nextpnr/himbaechel/uarch/gatemate/gatemate.cc

635 lines
23 KiB
C++

/*
* nextpnr -- Next Generation Place and Route
*
* Copyright (C) 2024 The Project Peppercorn Authors.
*
* Permission to use, copy, modify, and/or distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*
*/
#include <utility>
#include "gatemate.h"
#include "log.h"
#include "placer_heap.h"
#define GEN_INIT_CONSTIDS
#define HIMBAECHEL_CONSTIDS "uarch/gatemate/constids.inc"
#include "himbaechel_constids.h"
NEXTPNR_NAMESPACE_BEGIN
GateMateImpl::~GateMateImpl() {};
po::options_description GateMateImpl::getUArchOptions()
{
po::options_description specific("GateMate specific options");
specific.add_options()("out", po::value<std::string>(), "textual configuration bitstream output file");
specific.add_options()("ccf", po::value<std::string>(), "name of constraints file");
specific.add_options()("allow-unconstrained", "allow unconstrained IOs");
specific.add_options()("fpga_mode", po::value<std::string>(), "operation mode (1:lowpower, 2:economy, 3:speed)");
specific.add_options()("time_mode", po::value<std::string>(), "timing mode (1:best, 2:typical, 3:worst)");
specific.add_options()("strategy", po::value<std::string>(),
"multi-die clock placement strategy (mirror, full or clk1)");
specific.add_options()("force_die", po::value<std::string>(), "force specific die (example 1A,1B...)");
return specific;
}
static int parse_mode(const std::string &val, const std::map<std::string, int> &map, const char *error_msg)
{
try {
int i = std::stoi(val);
if (i >= 1 && i <= 3)
return i;
} catch (...) {
auto it = map.find(val);
if (it != map.end())
return it->second;
}
log_error("%s\n", error_msg);
}
void GateMateImpl::init_database(Arch *arch)
{
const ArchArgs &args = arch->args;
init_uarch_constids(arch);
arch->load_chipdb(stringf("gatemate/chipdb-%s.bin", args.device.c_str()));
arch->set_package("FBGA324");
dies = std::stoi(args.device.substr(6));
fpga_mode = 3;
timing_mode = 3;
static const std::map<std::string, int> fpga_map = {{"lowpower", 1}, {"economy", 2}, {"speed", 3}};
static const std::map<std::string, int> timing_map = {{"best", 1}, {"typical", 2}, {"worst", 3}};
if (args.options.count("fpga_mode"))
fpga_mode = parse_mode(args.options["fpga_mode"].as<std::string>(), fpga_map,
"operation mode valid values are {1:lowpower, 2:economy, 3:speed}");
if (args.options.count("time_mode"))
timing_mode = parse_mode(args.options["time_mode"].as<std::string>(), timing_map,
"timing mode valid values are {1:best, 2:typical, 3:worst}");
std::string speed_grade = "";
switch (timing_mode) {
case 1:
speed_grade = "best_";
break;
case 2:
speed_grade = "typ_";
break;
default:
speed_grade = "worst_";
break;
}
log_info("Using timing mode '%s'\n", timing_mode == 1 ? "BEST"
: timing_mode == 2 ? "TYPICAL"
: timing_mode == 3 ? "WORST"
: "");
switch (fpga_mode) {
case 1:
speed_grade += "lpr";
break;
case 2:
speed_grade += "eco";
break;
default:
speed_grade += "spd";
}
log_info("Using operation mode '%s'\n", fpga_mode == 1 ? "LOWPOWER"
: fpga_mode == 2 ? "ECONOMY"
: fpga_mode == 3 ? "SPEED"
: "");
arch->set_speed_grade(speed_grade);
}
void GateMateImpl::init(Context *ctx)
{
HimbaechelAPI::init(ctx);
for (const auto &pad : ctx->package_info->pads) {
available_pads.emplace(IdString(pad.package_pin));
BelId bel = ctx->getBelByName(IdStringList::concat(IdString(pad.tile), IdString(pad.bel)));
bel_to_pad.emplace(bel, &pad);
locations.emplace(std::make_pair(IdString(pad.package_pin), tile_extra_data(bel.tile)->die),
ctx->getBelLocation(bel));
}
available_pads.emplace(ctx->id("SER_CLK"));
available_pads.emplace(ctx->id("SER_CLK_N"));
for (auto bel : ctx->getBels()) {
auto *ptr = bel_extra_data(bel);
std::map<IdString, const GateMateBelPinConstraintPOD *> pins;
for (const auto &p : ptr->constraints)
pins.emplace(IdString(p.name), &p);
pin_to_constr.emplace(bel, pins);
if (ctx->getBelType(bel).in(id_CLKIN, id_GLBOUT, id_PLL, id_USR_RSTN, id_CFG_CTRL, id_SERDES)) {
locations.emplace(std::make_pair(ctx->getBelName(bel)[1], tile_extra_data(bel.tile)->die),
ctx->getBelLocation(bel));
}
}
const auto &sp = reinterpret_cast<const GateMateSpeedGradeExtraDataPOD *>(ctx->speed_grade->extra_data.get());
for (int i = 0; i < sp->timings.ssize(); i++) {
timing.emplace(IdString(sp->timings[i].name), &sp->timings[i]);
}
for (int num = 0; num < 2; num++) {
int index = (num == 0) ? 0 : 2;
ram_signal_clk.emplace(ctx->idf("ENA[%d]", index), num);
ram_signal_clk.emplace(ctx->idf("ENB[%d]", index), num + 2);
ram_signal_clk.emplace(ctx->idf("GLWEA[%d]", index), num);
ram_signal_clk.emplace(ctx->idf("GLWEB[%d]", index), num + 2);
for (int i = 0; i < 20; i++) {
ram_signal_clk.emplace(ctx->idf("WEA[%d]", i + num * 20), num);
ram_signal_clk.emplace(ctx->idf("WEB[%d]", i + num * 20), num + 2);
}
for (int i = 0; i < 16; i++) {
ram_signal_clk.emplace(ctx->idf("ADDRA%d[%d]", num, i), num);
ram_signal_clk.emplace(ctx->idf("ADDRB%d[%d]", num, i), num + 2);
}
for (int i = 0; i < 20; i++) {
ram_signal_clk.emplace(ctx->idf("DIA[%d]", i + num * 20), num);
ram_signal_clk.emplace(ctx->idf("DOA[%d]", i + num * 20), num);
ram_signal_clk.emplace(ctx->idf("DIB[%d]", i + num * 20), num + 2);
ram_signal_clk.emplace(ctx->idf("DOB[%d]", i + num * 20), num + 2);
}
}
const GateMateChipExtraDataPOD *extra =
reinterpret_cast<const GateMateChipExtraDataPOD *>(ctx->chip_info->extra_data.get());
const ArchArgs &args = ctx->args;
std::string die_name;
if (args.options.count("force_die"))
die_name = args.options["force_die"].as<std::string>();
bool found = false;
int index = 0;
for (auto &die : extra->dies) {
IdString name(die.name);
index_to_die[index] = name;
die_to_index[name] = index++;
ctx->createRectangularRegion(name, die.x1, die.y1, die.x2, die.y2);
if (die_name == name.c_str(ctx)) {
found = true;
forced_die = name;
}
}
if (!die_name.empty() && !found)
log_error("Unable to select forced die '%s'.\n", die_name.c_str());
}
bool GateMateImpl::isBelLocationValid(BelId bel, bool explain_invalid) const
{
CellInfo *cell = ctx->getBoundBelCell(bel);
if (cell == nullptr) {
return true;
}
if (getBelBucketForBel(bel) == id_CPE_FF) {
Loc loc = ctx->getBelLocation(bel);
const CellInfo *adj_half = ctx->getBoundBelCell(
ctx->getBelByLocation(Loc(loc.x, loc.y, loc.z == CPE_FF_L_Z ? CPE_FF_U_Z : CPE_FF_L_Z)));
if (adj_half) {
const auto &half_data = fast_cell_info.at(cell->flat_index);
if (half_data.used) {
const auto &adj_data = fast_cell_info.at(adj_half->flat_index);
if (adj_data.used) {
if (adj_data.config != half_data.config)
return false;
if (adj_data.ff_en != half_data.ff_en)
return false;
if (adj_data.ff_clk != half_data.ff_clk)
return false;
if (adj_data.ff_sr != half_data.ff_sr)
return false;
}
}
}
return true;
} else if (getBelBucketForBel(bel) == id_RAM_HALF) {
Loc loc = ctx->getBelLocation(bel);
const CellInfo *adj_half =
ctx->getBoundBelCell(ctx->getBelByLocation(Loc(loc.x, loc.z == RAM_HALF_L_Z ? loc.y - 8 : loc.y + 8,
loc.z == RAM_HALF_L_Z ? RAM_FULL_Z : RAM_HALF_L_Z)));
if (adj_half) {
const auto &half_data = fast_cell_info.at(cell->flat_index);
if (half_data.used) {
const auto &adj_data = fast_cell_info.at(adj_half->flat_index);
if (adj_data.used) {
if (adj_data.config != half_data.config)
return false;
}
}
}
return true;
}
return true;
}
Loc GateMateImpl::getRelativeConstraint(Loc &root_loc, IdString id) const
{
Loc child_loc;
BelId root_bel = ctx->getBelByLocation(root_loc);
if (pin_to_constr.count(root_bel)) {
auto &constr = pin_to_constr.at(root_bel);
if (constr.count(id)) {
auto &p = constr.at(id);
child_loc.x = root_loc.x + p->constr_x;
child_loc.y = root_loc.y + p->constr_y;
child_loc.z = p->constr_z;
} else {
log_error("Constrain info not available for pin '%s'.\n", id.c_str(ctx));
}
} else {
log_error("Bel info not available for constraints.\n");
}
return child_loc;
}
bool GateMateImpl::getChildPlacement(const BaseClusterInfo *cluster, Loc root_loc,
std::vector<std::pair<CellInfo *, BelId>> &placement) const
{
for (auto child : cluster->constr_children) {
Loc child_loc;
if (child->constr_z >= PLACE_DB_CONSTR) {
child_loc = getRelativeConstraint(root_loc, IdString(child->constr_z - PLACE_DB_CONSTR));
} else {
child_loc.x = root_loc.x + child->constr_x;
child_loc.y = root_loc.y + child->constr_y;
child_loc.z = child->constr_abs_z ? child->constr_z : (root_loc.z + child->constr_z);
}
if (child_loc.x < 0 || child_loc.x >= ctx->getGridDimX())
return false;
if (child_loc.y < 0 || child_loc.y >= ctx->getGridDimY())
return false;
BelId child_bel = ctx->getBelByLocation(child_loc);
if (child_bel == BelId() || !this->isValidBelForCellType(child->type, child_bel))
return false;
placement.emplace_back(child, child_bel);
if (!getChildPlacement(child, child_loc, placement))
return false;
}
return true;
}
bool GateMateImpl::getClusterPlacement(ClusterId cluster, BelId root_bel,
std::vector<std::pair<CellInfo *, BelId>> &placement) const
{
CellInfo *root_cell = get_cluster_root(ctx, cluster);
placement.clear();
NPNR_ASSERT(root_bel != BelId());
Loc root_loc = ctx->getBelLocation(root_bel);
if (root_cell->constr_abs_z) {
// Coerce root to absolute z constraint
root_loc.z = root_cell->constr_z;
root_bel = ctx->getBelByLocation(root_loc);
if (root_bel == BelId() || !this->isValidBelForCellType(root_cell->type, root_bel))
return false;
}
placement.emplace_back(root_cell, root_bel);
return getChildPlacement(root_cell, root_loc, placement);
}
void GateMateImpl::prePlace() { assign_cell_info(); }
void GateMateImpl::postPlace()
{
repack();
ctx->assignArchInfo();
used_cpes.resize(ctx->getGridDimX() * ctx->getGridDimY());
block_perm.resize(ctx->getGridDimX() * ctx->getGridDimY());
for (auto &cell : ctx->cells) {
// We need to skip CPE_MULT since using CP outputs is mandatory
// even if output is actually not connected
bool marked_used = cell.second.get()->type == id_CPE_MULT;
// Can not use FF for OUT2 if CPE is used in bridge mode
if (cell.second.get()->type == id_CPE_FF && ctx->getBelLocation(cell.second.get()->bel).z == CPE_FF_U_Z)
marked_used = true;
if (marked_used)
used_cpes[cell.second.get()->bel.tile] = true;
if (cell.second.get()->type.in(id_CPE_MX4, id_CPE_MULT))
block_perm[cell.second.get()->bel.tile] = true;
}
}
bool GateMateImpl::checkPipAvail(PipId pip) const
{
const auto &extra_data = *pip_extra_data(pip);
if (extra_data.type != PipExtra::PIP_EXTRA_MUX || (extra_data.flags & (MUX_ROUTING | MUX_PERMUTATION)) == 0)
return true;
if ((extra_data.flags & MUX_ROUTING) && used_cpes[pip.tile])
return false;
if ((extra_data.flags & MUX_PERMUTATION) && (extra_data.value!=0) && block_perm[pip.tile])
return false;
return true;
}
void GateMateImpl::preRoute()
{
route_mult();
route_clock();
ctx->assignArchInfo();
}
void GateMateImpl::reassign_bridges(NetInfo *ni, const dict<WireId, PipMap> &net_wires, WireId wire,
dict<WireId, IdString> &wire_to_net, int &num)
{
wire_to_net.insert({wire, ni->name});
for (auto pip : ctx->getPipsDownhill(wire)) {
auto dst = ctx->getPipDstWire(pip);
// Ignore wires not part of the net
auto it = net_wires.find(dst);
if (it == net_wires.end())
continue;
// Ignore pips if the wire is driven by another pip.
if (pip != it->second.pip)
continue;
// Ignore wires already visited.
if (wire_to_net.count(dst))
continue;
const auto &extra_data = *pip_extra_data(pip);
// If not a bridge, just recurse.
if (extra_data.type != PipExtra::PIP_EXTRA_MUX || !(extra_data.flags & MUX_ROUTING)) {
reassign_bridges(ni, net_wires, dst, wire_to_net, num);
continue;
}
// We have a bridge that needs to be translated to a bel.
IdString name = ctx->idf("%s$bridge%d", ni->name.c_str(ctx), num);
IdStringList id = ctx->getPipName(pip);
Loc loc = ctx->getPipLocation(pip);
BelId bel = ctx->getBelByLocation({loc.x, loc.y, CPE_BRIDGE_Z});
CellInfo *cell = ctx->createCell(name, id_CPE_BRIDGE);
ctx->bindBel(bel, cell, PlaceStrength::STRENGTH_FIXED);
cell->params[id_C_BR] = Property(Property::State::S1, 1);
cell->params[id_C_SN] = Property(extra_data.value, 3);
NetInfo *new_net = ctx->createNet(ctx->idf("%s$muxout", name.c_str(ctx)));
IdString in_port = ctx->idf("IN%d", extra_data.value + 1);
cell->addInput(in_port);
cell->connectPort(in_port, ni);
cell->addOutput(id_MUXOUT);
cell->connectPort(id_MUXOUT, new_net);
num++;
reassign_bridges(new_net, net_wires, dst, wire_to_net, num);
}
}
void GateMateImpl::postRoute()
{
int num = 0;
pool<IdString> nets_with_bridges;
for (auto &net : ctx->nets) {
NetInfo *ni = net.second.get();
for (auto &w : ni->wires) {
if (w.second.pip != PipId()) {
const auto &extra_data = *pip_extra_data(w.second.pip);
if (extra_data.type == PipExtra::PIP_EXTRA_MUX && (extra_data.flags & MUX_ROUTING)) {
nets_with_bridges.insert(ni->name);
}
}
}
}
for (auto net_name : nets_with_bridges) {
auto *ni = ctx->nets.at(net_name).get();
auto net_wires = ni->wires; // copy wires to preserve across unbind/rebind.
auto wire_to_net = dict<WireId, IdString>{};
auto wire_to_port = dict<WireId, std::vector<PortRef>>{};
for (auto &usr : ni->users)
for (auto sink_wire : ctx->getNetinfoSinkWires(ni, usr)) {
auto result = wire_to_port.find(sink_wire);
if (result == wire_to_port.end())
wire_to_port.insert({sink_wire, std::vector<PortRef>{usr}});
else
result->second.push_back(usr);
}
// traverse the routing tree to assign bridge nets to wires.
reassign_bridges(ni, net_wires, ctx->getNetinfoSourceWire(ni), wire_to_net, num);
for (auto &pair : net_wires)
ctx->unbindWire(pair.first);
for (auto &pair : net_wires) {
auto wire = pair.first;
auto pip = pair.second.pip;
auto strength = pair.second.strength;
auto *net = ctx->nets.at(wire_to_net.at(wire)).get();
if (pip == PipId())
ctx->bindWire(wire, net, strength);
else
ctx->bindPip(pip, net, strength);
if (wire_to_port.count(wire)) {
for (auto sink : wire_to_port.at(wire)) {
NPNR_ASSERT(sink.cell != nullptr && sink.port != IdString());
sink.cell->disconnectPort(sink.port);
sink.cell->connectPort(sink.port, net);
}
}
}
}
ctx->assignArchInfo();
const ArchArgs &args = ctx->args;
if (args.options.count("out")) {
write_bitstream(args.device, args.options["out"].as<std::string>());
}
}
BoundingBox GateMateImpl::getRouteBoundingBox(WireId src, WireId dst) const
{
int x0, y0, x1, y1;
auto expand = [&](int x, int y) {
x0 = std::min(x0, x);
x1 = std::max(x1, x);
y0 = std::min(y0, y);
y1 = std::max(y1, y);
};
tile_xy(ctx->chip_info, src.tile, x0, y0);
x1 = x0;
y1 = y0;
int dx, dy;
tile_xy(ctx->chip_info, dst.tile, dx, dy);
expand(dx, dy);
return {(x0 & 0xfffe), (y0 & 0xfffe), (x1 & 0xfffe) + 1, (y1 & 0xfffe) + 1};
}
void GateMateImpl::expandBoundingBox(BoundingBox &bb) const
{
bb.x0 = std::max((bb.x0 & 0xfffe) - 4, 0);
bb.y0 = std::max((bb.y0 & 0xfffe) - 4, 0);
bb.x1 = std::min((bb.x1 & 0xfffe) + 5, ctx->getGridDimX());
bb.y1 = std::min((bb.y1 & 0xfffe) + 5, ctx->getGridDimY());
}
void GateMateImpl::configurePlacerHeap(PlacerHeapCfg &cfg)
{
cfg.chainRipup = true;
cfg.placeAllAtOnce = true;
}
int GateMateImpl::get_dff_config(CellInfo *dff) const
{
int val = 0;
val |= int_or_default(dff->params, id_C_CPE_EN, 0);
val <<= 2;
val |= int_or_default(dff->params, id_C_CPE_CLK, 0);
val <<= 2;
val |= int_or_default(dff->params, id_C_CPE_RES, 0);
val <<= 2;
val |= int_or_default(dff->params, id_C_CPE_SET, 0);
val <<= 2;
val |= int_or_default(dff->params, id_C_EN_SR, 0);
val <<= 1;
val |= int_or_default(dff->params, id_C_L_D, 0);
val <<= 1;
val |= int_or_default(dff->params, id_FF_INIT, 0);
return val;
}
int GateMateImpl::get_ram_config(CellInfo *ram) const
{
int val = 0;
val |= int_or_default(ram->params, id_RAM_cfg_ecc_enable, 0);
val <<= 2;
val |= int_or_default(ram->params, id_RAM_cfg_sram_mode, 0);
return val;
}
void GateMateImpl::assign_cell_info()
{
fast_cell_info.resize(ctx->cells.size());
for (auto &cell : ctx->cells) {
CellInfo *ci = cell.second.get();
auto &fc = fast_cell_info.at(ci->flat_index);
if (getBelBucketForCellType(ci->type) == id_CPE_FF) {
fc.ff_en = ci->getPort(id_EN);
fc.ff_clk = ci->getPort(id_CLK);
fc.ff_sr = ci->getPort(id_SR);
fc.config = get_dff_config(ci);
fc.used = true;
}
if (getBelBucketForCellType(ci->type) == id_RAM_HALF) {
fc.config = get_ram_config(ci);
fc.used = true;
}
}
}
// Bel bucket functions
IdString GateMateImpl::getBelBucketForCellType(IdString cell_type) const
{
if (cell_type.in(id_CPE_IBUF, id_CPE_OBUF, id_CPE_TOBUF, id_CPE_IOBUF, id_CPE_LVDS_IBUF, id_CPE_LVDS_TOBUF,
id_CPE_LVDS_OBUF, id_CPE_LVDS_IOBUF))
return id_GPIO;
else if (cell_type.in(id_CPE_LT_U, id_CPE_LT_L, id_CPE_LT, id_CPE_L2T4))
return id_CPE_LT;
else if (cell_type.in(id_CPE_FF_U, id_CPE_FF_L, id_CPE_FF, id_CPE_LATCH))
return id_CPE_FF;
else if (cell_type.in(id_CPE_RAMIO, id_CPE_RAMI, id_CPE_RAMO))
return id_CPE_RAMIO;
else if (cell_type.in(id_RAM, id_RAM_HALF, id_RAM_HALF_DUMMY))
return id_RAM_HALF;
else
return cell_type;
}
BelBucketId GateMateImpl::getBelBucketForBel(BelId bel) const
{
IdString bel_type = ctx->getBelType(bel);
if (bel_type.in(id_CPE_LT_U, id_CPE_LT_L))
return id_CPE_LT;
else if (bel_type.in(id_CPE_FF_U, id_CPE_FF_L))
return id_CPE_FF;
else if (bel_type.in(id_CPE_RAMIO_U, id_CPE_RAMIO_L))
return id_CPE_RAMIO;
else if (bel_type.in(id_RAM, id_RAM_HALF_L))
return id_RAM_HALF;
return bel_type;
}
bool GateMateImpl::isValidBelForCellType(IdString cell_type, BelId bel) const
{
IdString bel_type = ctx->getBelType(bel);
if (bel_type == id_GPIO)
return cell_type.in(id_CPE_IBUF, id_CPE_OBUF, id_CPE_TOBUF, id_CPE_IOBUF, id_CPE_LVDS_IBUF, id_CPE_LVDS_TOBUF,
id_CPE_LVDS_OBUF, id_CPE_LVDS_IOBUF);
else if (bel_type == id_CPE_LT_U)
return cell_type.in(id_CPE_LT_U, id_CPE_LT, id_CPE_L2T4, id_CPE_DUMMY);
else if (bel_type == id_CPE_LT_L)
return cell_type.in(id_CPE_LT_L, id_CPE_LT, id_CPE_L2T4, id_CPE_DUMMY);
else if (bel_type == id_CPE_FF_U)
return cell_type.in(id_CPE_FF_U, id_CPE_FF, id_CPE_LATCH);
else if (bel_type == id_CPE_FF_L)
return cell_type.in(id_CPE_FF_L, id_CPE_FF, id_CPE_LATCH);
else if (bel_type.in(id_CPE_RAMIO_U, id_CPE_RAMIO_L))
return cell_type.in(id_CPE_RAMIO, id_CPE_RAMI, id_CPE_RAMO);
else if (bel_type == id_RAM)
return cell_type.in(id_RAM_HALF, id_RAM);
else if (bel_type == id_RAM_HALF_L)
return cell_type.in(id_RAM_HALF, id_RAM_HALF_DUMMY);
else
return (bel_type == cell_type);
}
bool GateMateImpl::isPipInverting(PipId pip) const
{
const auto &extra_data = *pip_extra_data(pip);
return extra_data.type == PipExtra::PIP_EXTRA_MUX && (extra_data.flags & MUX_INVERT);
}
const GateMateTileExtraDataPOD *GateMateImpl::tile_extra_data(int tile) const
{
return reinterpret_cast<const GateMateTileExtraDataPOD *>(ctx->chip_info->tile_insts[tile].extra_data.get());
}
const GateMateBelExtraDataPOD *GateMateImpl::bel_extra_data(BelId bel) const
{
return reinterpret_cast<const GateMateBelExtraDataPOD *>(chip_bel_info(ctx->chip_info, bel).extra_data.get());
}
const GateMatePipExtraDataPOD *GateMateImpl::pip_extra_data(PipId pip) const
{
return reinterpret_cast<const GateMatePipExtraDataPOD *>(chip_pip_info(ctx->chip_info, pip).extra_data.get());
}
struct GateMateArch : HimbaechelArch
{
GateMateArch() : HimbaechelArch("gatemate") {};
bool match_device(const std::string &device) override
{
return device.size() > 6 && device.substr(0, 6) == "CCGM1A";
}
std::unique_ptr<HimbaechelAPI> create(const std::string &device) override
{
return std::make_unique<GateMateImpl>();
}
} gateMateArch;
NEXTPNR_NAMESPACE_END