magic/sim/SimDBstuff.c

1084 lines
32 KiB
C

/* SimDBstuff.c -
*
* This file contains routines that extract electrically connected
* regions of a layout for Magic. This extractor operates
* hierarchically, across cell boundaries (SimTreeCopyConnect), as
* well as within a single cell (SimSrConnect).
*
* This also contains routines corresponding to those in the DBWind
* module.
*
* *********************************************************************
* * Copyright (C) 1985, 1990 Regents of the University of California. *
* * Permission to use, copy, modify, and distribute this *
* * software and its documentation for any purpose and without *
* * fee is hereby granted, provided that the above copyright *
* * notice appear in all copies. The University of California *
* * makes no representations about the suitability of this *
* * software for any purpose. It is provided "as is" without *
* * express or implied warranty. Export of this software outside *
* * of the United States of America may require an export license. *
* *********************************************************************
* University of California
*/
#include <stdio.h>
#include <string.h>
#include "utils/magic.h"
#include "utils/geometry.h"
#include "utils/geofast.h"
#include "tiles/tile.h"
#include "utils/hash.h"
#include "utils/stack.h"
#include "database/database.h"
#include "database/databaseInt.h"
#include "textio/textio.h"
#include "utils/signals.h"
#include "utils/malloc.h"
#include "extract/extractInt.h"
#include "sim/sim.h"
#include "windows/windows.h"
#include "dbwind/dbwind.h"
#include "commands/commands.h"
#include "textio/txcommands.h"
#include "utils/styles.h"
#include "graphics/graphics.h"
/* The following structure is used to hold several pieces
* of information that must be passed through multiple
* levels of search function.
*/
struct conSrArg
{
CellDef *csa_def; /* Definition being searched. */
Plane *csa_plane; /* Current plane being searched. */
TileTypeBitMask *csa_connect; /* Table indicating what connects
* to what.
*/
int (*csa_clientFunc)(); /* Client function to call. */
ClientData csa_clientData; /* Argument for clientFunc. */
bool csa_clear; /* FALSE means pass 1, TRUE
* means pass 2.
*/
Rect csa_bounds; /* Area that limits search. */
};
/* For SimTreeSrConnect, the extraction proceeds in one pass, copying
* all connected stuff from a hierarchy into a single cell. A list
* is kept to record areas that still have to be searched for
* hierarchical stuff.
*/
typedef struct
{
Rect area; /* Area to process */
TileTypeBitMask *connectMask; /* Connection mask for search */
TileType dinfo; /* Info about triangular search areas */
} conSrArea;
struct conSrArg2
{
CellUse *csa2_use; /* Destination use */
TileTypeBitMask *csa2_connect; /* Table indicating what connects
* to what.
*/
Rect *csa2_bounds; /* Area that limits the search */
Stack *csa2_stack; /* Stack of full csa2_list entries */
conSrArea *csa2_list; /* List of areas to process */
int csa2_top; /* Index of next area to process */
int csa2_lasttop; /* Previous top index */
};
#define CSA2_LIST_SIZE 65536 /* Number of entries per list */
/* Forward declarations */
extern char *DBPrintUseId();
extern int dbcUnconnectFunc();
extern void SimInitScxStk();
extern void SimPopScx();
extern void SimMakePathname();
static char bestName[256];
/*
* ----------------------------------------------------------------------------
*
* SimConnectFunc
*
* This procedure is based upon the function dbcConnectFunc in the
* database module.
*
* This procedure is invoked by SimTreeSrTiles from SimTreeCopyConnect,
* whenever a tile is found that is connected to the current area
* being processed. If the tile overlaps the search area in a non-
* trivial way (i.e. more than a 1x1 square of overlap at a corner)
* then the area of the tile is added onto the list of things to check.
* The "non-trivial" overlap check is needed to prevent caddy-corner
* tiles from being considered as connected.
*
* Results:
* Returns 0 normally, 1 if an abort condition has been encountered.
*
* Side effects:
* Paints into the destination definition.
*
* ----------------------------------------------------------------------------
*/
int
SimConnectFunc(tile, cx)
Tile *tile; /* Tile found. */
TreeContext *cx; /* Describes context of search. The client
* data is a pointer to the list head of
* the conSrArg2's describing the areas
* left to check.
*/
{
struct conSrArg2 *csa2;
Rect tileArea, *srArea, newarea;
SearchContext *scx = cx->tc_scx;
TileTypeBitMask notConnectMask, *connectMask;
TileType loctype, ctype;
TileType dinfo = 0;
int i, pNum;
static char nodeName[256];
CellDef *def;
TerminalPath *tpath = cx->tc_filter->tf_tpath;
TiToRect(tile, &tileArea);
srArea = &scx->scx_area;
if (((tileArea.r_xbot >= srArea->r_xtop-1) ||
(tileArea.r_xtop <= srArea->r_xbot+1)) &&
((tileArea.r_ybot >= srArea->r_ytop-1) ||
(tileArea.r_ytop <= srArea->r_ybot+1)))
{
/* If the search area is only one unit wide or tall, then it's
* OK to have only a small overlap. This happens only when
* looking for an initial search tile.
*/
if (((srArea->r_xtop-1) != srArea->r_xbot)
&& ((srArea->r_ytop-1) != srArea->r_ybot)) return 0;
}
GeoTransRect(&scx->scx_trans, &tileArea, &newarea);
/* Clip the current area down to something that overlaps the
* area of interest.
*/
csa2 = (struct conSrArg2 *)cx->tc_filter->tf_arg;
GeoClip(&newarea, csa2->csa2_bounds);
if (GEO_RECTNULL(&newarea)) return 0;
/* Stuff unique to the nodename search follows. */
if (tpath != (TerminalPath *)NULL)
{
/* Extract the node name */
char *n = tpath->tp_next;
char c = *n;
SigDisableInterrupts();
strcpy(nodeName, SimGetNodeName(cx->tc_scx, tile, tpath->tp_first));
SigEnableInterrupts();
*n = c;
/* save the "best" name for this node */
if (bestName[0] == '\0' || efPreferredName(nodeName, bestName))
strcpy(bestName, nodeName);
}
loctype = TiGetTypeExact(tile);
/* Resolve geometric transformations on diagonally-split tiles */
if (IsSplit(tile))
{
dinfo = DBTransformDiagonal(loctype, &scx->scx_trans);
loctype = (SplitSide(tile)) ? SplitRightType(tile) : SplitLeftType(tile);
}
/* See if the destination cell contains stuff over the whole
* current area (on its home plane) that is connected to it.
* If so, then there's no need to process the current area,
* since any processing that is needed was already done before.
*/
pNum = DBPlane(loctype);
connectMask = &csa2->csa2_connect[loctype];
if (DBIsContact(loctype))
{
TileTypeBitMask *rMask = DBResidueMask(loctype);
TileTypeBitMask *cMask;
TTMaskSetOnlyType(&notConnectMask, loctype);
/* Differenct contact types may share residues (6/18/04) */
for (ctype = TT_TECHDEPBASE; ctype < DBNumUserLayers; ctype++)
{
if (DBIsContact(ctype))
{
cMask = DBResidueMask(ctype);
if (TTMaskIntersect(rMask, cMask))
TTMaskSetType(&notConnectMask, ctype);
}
}
/* The mask of contact types must include all stacked contacts */
for (ctype = DBNumUserLayers; ctype < DBNumTypes; ctype++)
{
cMask = DBResidueMask(ctype);
if TTMaskHasType(cMask, loctype)
TTMaskSetType(&notConnectMask, ctype);
}
TTMaskCom(&notConnectMask);
}
else
{
TTMaskCom2(&notConnectMask, connectMask);
}
def = csa2->csa2_use->cu_def;
if (DBSrPaintNMArea((Tile *) NULL, def->cd_planes[pNum],
dinfo, &newarea, &notConnectMask, dbcUnconnectFunc,
(ClientData) connectMask) == 0)
return 0;
/* Paint this tile into the destination cell. */
DBNMPaintPlane(def->cd_planes[pNum], dinfo, &newarea,
DBStdPaintTbl(loctype, pNum), (PaintUndoInfo *) NULL);
/* Since the whole area of this tile hasn't been recorded,
* we must process its area to find any other tiles that
* connect to it. Add each of them to the list of things
* to process. We have to expand the search area by 1 unit
* on all sides because SimTreeSrTiles only returns things
* that overlap the search area, and we want things that
* even just touch.
*/
/* Only extend those sides bordering the diagonal tile */
if (dinfo & TT_DIAGONAL)
{
if (dinfo & TT_SIDE) /* right */
newarea.r_xtop += 1;
else /* left */
newarea.r_xbot -= 1;
if (((dinfo & TT_SIDE) >> 1)
== (dinfo & TT_DIRECTION)) /* top */
newarea.r_ytop += 1;
else /* bottom */
newarea.r_ybot -= 1;
}
else
{
newarea.r_xbot -= 1;
newarea.r_ybot -= 1;
newarea.r_xtop += 1;
newarea.r_ytop += 1;
}
/* Abort the name search if the name is in the abort name search table
* or if the name is global and the SimIgnoreGlobals flag is not set.
*/
if (SimSawAbortString || SigInterruptPending)
return 1;
else if (SimIsGetnode && !SimIgnoreGlobals)
{
i = strlen(nodeName);
if (nodeName[i - 1] == '!')
return 1;
}
/* Check if any of the last 5 entries has the same type and */
/* area. If so, don't duplicate the existing entry. */
/* (NOTE: Connect masks are all from the same table, so */
/* they can be compared by address, no need for TTMaskEqual)*/
for (i = csa2->csa2_lasttop; (i >= 0) && (i > csa2->csa2_lasttop - 5); i--)
if (connectMask == csa2->csa2_list[i].connectMask)
if (GEO_SURROUND(&csa2->csa2_list[i].area, &newarea))
return 0;
/* Register the area and connection mask as needing to be processed */
if (++csa2->csa2_top == CSA2_LIST_SIZE)
{
/* Reached list size limit---need to enlarge the list */
/* Double the size of the list every time we hit the limit */
conSrArea *newlist;
newlist = (conSrArea *)mallocMagic(CSA2_LIST_SIZE * sizeof(conSrArea));
StackPush((ClientData)csa2->csa2_list, csa2->csa2_stack);
csa2->csa2_list = newlist;
csa2->csa2_top = 0;
}
csa2->csa2_list[csa2->csa2_top].area = newarea;
csa2->csa2_list[csa2->csa2_top].connectMask = connectMask;
csa2->csa2_list[csa2->csa2_top].dinfo = dinfo;
return 0;
}
/*
* ----------------------------------------------------------------------------
*
* SimTreeCopyConnect
*
* This procedure is very similar to DBTreeCopyConnect.
*
* This procedure copies connected information from a given cell
* hierarchy to a given (flat) cell. Starting from the tile underneath
* the given area, this procedure finds all paint in all cells
* that is connected to that information. All such paint is
* copied into the result cell. If there are several electrically
* distinct nets underneath the given area, one of them is picked
* at more-or-less random.
*
* Modified so the result cell is NOT first cleared of all paint. This
* allows multiple calls, to highlight incomplete routing nets.
*
* Results:
* None.
*
* Side effects:
* The contents of the result cell are modified.
*
* ----------------------------------------------------------------------------
*/
#define MAXPATHNAME 256
void
SimTreeCopyConnect(scx, mask, xMask, connect, area, destUse, Node_Name)
SearchContext *scx; /* Describes starting area. The
* scx_use field gives the root of
* the hierarchy to search, and the
* scx_area field gives the starting
* area. An initial tile must overlap
* this area. The transform is from
* coords of scx_use to destUse.
*/
TileTypeBitMask *mask; /* Tile types to start from in area. */
int xMask; /* Information must be expanded in all
* of the windows indicated by this
* mask. Use 0 to consider all info
* regardless of expansion.
*/
TileTypeBitMask *connect; /* Points to table that defines what
* each tile type is considered to
* connect to. Use DBConnectTbl as
* a default.
*/
Rect *area; /* The resulting information is
* clipped to this area. Pass
* TiPlaneRect to get everything.
*/
CellUse *destUse; /* Result use in which to place
* anything connected to material of
* type mask in area of rootUse.
*/
char *Node_Name; /* Name of node returned.
* NOTE: Don't call this "NodeName",
* because that conflicts with reserved
* words in some compilers.
*/
{
TerminalPath tpath;
char pathName[MAXPATHNAME];
TileTypeBitMask *newmask;
struct conSrArg2 csa2;
TileType newtype;
csa2.csa2_use = destUse;
csa2.csa2_bounds = area;
csa2.csa2_connect = connect;
csa2.csa2_list = (conSrArea *)mallocMagic(CSA2_LIST_SIZE * sizeof(conSrArea));
csa2.csa2_top = -1;
csa2.csa2_lasttop = -1;
csa2.csa2_stack = StackNew(100);
tpath.tp_first = tpath.tp_next = pathName;
tpath.tp_last = pathName + MAXPATHNAME;
pathName[0] = '\0';
bestName[0] = '\0';
(void) SimTreeSrTiles(scx, mask, xMask, &tpath, SimConnectFunc,
(ClientData) &csa2);
while (csa2.csa2_top >= 0)
{
newmask = csa2.csa2_list[csa2.csa2_top].connectMask;
scx->scx_area = csa2.csa2_list[csa2.csa2_top].area;
newtype = csa2.csa2_list[csa2.csa2_top].dinfo;
if (csa2.csa2_top == 0)
{
if (StackLook(csa2.csa2_stack) != (ClientData)NULL)
{
freeMagic(csa2.csa2_list);
csa2.csa2_list = (conSrArea *)StackPop(csa2.csa2_stack);
csa2.csa2_top = CSA2_LIST_SIZE - 1;
}
else
csa2.csa2_top--;
}
else
csa2.csa2_top--;
csa2.csa2_lasttop = csa2.csa2_top;
if (newtype & TT_DIAGONAL)
SimTreeSrNMTiles(scx, newtype, newmask, xMask, &tpath,
SimConnectFunc, (ClientData) &csa2);
else
SimTreeSrTiles(scx, newmask, xMask, &tpath, SimConnectFunc,
(ClientData) &csa2);
}
freeMagic((char *)csa2.csa2_list);
StackFree(csa2.csa2_stack);
/* Recompute the bounding box of the destination and record
* its area for redisplay.
*/
strcpy(Node_Name, bestName);
DBReComputeBbox(destUse->cu_def);
}
/*
* ----------------------------------------------------------------------------
*
* efPreferredName --
*
* This is the same function used in the ext2sim module. We need this
* function for the rsim interface to Magic.
*
* Determine which of two names is more preferred. The most preferred
* name is a global name. Given two non-global names, the one with the
* fewest pathname components is the most preferred. If the two names
* have equally many pathname components, we choose the shortest.
*
* Results:
* TRUE if 'name1' is preferable to 'name2', FALSE if not.
*
* Side effects:
* None.
*
* ----------------------------------------------------------------------------
*/
bool
efPreferredName(name1, name2)
char *name1, *name2;
{
int nslashes1, nslashes2;
char *np1, *np2;
if( name1[0] == '@' && name1[1] == '=' )
return( TRUE );
else if( name2[0] == '@' && name2[1] == '=' )
return( FALSE );
for (nslashes1 = 0, np1 = name1; *np1; ) {
if (*np1++ == '/')
nslashes1++;
}
for (nslashes2 = 0, np2 = name2; *np2; ) {
if (*np2++ == '/')
nslashes2++;
}
--np1;
--np2;
if (!SimIgnoreGlobals)
{
/* both are global names */
if ((*np1 == '!') && (*np2 == '!')) {
/* check # of pathname components */
if (nslashes1 < nslashes2) return (TRUE);
if (nslashes1 > nslashes2) return (FALSE);
/* same # of pathname components; check length */
if (np1 - name1 < np2 - name2) return (TRUE);
if (np1 - name1 > np2 - name2) return (FALSE);
/* same # of pathname components; same length; use lex order */
if (strcmp(name1, name2) > 0)
return(TRUE);
else
return(FALSE);
}
if (*np1 == '!') return(TRUE);
if (*np2 == '!') return(FALSE);
}
/* neither name is global */
/* chose label over generated name */
if (*np1 != '#' && *np2 == '#') return (TRUE);
if (*np1 == '#' && *np2 != '#') return (FALSE);
/* either both are labels or generated names */
/* check pathname components */
if (nslashes1 < nslashes2) return (TRUE);
if (nslashes1 > nslashes2) return (FALSE);
/* same # of pathname components; check length */
if (np1 - name1 < np2 - name2) return (TRUE);
if (np1 - name1 > np2 - name2) return (FALSE);
/* same # of pathname components; same length; use lex ordering */
if (strcmp(name1, name2) > 0)
return(TRUE);
else
return(FALSE);
}
/*
* ----------------------------------------------------------------------------
*
* SimSrConnect
*
* This is similar to the procedure DBSrConnect, except that the
* marks on each tile in the cell are not erased.
*
* Search through a cell to find all paint that is electrically
* connected to things in a given starting area.
*
* Results:
* 0 is returned if the search finished normally. 1 is returned
* if the search was aborted.
*
* Side effects:
* The search starts from one (random) non-space tile in "startArea"
* that matches the types in the mask parameter. For every paint
* tile that is electrically connected to the initial tile and that
* intersects the rectangle "bounds", func is called. Func should
* have the following form:
*
* int
* func(tile, clientData)
* Tile *tile;
* ClientData clientData;
* {
* }
*
* The clientData passed to func is the same one that was passed
* to us. Func returns 0 under normal conditions; if it returns
* 1 then the search is aborted.
*
* *** WARNING ***
*
* Func should not modify any paint during the search, since this
* will mess up pointers kept by these procedures and likely cause
* a core-dump.
*
* ----------------------------------------------------------------------------
*/
int
SimSrConnect(def, startArea, mask, connect, bounds, func, clientData)
CellDef *def; /* Cell definition in which to carry out
* the connectivity search. Only paint
* in this definition is considered.
*/
Rect *startArea; /* Area to search for an initial tile. Only
* tiles OVERLAPPING the area are considered.
* This area should have positive x and y
* dimensions.
*/
TileTypeBitMask *mask; /* Only tiles of one of these types are used
* as initial tiles.
*/
TileTypeBitMask *connect; /* Pointer to a table indicating what tile
* types connect to what other tile types.
* Each entry gives a mask of types that
* connect to tiles of a given type.
*/
Rect *bounds; /* Area, in coords of scx->scx_use->cu_def,
* that limits the search: only tiles
* overalapping this area will be returned.
* Use TiPlaneRect to search everywhere.
*/
int (*func)(); /* Function to apply at each connected tile. */
ClientData clientData; /* Client data for above function. */
{
struct conSrArg csa;
int startPlane, result;
Tile *startTile; /* Starting tile for search. */
extern int dbSrConnectFunc(); /* Forward declaration. */
extern int dbSrConnectStartFunc();
result = 0;
csa.csa_def = def;
csa.csa_bounds = *bounds;
/* Find a starting tile (if there are many tiles underneath the
* starting area, pick any one). The search function just saves
* the tile address and returns.
*/
startTile = NULL;
for (startPlane = PL_TECHDEPBASE; startPlane < DBNumPlanes; startPlane++)
{
if (DBSrPaintArea((Tile *) NULL,
def->cd_planes[startPlane], startArea, mask,
dbSrConnectStartFunc, (ClientData) &startTile) != 0) break;
}
if (startTile == NULL) return 0;
/* Pass 1. During this pass the client function gets called. */
csa.csa_clientFunc = func;
csa.csa_clientData = clientData;
csa.csa_clear = FALSE;
csa.csa_connect = connect;
csa.csa_plane = def->cd_planes[startPlane];
if (dbSrConnectFunc(startTile, &csa) != 0) result = 1;
return result;
}
/*
*-----------------------------------------------------------------------------
*
* SimTreeSrTiles
*
* Similar to the procedure DBTreeSrTiles, although having a terminal
* path similar to procedure DBTreeSrLabels.
*
* Recursively search downward from the supplied CellUse for
* all visible paint tiles matching the supplied type mask.
*
* The procedure should be of the following form:
* int
* func(tile, cxp)
* Tile *tile;
* TreeContext *cxp;
* {
* }
*
* The SearchContext is stored in cxp->tc_scx, the user's arg is stored
* in cxp->tc_filter->tf_arg, and the terminal path is stored in
* cxp->tc_filter->tf_tpath.
*
* In the above, the scx transform is the net transform from the coordinates
* of tile to "world" coordinates (or whatever coordinates the initial
* transform supplied to SimTreeSrTiles was a transform to). Func returns
* 0 under normal conditions. If 1 is returned, it is a request to
* abort the search.
*
* *** WARNING ***
*
* The client procedure should not modify any of the paint planes in
* the cells visited by SimTreeSrTiles, because we use DBSrPaintArea
* as our paint-tile enumeration function.
*
* Results:
* 0 is returned if the search finished normally. 1 is returned
* if the search was aborted.
*
* Side effects:
* Whatever side effects are brought about by applying the
* procedure supplied.
*
*-----------------------------------------------------------------------------
*/
int
SimTreeSrTiles(scx, mask, xMask, tpath, func, cdarg)
SearchContext *scx; /* Pointer to search context specifying
* a cell use to search, an area in the
* coordinates of the cell's def, and a
* transform back to "root" coordinates.
*/
TileTypeBitMask *mask; /* Only tiles with a type for which
* a bit in this mask is on are processed.
*/
int xMask; /* All subcells are visited recursively
* until we encounter uses whose flags,
* when anded with xMask, are not
* equal to xMask.
*/
TerminalPath *tpath; /* Pointer to a structure describing a
* partially filled-in terminal pathname.
* Add new components as encountered.
*/
int (*func)(); /* Function to apply at each qualifying tile */
ClientData cdarg; /* Client data for above function */
{
int SimCellTileSrFunc();
TreeFilter filter;
filter.tf_func = func;
filter.tf_arg = cdarg;
filter.tf_mask = mask;
filter.tf_xmask = xMask;
filter.tf_planes = DBTechTypesToPlanes(mask);
filter.tf_tpath = tpath;
filter.tf_dinfo = 0;
return SimCellTileSrFunc(scx, &filter);
}
/*
* SimTreeSrNMTiles ---
* This is a variant of the above in which the search is over
* a non-Manhattan triangular area.
*/
int
SimTreeSrNMTiles(scx, dinfo, mask, xMask, tpath, func, cdarg)
SearchContext *scx; /* Pointer to search context specifying
* a cell use to search, an area in the
* coordinates of the cell's def, and a
* transform back to "root" coordinates.
*/
TileType dinfo; /* Type containing information about the
* triangular area to search.
*/
TileTypeBitMask *mask; /* Only tiles with a type for which
* a bit in this mask is on are processed.
*/
int xMask; /* All subcells are visited recursively
* until we encounter uses whose flags,
* when anded with xMask, are not
* equal to xMask.
*/
TerminalPath *tpath; /* Pointer to a structure describing a
* partially filled-in terminal pathname.
* Add new components as encountered.
*/
int (*func)(); /* Function to apply at each qualifying tile */
ClientData cdarg; /* Client data for above function */
{
int SimCellTileSrFunc();
TreeFilter filter;
filter.tf_func = func;
filter.tf_arg = cdarg;
filter.tf_mask = mask;
filter.tf_xmask = xMask;
filter.tf_dinfo = dinfo;
filter.tf_planes = DBTechTypesToPlanes(mask);
filter.tf_tpath = tpath;
return SimCellTileSrFunc(scx, &filter);
}
/*
* Filter procedure applied to subcells by SimTreeSrTiles().
*/
int
SimCellTileSrFunc(scx, fp)
SearchContext *scx;
TreeFilter *fp;
{
TreeContext context;
TerminalPath *tp;
CellDef *def = scx->scx_use->cu_def;
int pNum, result;
char *tnext;
ASSERT(def != (CellDef *) NULL, "SimCellTileSrFunc");
if (!DBDescendSubcell(scx->scx_use, fp->tf_xmask))
return 0;
if ((def->cd_flags & CDAVAILABLE) == 0)
{
bool dereference = (def->cd_flags & CDDEREFERENCE) ? TRUE : FALSE;
if (!DBCellRead(def, (char *) NULL, TRUE, dereference, NULL)) return 0;
}
context.tc_scx = scx;
context.tc_filter = fp;
/* Create the path prefix */
/* Don't prepend the "Topmost cell" ID of the top-level cell. */
if ((fp->tf_tpath != (TerminalPath *)NULL)
&& (scx->scx_use->cu_parent != NULL))
{
tp = fp->tf_tpath;
tnext = tp->tp_next;
tp->tp_next = DBPrintUseId(scx, tp->tp_next, tp->tp_last -
tp->tp_next, FALSE);
if (tp->tp_next < tp->tp_last)
{
*(tp->tp_next++) = '/';
*(tp->tp_next) = '\0';
}
}
/*
* Apply the function first to any of the tiles in the planes
* for this CellUse's CellDef that match the mask.
*/
result = 0;
for (pNum = PL_PAINTBASE; pNum < DBNumPlanes; pNum++)
if (PlaneMaskHasPlane(fp->tf_planes, pNum))
{
if (fp->tf_dinfo & TT_DIAGONAL)
{
TileType dinfo = DBTransformDiagonal(fp->tf_dinfo, &scx->scx_trans);
if (DBSrPaintNMArea((Tile *) NULL, def->cd_planes[pNum],
dinfo, &scx->scx_area, fp->tf_mask,
fp->tf_func, (ClientData) &context))
{
result = 1;
goto cleanup;
}
}
else
if (DBSrPaintArea((Tile *) NULL, def->cd_planes[pNum],
&scx->scx_area, fp->tf_mask,
fp->tf_func, (ClientData) &context))
{
result = 1;
goto cleanup;
}
}
/*
* Now apply ourselves recursively to each of the CellUses
* in our tile plane.
*/
if (DBCellSrArea(scx, SimCellTileSrFunc, (ClientData) fp))
result = 1;
cleanup:
/* Remove the trailing pathname component from the TerminalPath */
if ((fp->tf_tpath != (TerminalPath *)NULL)
&& (scx->scx_use->cu_parent != NULL))
{
fp->tf_tpath->tp_next = tnext;
*tnext = '\0';
}
return (result);
}
/*
* ----------------------------------------------------------------------------
*
* SimPutLabel --
*
* Same as DBPutLabel, except this does not set the cell modified flag.
*
* Place a rectangular label in the database, in a particular cell.
*
* It is the responsibility of higher-level routines to insure that
* the material to which the label is being attached really exists at
* this point in the cell, and that TT_SPACE is used if there is
* no single material covering the label's entire area. The routine
* DBAdjustLabels is useful for this.
*
* Results:
* The return value is the actual alignment position used for
* the label. This may be different from align, if align is
* defaulted.
*
* Side effects:
* Updates the label list in the CellDef to contain the label.
*
* ----------------------------------------------------------------------------
*/
int
SimPutLabel(cellDef, rect, align, text, type)
CellDef *cellDef; /* Cell in which label is placed */
Rect *rect; /* Location of label; see above for description */
int align; /* Orientation/alignment of text. If this is < 0,
* an orientation will be picked to keep the text
* inside the cell boundary.
*/
char *text; /* Pointer to actual text of label */
TileType type; /* Type of tile to be labeled */
{
Label *lab;
int len, x1, x2, y1, y2, tmp, labx, laby;
len = strlen(text) + sizeof (Label) - sizeof lab->lab_text + 1;
lab = (Label *) mallocMagic((unsigned) len);
strcpy(lab->lab_text, text);
/* Pick a nice alignment if the caller didn't give one. If the
* label is more than BORDER units from an edge of the cell,
* use GEO_NORTH. Otherwise, put the label on the opposite side
* from the boundary, so it won't stick out past the edge of
* the cell boundary.
*/
#define BORDER 5
if (align < 0)
{
tmp = (cellDef->cd_bbox.r_xtop - cellDef->cd_bbox.r_xbot)/3;
if (tmp > BORDER) tmp = BORDER;
x1 = cellDef->cd_bbox.r_xbot + tmp;
x2 = cellDef->cd_bbox.r_xtop - tmp;
tmp = (cellDef->cd_bbox.r_ytop - cellDef->cd_bbox.r_ybot)/3;
if (tmp > BORDER) tmp = BORDER;
y1 = cellDef->cd_bbox.r_ybot + tmp;
y2 = cellDef->cd_bbox.r_ytop - tmp;
labx = (rect->r_xtop + rect->r_xbot)/2;
laby = (rect->r_ytop + rect->r_ybot)/2;
if (labx <= x1)
{
if (laby <= y1) align = GEO_NORTHEAST;
else if (laby >= y2) align = GEO_SOUTHEAST;
else align = GEO_EAST;
}
else if (labx >= x2)
{
if (laby <= y1) align = GEO_NORTHWEST;
else if (laby >= y2) align = GEO_SOUTHWEST;
else align = GEO_WEST;
}
else
{
if (laby <= y1) align = GEO_NORTH;
else if (laby >= y2) align = GEO_SOUTH;
else align = GEO_NORTH;
}
}
lab->lab_just = align;
lab->lab_type = type;
lab->lab_rect = *rect;
lab->lab_next = NULL;
lab->lab_flags = 0;
if (cellDef->cd_labels == NULL)
cellDef->cd_labels = lab;
else
{
ASSERT(cellDef->cd_lastLabel->lab_next == NULL, "SimPutLabel");
cellDef->cd_lastLabel->lab_next = lab;
}
cellDef->cd_lastLabel = lab;
DBUndoPutLabel(cellDef, lab);
return align;
}
#ifdef RSIM_MODULE
/*
* ----------------------------------------------------------------------------
*
* SimRsimHandler
*
* This procedure is the button handler for the rsim tool.
*
* Results:
* None.
*
* Side effects:
* Left button: used to move the whole box by the lower-left corner.
* Right button: used to re-size the box by its upper-right corner.
* If one of the left or right buttons is pushed, then the
* other is pushed, the corner is switched to the nearest
* one to the cursor. This corner is remembered for use
* in box positioning/sizing when both buttons have gone up.
* Middle button: used to display the rsim node values of whatever
* paint is selected.
*
* ----------------------------------------------------------------------------
*/
void
SimRsimHandler(w, cmd)
MagWindow *w; /* Window containing cursor. */
TxCommand *cmd; /* Describes what happened. */
{
static int buttonCorner = TOOL_ILG;
int button = cmd->tx_button;
if (button == TX_MIDDLE_BUTTON)
{
if (cmd->tx_buttonAction == TX_BUTTON_DOWN)
SimRsimMouse(w);
return;
}
if (cmd->tx_buttonAction == TX_BUTTON_DOWN)
{
if ((WindNewButtons & (TX_LEFT_BUTTON|TX_RIGHT_BUTTON))
== (TX_LEFT_BUTTON|TX_RIGHT_BUTTON))
{
/* Both buttons are now down. In this case, the FIRST
* button pressed determines whether we move or size,
* and the second button is just used as a signal to pick
* the closest corner.
*/
buttonCorner = ToolGetCorner(&cmd->tx_p);
if (button == TX_LEFT_BUTTON) button = TX_RIGHT_BUTTON;
else button = TX_LEFT_BUTTON;
}
else if (button == TX_LEFT_BUTTON) buttonCorner = TOOL_BL;
else buttonCorner = TOOL_TR;
dbwButtonSetCursor(button, buttonCorner);
}
else
{
/* A button has just come up. If both buttons are down and one
* is released, we just change the cursor to reflect the current
* corner and the remaining button (i.e. move or size box).
*/
if (WindNewButtons != 0)
{
if (button == TX_LEFT_BUTTON)
dbwButtonSetCursor(TX_RIGHT_BUTTON, buttonCorner);
else dbwButtonSetCursor(TX_LEFT_BUTTON, buttonCorner);
return;
}
/* The last button has been released. Reset the cursor to normal
* form and then move or size the box.
*/
GrSetCursor(STYLE_CURS_RSIM);
switch (button)
{
case TX_LEFT_BUTTON:
ToolMoveBox(buttonCorner, &cmd->tx_p, TRUE, (CellDef *) NULL);
break;
case TX_RIGHT_BUTTON:
ToolMoveCorner(buttonCorner, &cmd->tx_p, TRUE,
(CellDef *) NULL);
}
}
}
#endif