dx - sx) + std::abs(dy - sy));
}
bool GateMateImpl::isBelLocationValid(BelId bel, bool explain_invalid) const
{
CellInfo *cell = ctx->getBoundBelCell(bel);
if (cell == nullptr) {
return true;
}
if (ctx->getBelType(bel).in(id_CPE_HALF, id_CPE_HALF_L, id_CPE_HALF_U)) {
Loc loc = ctx->getBelLocation(bel);
const CellInfo *adj_half = ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x, loc.y, loc.z == 1 ? 0 : 1)));
if (adj_half) {
const auto &half_data = fast_cell_info.at(cell->flat_index);
if (half_data.dff_used) {
const auto &adj_data = fast_cell_info.at(adj_half->flat_index);
if (adj_data.dff_used) {
if (adj_data.ff_config != half_data.ff_config)
return false;
if (adj_data.ff_en != half_data.ff_en)
return false;
if (adj_data.ff_clk != half_data.ff_clk)
return false;
if (adj_data.ff_sr != half_data.ff_sr)
return false;
}
}
}
return true;
}
return true;
}
Loc GateMateImpl::getRelativeConstraint(Loc &root_loc, IdString id) const
{
Loc child_loc;
BelId root_bel = ctx->getBelByLocation(root_loc);
if (pin_to_constr.count(root_bel)) {
auto &constr = pin_to_constr.at(root_bel);
if (constr.count(id)) {
auto &p = constr.at(id);
child_loc.x = root_loc.x + p->constr_x;
child_loc.y = root_loc.y + p->constr_y;
child_loc.z = p->constr_z;
} else {
log_error("Constrain info not available for pin.\n");
}
} else {
log_error("Bel info not available for constraints.\n");
}
return child_loc;
}
bool GateMateImpl::getChildPlacement(const BaseClusterInfo *cluster, Loc root_loc,
std::vector<std::pair<CellInfo *, BelId>> &placement) const
{
for (auto child : cluster->constr_children) {
Loc child_loc;
if (child->constr_z >= PLACE_DB_CONSTR) {
child_loc = getRelativeConstraint(root_loc, IdString(child->constr_z - PLACE_DB_CONSTR));
} else {
child_loc.x = root_loc.x + child->constr_x;
child_loc.y = root_loc.y + child->constr_y;
child_loc.z = child->constr_abs_z ? child->constr_z : (root_loc.z + child->constr_z);
}
if (child_loc.x < 0 || child_loc.x >= ctx->getGridDimX())
return false;
if (child_loc.y < 0 || child_loc.y >= ctx->getGridDimY())
return false;
BelId child_bel = ctx->getBelByLocation(child_loc);
if (child_bel == BelId() || !this->isValidBelForCellType(child->type, child_bel))
return false;
placement.emplace_back(child, child_bel);
if (!getChildPlacement(child, child_loc, placement))
return false;
}
return true;
}
bool GateMateImpl::getClusterPlacement(ClusterId cluster, BelId root_bel,
std::vector<std::pair<CellInfo *, BelId>> &placement) const
{
CellInfo *root_cell = get_cluster_root(ctx, cluster);
placement.clear();
NPNR_ASSERT(root_bel != BelId());
Loc root_loc = ctx->getBelLocation(root_bel);
if (root_cell->constr_abs_z) {
// Coerce root to absolute z constraint
root_loc.z = root_cell->constr_z;
root_bel = ctx->getBelByLocation(root_loc);
if (root_bel == BelId() || !this->isValidBelForCellType(root_cell->type, root_bel))
return false;
}
placement.emplace_back(root_cell, root_bel);
return getChildPlacement(root_cell, root_loc, placement);
}
bool GateMateImpl::need_inversion(CellInfo *cell, IdString port)
{
PortRef sink;
sink.cell = cell;
sink.port = port;
NetInfo *net_info = cell->getPort(port);
if (!net_info)
return false;
WireId src_wire = ctx->getNetinfoSourceWire(net_info);
WireId dst_wire = ctx->getNetinfoSinkWire(net_info, sink, 0);
if (src_wire == WireId())
return false;
WireId cursor = dst_wire;
bool invert = false;
while (cursor != WireId() && cursor != src_wire) {
auto it = net_info->wires.find(cursor);
if (it == net_info->wires.end())
break;
PipId pip = it->second.pip;
if (pip == PipId())
break;
invert ^= ctx->isPipInverting(pip);
cursor = ctx->getPipSrcWire(pip);
}
return invert;
}
void GateMateImpl::update_cpe_lt(CellInfo *cell, IdString port, IdString init)
{
unsigned init_val = int_or_default(cell->params, init);
bool invert = need_inversion(cell, port);
if (invert) {
if (port.in(id_IN1, id_IN3))
init_val = (init_val & 0b1010) >> 1 | (init_val & 0b0101) << 1;
else
init_val = (init_val & 0b0011) << 2 | (init_val & 0b1100) >> 2;
cell->params[init] = Property(init_val, 4);
}
}
void GateMateImpl::update_cpe_inv(CellInfo *cell, IdString port, IdString param)
{
unsigned init_val = int_or_default(cell->params, param);
bool invert = need_inversion(cell, port);
if (invert) {
cell->params[param] = Property(3 - init_val, 2);
}
}
void GateMateImpl::update_cpe_mux(CellInfo *cell, IdString port, IdString param, int bit)
{
// Mux inversion data is contained in other CPE half
Loc l = ctx->getBelLocation(cell->bel);
CellInfo *cell_l = ctx->getBoundBelCell(ctx->getBelByLocation(Loc(l.x, l.y, 1)));
unsigned init_val = int_or_default(cell_l->params, param);
bool invert = need_inversion(cell, port);
if (invert) {
int old = (init_val >> bit) & 1;
int val = (init_val & (~(1 << bit) & 0xf)) | ((!old) << bit);
cell_l->params[param] = Property(val, 4);
}
}
void GateMateImpl::rename_param(CellInfo *cell, IdString name, IdString new_name, int width)
{
if (cell->params.count(name)) {
cell->params[new_name] = Property(int_or_default(cell->params, name, 0), width);
cell->unsetParam(name);
}
}
void GateMateImpl::prePlace() { assign_cell_info(); }
void GateMateImpl::postPlace()
{
ctx->assignArchInfo();
for (auto &cell : ctx->cells) {
if (cell.second->type.in(id_CPE_HALF, id_CPE_HALF_U, id_CPE_HALF_L)) {
Loc l = ctx->getBelLocation(cell.second->bel);
if (l.z == 0) { // CPE_HALF_U
if (cell.second->params.count(id_C_O) && int_or_default(cell.second->params, id_C_O, 0) == 0)
cell.second->params[id_C_2D_IN] = Property(1, 1);
rename_param(cell.second.get(), id_C_O, id_C_O2, 2);
rename_param(cell.second.get(), id_C_RAM_I, id_C_RAM_I2, 1);
rename_param(cell.second.get(), id_C_RAM_O, id_C_RAM_O2, 1);
cell.second->type = id_CPE_HALF_U;
} else { // CPE_HALF_L
if (!cell.second->params.count(id_INIT_L20))
cell.second->params[id_INIT_L20] = Property(0b1100, 4);
rename_param(cell.second.get(), id_C_O, id_C_O1, 2);
rename_param(cell.second.get(), id_INIT_L00, id_INIT_L02, 4);
rename_param(cell.second.get(), id_INIT_L01, id_INIT_L03, 4);
rename_param(cell.second.get(), id_INIT_L10, id_INIT_L11, 4);
rename_param(cell.second.get(), id_C_RAM_I, id_C_RAM_I1, 1);
rename_param(cell.second.get(), id_C_RAM_O, id_C_RAM_O1, 1);
cell.second->type = id_CPE_HALF_L;
}
}
}
}
void GateMateImpl::preRoute() { route_clock(); }
void GateMateImpl::postRoute()
{
ctx->assignArchInfo();
// Update configuration bits based on signal inversion
for (auto &cell : ctx->cells) {
if (cell.second->type.in(id_CPE_HALF_U)) {
uint8_t func = int_or_default(cell.second->params, id_C_FUNCTION, 0);
if (func != C_MX4) {
update_cpe_lt(cell.second.get(), id_IN1, id_INIT_L00);
update_cpe_lt(cell.second.get(), id_IN2, id_INIT_L00);
update_cpe_lt(cell.second.get(), id_IN3, id_INIT_L01);
update_cpe_lt(cell.second.get(), id_IN4, id_INIT_L01);
} else {
update_cpe_mux(cell.second.get(), id_IN1, id_INIT_L11, 0);
update_cpe_mux(cell.second.get(), id_IN2, id_INIT_L11, 1);
update_cpe_mux(cell.second.get(), id_IN3, id_INIT_L11, 2);
update_cpe_mux(cell.second.get(), id_IN4, id_INIT_L11, 3);
}
}
if (cell.second->type.in(id_CPE_HALF_L)) {
update_cpe_lt(cell.second.get(), id_IN1, id_INIT_L02);
update_cpe_lt(cell.second.get(), id_IN2, id_INIT_L02);
update_cpe_lt(cell.second.get(), id_IN3, id_INIT_L03);
update_cpe_lt(cell.second.get(), id_IN4, id_INIT_L03);
}
if (cell.second->type.in(id_CPE_HALF_U, id_CPE_HALF_L)) {
update_cpe_inv(cell.second.get(), id_CLK, id_C_CPE_CLK);
update_cpe_inv(cell.second.get(), id_EN, id_C_CPE_EN);
bool set = int_or_default(cell.second->params, id_C_EN_SR, 0) == 1;
if (set)
update_cpe_inv(cell.second.get(), id_SR, id_C_CPE_SET);
else
update_cpe_inv(cell.second.get(), id_SR, id_C_CPE_RES);
}
}
// Sanity check
for (auto &c : ctx->cells) {
CellInfo *cell = c.second.get();
if (!cell->type.in(id_CPE_HALF_U, id_CPE_HALF_L)) {
for (auto port : cell->ports) {
if (need_inversion(cell, port.first)) {
log_error("Unhandled cell '%s' of type '%s' port '%s'\n", cell->name.c_str(ctx),
cell->type.c_str(ctx), port.first.c_str(ctx));
}
}
}
}
print_utilisation(ctx);
const ArchArgs &args = ctx->args;
if (args.options.count("out")) {
write_bitstream(args.device, args.options.at("out"));
}
}
void GateMateImpl::configurePlacerHeap(PlacerHeapCfg &cfg)
{
cfg.beta = 0.5;
cfg.placeAllAtOnce = true;
}
void GateMateImpl::assign_cell_info()
{
fast_cell_info.resize(ctx->cells.size());
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
auto &fc = fast_cell_info.at(ci->flat_index);
if (ci->type.in(id_CPE_HALF, id_CPE_HALF_U, id_CPE_HALF_L)) {
fc.signal_used = int_or_default(ci->params, id_C_O, -1);
fc.ff_en = ci->getPort(id_EN);
fc.ff_clk = ci->getPort(id_CLK);
fc.ff_sr = ci->getPort(id_SR);
fc.ff_config = 0;
if (fc.signal_used == 0) {
fc.ff_config |= int_or_default(ci->params, id_C_CPE_EN, 0);
fc.ff_config <<= 2;
fc.ff_config |= int_or_default(ci->params, id_C_CPE_CLK, 0);
fc.ff_config <<= 2;
fc.ff_config |= int_or_default(ci->params, id_C_CPE_RES, 0);
fc.ff_config <<= 2;
fc.ff_config |= int_or_default(ci->params, id_C_CPE_SET, 0);
fc.ff_config <<= 2;
fc.ff_config |= int_or_default(ci->params, id_C_EN_SR, 0);
fc.ff_config <<= 1;
fc.ff_config |= int_or_default(ci->params, id_C_L_D, 0);
fc.ff_config <<= 1;
fc.ff_config |= int_or_default(ci->params, id_FF_INIT, 0);
fc.dff_used = true;
}
}
}
}
// Bel bucket functions
IdString GateMateImpl::getBelBucketForCellType(IdString cell_type) const
{
if (cell_type.in(id_CC_IBUF, id_CC_OBUF, id_CC_TOBUF, id_CC_IOBUF, id_CC_LVDS_IBUF, id_CC_LVDS_TOBUF,
id_CC_LVDS_OBUF, id_CC_LVDS_IOBUF))
return id_GPIO;
else if (cell_type.in(id_CPE_HALF_U, id_CPE_HALF_L, id_CPE_HALF))
return id_CPE_HALF;
else
return cell_type;
}
BelBucketId GateMateImpl::getBelBucketForBel(BelId bel) const
{
IdString bel_type = ctx->getBelType(bel);
if (bel_type.in(id_CPE_HALF_U, id_CPE_HALF_L))
return id_CPE_HALF;
return bel_type;
}
bool GateMateImpl::isValidBelForCellType(IdString cell_type, BelId bel) const
{
IdString bel_type = ctx->getBelType(bel);
if (bel_type == id_GPIO)
return cell_type.in(id_CC_IBUF, id_CC_OBUF, id_CC_TOBUF, id_CC_IOBUF, id_CC_LVDS_IBUF, id_CC_LVDS_TOBUF,
id_CC_LVDS_OBUF, id_CC_LVDS_IOBUF);
else if (bel_type == id_CPE_HALF_U)
return cell_type.in(id_CPE_HALF_U, id_CPE_HALF);
else if (bel_type == id_CPE_HALF_L)
return cell_type.in(id_CPE_HALF_L, id_CPE_HALF);
else
return (bel_type == cell_type);
}
bool GateMateImpl::isPipInverting(PipId pip) const
{
const auto &extra_data =
*reinterpret_cast<const GateMatePipExtraDataPOD *>(chip_pip_info(ctx->chip_info, pip).extra_data.get());
return extra_data.type == PipExtra::PIP_EXTRA_MUX && (extra_data.flags & MUX_INVERT);
}
const GateMateBelExtraDataPOD *GateMateImpl::bel_extra_data(BelId bel) const
{
return reinterpret_cast<const GateMateBelExtraDataPOD *>(chip_bel_info(ctx->chip_info, bel).extra_data.get());
}
struct GateMateArch : HimbaechelArch
{
GateMateArch() : HimbaechelArch("gatemate") {};
bool match_device(const std::string &device) override
{
return device.size() > 6 && device.substr(0, 6) == "CCGM1A";
}
std::unique_ptr<HimbaechelAPI> create(const std::string &device, const dict<std::string, std::string> &args)
{
return std::make_unique<GateMateImpl>();
}
} gateMateArch;
NEXTPNR_NAMESPACE_END