1471 lines
40 KiB
C
1471 lines
40 KiB
C
/*
|
||
* lefWrite.c --
|
||
*
|
||
* This module incorporates the LEF/DEF format for standard-cell place and
|
||
* route.
|
||
*
|
||
* Version 0.1 (May 1, 2003): LEF output for cells, to include pointer to
|
||
* GDS, automatic generation of GDS if not already made, bounding box export,
|
||
* port export, export of irouter "fence", "magnet", and "rotate" layers
|
||
* for defining router hints, and generating areas for obstructions and
|
||
* pin layers.
|
||
*
|
||
*/
|
||
|
||
#ifndef lint
|
||
static char rcsid[] __attribute__ ((unused)) = "$Header: /usr/cvsroot/magic-8.0/lef/lefWrite.c,v 1.3 2010/06/24 12:37:18 tim Exp $";
|
||
#endif /* not lint */
|
||
|
||
#include <stdio.h>
|
||
#include <stdlib.h>
|
||
#include <string.h>
|
||
#include <errno.h>
|
||
|
||
#include "tcltk/tclmagic.h"
|
||
#include "utils/magic.h"
|
||
#include "utils/geometry.h"
|
||
#include "tiles/tile.h"
|
||
#include "utils/hash.h"
|
||
#include "database/database.h"
|
||
#include "extract/extract.h"
|
||
#include "utils/tech.h"
|
||
#include "utils/utils.h"
|
||
#include "utils/malloc.h"
|
||
#include "utils/stack.h"
|
||
#include "utils/signals.h"
|
||
#include "windows/windows.h"
|
||
#include "dbwind/dbwind.h"
|
||
#include "graphics/graphics.h"
|
||
#include "utils/main.h"
|
||
#include "utils/undo.h"
|
||
#include "drc/drc.h"
|
||
#include "cif/cif.h"
|
||
#include "lef/lefInt.h"
|
||
|
||
/* ---------------------------------------------------------------------*/
|
||
|
||
/* Stack of cell definitions */
|
||
Stack *lefDefStack;
|
||
|
||
/*
|
||
* ---------------------------------------------------------------------
|
||
*
|
||
* lefFileOpen --
|
||
*
|
||
* Open the .lef file corresponding to a .mag file.
|
||
* If def->cd_file is non-NULL, the .lef file is just def->cd_file with
|
||
* the trailing .mag replaced by .lef. Otherwise, the .lef file is just
|
||
* def->cd_name followed by .lef.
|
||
*
|
||
* Results:
|
||
* Return a pointer to an open FILE, or NULL if the .lef
|
||
* file could not be opened in the specified mode.
|
||
*
|
||
* Side effects:
|
||
* Opens a file.
|
||
*
|
||
* ----------------------------------------------------------------------------
|
||
*/
|
||
|
||
FILE *
|
||
lefFileOpen(def, file, suffix, mode, prealfile)
|
||
CellDef *def; /* Cell whose .lef file is to be written. Should
|
||
* be NULL if file is being opened for reading.
|
||
*/
|
||
char *file; /* If non-NULL, open 'name'.lef; otherwise,
|
||
* derive filename from 'def' as described
|
||
* above.
|
||
*/
|
||
char *suffix; /* Either ".lef" for LEF files or ".def" for DEF files */
|
||
char *mode; /* Either "r" or "w", the mode in which the LEF/DEF
|
||
* file is to be opened.
|
||
*/
|
||
char **prealfile; /* If this is non-NULL, it gets set to point to
|
||
* a string holding the name of the LEF/DEF file.
|
||
*/
|
||
{
|
||
char namebuf[512], *name, *endp, *ends;
|
||
char *locsuffix;
|
||
char *pptr;
|
||
int len;
|
||
FILE *rfile;
|
||
|
||
if (file)
|
||
name = file;
|
||
else if (def && def->cd_file)
|
||
name = def->cd_file;
|
||
else if (def)
|
||
name = def->cd_name;
|
||
else
|
||
{
|
||
TxError("LEF file open: No file name or cell given\n");
|
||
return NULL;
|
||
}
|
||
|
||
// Strip off suffix, if there is one
|
||
|
||
ends = strrchr(name, '/');
|
||
if (ends == NULL)
|
||
ends = name;
|
||
else
|
||
ends++;
|
||
|
||
if (endp = strrchr(ends, '.'))
|
||
{
|
||
if (strcmp(endp, suffix))
|
||
{
|
||
len = endp - name;
|
||
if (len > sizeof namebuf - 1) len = sizeof namebuf - 1;
|
||
(void) strncpy(namebuf, name, len);
|
||
namebuf[len] = '\0';
|
||
name = namebuf;
|
||
locsuffix = suffix;
|
||
}
|
||
else
|
||
locsuffix = NULL;
|
||
}
|
||
else
|
||
locsuffix = suffix;
|
||
|
||
/* Try once as-is, and if this fails, try stripping any leading */
|
||
/* path information in case cell is in a read-only directory (mode */
|
||
/* "read" only, and if def is non-NULL). */
|
||
|
||
if ((rfile = PaOpen(name, mode, locsuffix, Path, CellLibPath, prealfile)) != NULL)
|
||
return rfile;
|
||
|
||
if (def)
|
||
{
|
||
if (name == def->cd_name) return NULL;
|
||
name = def->cd_name;
|
||
return (PaOpen(name, mode, suffix, Path, CellLibPath, prealfile));
|
||
}
|
||
else
|
||
return NULL;
|
||
}
|
||
|
||
|
||
/*
|
||
* ----------------------------------------------------------------------------
|
||
*
|
||
* lefWriteHeader --
|
||
*
|
||
* This routine generates LEF header output for a cell or cell hierarchy.
|
||
* Although the LEF/DEF spec does not define a "header" per se, this is
|
||
* considered to be all LEF output not including the MACRO calls. The
|
||
* header, therefore, defines layers, process routing rules, units
|
||
* (lambda), and so forth.
|
||
*
|
||
* Results:
|
||
* None.
|
||
*
|
||
* Side effects:
|
||
* Writes output to the open file "f".
|
||
*
|
||
* ----------------------------------------------------------------------------
|
||
*/
|
||
|
||
void
|
||
lefWriteHeader(def, f, lefTech)
|
||
CellDef *def; /* Def for which to generate LEF output */
|
||
FILE *f; /* Output to this file */
|
||
bool lefTech; /* If TRUE, write layer information */
|
||
{
|
||
TileType type;
|
||
|
||
TxPrintf("Diagnostic: Write LEF header for cell %s\n", def->cd_name);
|
||
|
||
/* NOTE: This routine corresponds to Envisia LEF/DEF Language */
|
||
/* Reference version 5.3 (May 31, 2000) */
|
||
|
||
fprintf(f, "VERSION 5.3 ;\n");
|
||
fprintf(f, " NAMESCASESENSITIVE ON ;\n");
|
||
fprintf(f, " NOWIREEXTENSIONATPIN ON ;\n");
|
||
fprintf(f, " DIVIDERCHAR \"/\" ;\n");
|
||
fprintf(f, " BUSBITCHARS \"[]\" ;\n");
|
||
|
||
/* As I understand it, this refers to the scalefactor of the GDS */
|
||
/* file output. Magic does all GDS in nanometers, so the LEF */
|
||
/* scalefactor (conversion to microns) is always 1000. */
|
||
|
||
fprintf(f, "UNITS\n");
|
||
fprintf(f, " DATABASE MICRONS 1000 ;\n");
|
||
fprintf(f, "END UNITS\n");
|
||
fprintf(f, "\n");
|
||
|
||
if (!lefTech) return;
|
||
|
||
UndoDisable();
|
||
|
||
/* Layers (minimal information) */
|
||
|
||
if (LefInfo.ht_table != (HashEntry **)NULL)
|
||
{
|
||
HashSearch hs;
|
||
HashEntry *he;
|
||
lefLayer *lefl;
|
||
|
||
float oscale = CIFGetOutputScale(1000); /* lambda->micron conversion */
|
||
|
||
HashStartSearch(&hs);
|
||
while (he = HashNext(&LefInfo, &hs))
|
||
{
|
||
lefl = (lefLayer *)HashGetValue(he);
|
||
if (!lefl) continue;
|
||
|
||
if (lefl->refCnt > 0)
|
||
{
|
||
/* Avoid writing more than one entry per defined layer */
|
||
if (lefl->refCnt > 1) lefl->refCnt = -lefl->refCnt;
|
||
|
||
/* Ignore obstruction-only layers */
|
||
if (lefl->type == -1) continue;
|
||
|
||
/* Ignore VIA types, report only CUT types here */
|
||
else if ((lefl->lefClass == CLASS_VIA)
|
||
&& lefl->info.via.cell != NULL) continue;
|
||
|
||
/* Ignore boundary types */
|
||
else if (lefl->lefClass == CLASS_BOUND) continue;
|
||
|
||
fprintf(f, "LAYER %s\n", lefl->canonName);
|
||
if (lefl->lefClass == CLASS_VIA)
|
||
{
|
||
int cutarea;
|
||
cutarea = (lefl->info.via.area.r_xtop - lefl->info.via.area.r_xbot);
|
||
cutarea *= (lefl->info.via.area.r_ytop - lefl->info.via.area.r_ybot);
|
||
fprintf(f, " TYPE CUT ;\n");
|
||
if (cutarea > 0)
|
||
fprintf(f, " CUT AREA %f ;\n",
|
||
(float)cutarea * oscale * oscale);
|
||
}
|
||
else if (lefl->lefClass == CLASS_ROUTE)
|
||
{
|
||
fprintf(f, " TYPE ROUTING ;\n");
|
||
if (lefl->info.route.pitch > 0)
|
||
fprintf(f, " PITCH %f ;\n", (float)(lefl->info.route.pitch)
|
||
* oscale);
|
||
if (lefl->info.route.width > 0)
|
||
fprintf(f, " WIDTH %f ;\n", (float)(lefl->info.route.width)
|
||
* oscale);
|
||
if (lefl->info.route.spacing > 0)
|
||
fprintf(f, " SPACING %f ;\n", (float)(lefl->info.route.spacing)
|
||
* oscale);
|
||
/* No sense in providing direction info unless we know the width */
|
||
if (lefl->info.route.width > 0)
|
||
fprintf(f, " DIRECTION %s ;\n", (lefl->info.route.hdirection)
|
||
? "HORIZONTAL" : "VERTICAL");
|
||
}
|
||
else if (lefl->lefClass == CLASS_MASTER)
|
||
{
|
||
fprintf(f, " TYPE MASTERSLICE ;\n");
|
||
}
|
||
else if (lefl->lefClass == CLASS_OVERLAP)
|
||
{
|
||
fprintf(f, " TYPE OVERLAP ;\n");
|
||
}
|
||
fprintf(f, "END %s\n\n", lefl->canonName);
|
||
}
|
||
}
|
||
|
||
/* Return reference counts to normal */
|
||
HashStartSearch(&hs);
|
||
while (he = HashNext(&LefInfo, &hs))
|
||
{
|
||
lefl = (lefLayer *)HashGetValue(he);
|
||
if (lefl && lefl->refCnt < 0)
|
||
lefl->refCnt = -lefl->refCnt;
|
||
}
|
||
}
|
||
|
||
/* Vias (to be completed, presumably) */
|
||
/* Rules (to be completed, presumably) */
|
||
|
||
UndoEnable();
|
||
}
|
||
|
||
#define LEF_MODE_PORT 0
|
||
#define LEF_MODE_OBSTRUCT 1
|
||
|
||
typedef struct
|
||
{
|
||
FILE *file; /* file to write to */
|
||
TileType lastType; /* last type output, so we minimize LAYER
|
||
* statements.
|
||
*/
|
||
CellDef *lefFlat; /* Soure CellDef (flattened cell) */
|
||
CellDef *lefYank; /* CellDef to write into */
|
||
LefMapping *lefMagicMap; /* Layer inverse mapping table */
|
||
TileTypeBitMask rmask; /* mask of routing layer types */
|
||
Point origin; /* origin of cell */
|
||
float oscale; /* units scale conversion factor */
|
||
int pNum; /* Plane number for tile marking */
|
||
int numWrites; /* Track number of writes to output */
|
||
bool needHeader; /* TRUE if PIN record header needs to be written */
|
||
int lefMode; /* can be LEF_MODE_PORT when searching
|
||
* connections into ports, or
|
||
* LEF_MODE_OBSTRUCT when generating
|
||
* obstruction geometry. LEF polyons
|
||
* must be manhattan, so if we find a
|
||
* split tile, LEF_MODE_PORT ignores it,
|
||
* and LEF_MODE_OBSTRUCT outputs the
|
||
* whole tile.
|
||
*/
|
||
} lefClient;
|
||
|
||
/*
|
||
* ----------------------------------------------------------------------------
|
||
*
|
||
*/
|
||
|
||
int
|
||
lefEraseGeometry(tile, cdata)
|
||
Tile *tile;
|
||
ClientData cdata;
|
||
{
|
||
lefClient *lefdata = (lefClient *)cdata;
|
||
CellDef *flatDef = lefdata->lefFlat;
|
||
Rect area;
|
||
TileType ttype, otype;
|
||
|
||
TiToRect(tile, &area);
|
||
|
||
otype = TiGetTypeExact(tile);
|
||
if (IsSplit(tile))
|
||
ttype = (otype & TT_SIDE) ? SplitRightType(tile) :
|
||
SplitLeftType(tile);
|
||
else
|
||
ttype = otype;
|
||
|
||
/* Erase the tile area out of lefFlat */
|
||
DBErase(flatDef, &area, ttype);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* ----------------------------------------------------------------------------
|
||
*
|
||
* Callback function to find the cell boundary based on the specified
|
||
* boundary layer type. Typically this will be a single rectangle on
|
||
* its own plane, but for completeness, all geometry in the cell is
|
||
* checked, and the bounding rectangle adjusted to fit that area.
|
||
*
|
||
* Return 0 to keep the search going.
|
||
* ----------------------------------------------------------------------------
|
||
*/
|
||
|
||
int
|
||
lefGetBound(tile, cdata)
|
||
Tile *tile;
|
||
ClientData cdata;
|
||
{
|
||
Rect *boundary = (Rect *)cdata;
|
||
Rect area;
|
||
|
||
TiToRect(tile, &area);
|
||
|
||
if (boundary->r_xtop <= boundary->r_xbot)
|
||
*boundary = area;
|
||
else
|
||
GeoInclude(&area, boundary);
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* ----------------------------------------------------------------------------
|
||
*
|
||
* lefAccumulateArea --
|
||
*
|
||
* Function called to accumulate the tile area of tiles
|
||
*
|
||
* Return 0 to keep the search going.
|
||
* ----------------------------------------------------------------------------
|
||
*/
|
||
|
||
int
|
||
lefAccumulateArea(tile, cdata)
|
||
Tile *tile;
|
||
ClientData cdata;
|
||
{
|
||
int *area = (int *)cdata;
|
||
Rect rarea;
|
||
|
||
TiToRect(tile, &rarea);
|
||
|
||
*area += (rarea.r_xtop - rarea.r_xbot) * (rarea.r_ytop - rarea.r_ybot);
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* ----------------------------------------------------------------------------
|
||
*
|
||
* lefYankGeometry --
|
||
*
|
||
* Function called from SimSrConnect() that copies geometry from
|
||
* the cell into a yank buffer cell, one pin connection at a time.
|
||
*
|
||
* Return 0 to keep the search going.
|
||
* ----------------------------------------------------------------------------
|
||
*/
|
||
|
||
int
|
||
lefYankGeometry(tile, cdata)
|
||
Tile *tile;
|
||
ClientData cdata;
|
||
{
|
||
lefClient *lefdata = (lefClient *)cdata;
|
||
Rect area;
|
||
TileType ttype, otype, ptype;
|
||
LefMapping *lefMagicToLefLayer;
|
||
TileTypeBitMask sMask;
|
||
bool iscut;
|
||
|
||
/* Ignore marked tiles */
|
||
if (tile->ti_client != (ClientData)CLIENTDEFAULT) return 0;
|
||
|
||
otype = TiGetTypeExact(tile);
|
||
if (IsSplit(tile))
|
||
ttype = (otype & TT_SIDE) ? SplitRightType(tile) :
|
||
SplitLeftType(tile);
|
||
else
|
||
ttype = otype;
|
||
|
||
/* Output geometry only for defined routing layers */
|
||
/* If we have encountered a contact type, then */
|
||
/* decompose into constituent layers and see if any */
|
||
/* of them are in the route layer masks. */
|
||
|
||
if (DBIsContact(ttype))
|
||
{
|
||
DBFullResidueMask(ttype, &sMask);
|
||
|
||
/* Use the first routing layer that is represented */
|
||
/* in sMask. If none, then return. */
|
||
|
||
for (ttype = TT_TECHDEPBASE; ttype < DBNumTypes; ttype++)
|
||
if (TTMaskHasType(&sMask, ttype))
|
||
if (TTMaskHasType(&lefdata->rmask, ttype))
|
||
break;
|
||
|
||
if (ttype == DBNumTypes) return 0;
|
||
iscut = TRUE;
|
||
}
|
||
else
|
||
{
|
||
if (!TTMaskHasType(&lefdata->rmask, ttype)) return 0;
|
||
iscut = FALSE;
|
||
}
|
||
|
||
TiToRect(tile, &area);
|
||
|
||
while (ttype < DBNumUserLayers)
|
||
{
|
||
lefMagicToLefLayer = lefdata->lefMagicMap;
|
||
if (lefMagicToLefLayer[ttype].lefInfo != NULL)
|
||
{
|
||
if (IsSplit(tile))
|
||
// Set only the side being yanked
|
||
ptype = (otype & (TT_DIAGONAL | TT_SIDE | TT_DIRECTION)) |
|
||
((otype & TT_SIDE) ? (ttype << 14) : ttype);
|
||
else
|
||
ptype = ttype;
|
||
|
||
/* Paint into yank buffer */
|
||
DBNMPaintPlane(lefdata->lefYank->cd_planes[lefdata->pNum],
|
||
ptype, &area, DBStdPaintTbl(ttype, lefdata->pNum),
|
||
(PaintUndoInfo *)NULL);
|
||
}
|
||
|
||
if (iscut == FALSE) break;
|
||
|
||
for (++ttype; ttype < DBNumTypes; ttype++)
|
||
if (TTMaskHasType(&sMask, ttype))
|
||
if (TTMaskHasType(&lefdata->rmask, ttype))
|
||
break;
|
||
}
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* ----------------------------------------------------------------------------
|
||
*
|
||
* lefWriteGeometry --
|
||
*
|
||
* Function called from SimSrConnect() that outputs a RECT
|
||
* record for each tile called. Note that LEF does not define
|
||
* nonmanhattan geometry (see above, comments in lefClient typedef).
|
||
*
|
||
* Return 0 to keep the search going.
|
||
* ----------------------------------------------------------------------------
|
||
*/
|
||
|
||
int
|
||
lefWriteGeometry(tile, cdata)
|
||
Tile *tile;
|
||
ClientData cdata;
|
||
{
|
||
lefClient *lefdata = (lefClient *)cdata;
|
||
FILE *f = lefdata->file;
|
||
float scale = lefdata->oscale;
|
||
TileType ttype, otype = TiGetTypeExact(tile);
|
||
LefMapping *lefMagicToLefLayer = lefdata->lefMagicMap;
|
||
|
||
/* Ignore tiles that have already been output */
|
||
if (tile->ti_client != (ClientData)CLIENTDEFAULT)
|
||
return 0;
|
||
|
||
/* Mark this tile as visited */
|
||
TiSetClient(tile, (ClientData)1);
|
||
|
||
/* Get layer type */
|
||
if (IsSplit(tile))
|
||
ttype = (otype & TT_SIDE) ? SplitRightType(tile) :
|
||
SplitLeftType(tile);
|
||
else
|
||
ttype = otype;
|
||
|
||
/* Only LEF routing layer types will be in the yank buffer */
|
||
|
||
if (!TTMaskHasType(&lefdata->rmask, ttype)) return 0;
|
||
|
||
if (lefdata->needHeader)
|
||
{
|
||
/* Reset the tile to not visited and return 1 to */
|
||
/* signal that something is going to be written. */
|
||
|
||
TiSetClient(tile, (ClientData)CLIENTDEFAULT);
|
||
return 1;
|
||
}
|
||
|
||
if (lefdata->numWrites == 0)
|
||
{
|
||
if (lefdata->lefMode == LEF_MODE_PORT)
|
||
fprintf(f, " PORT\n");
|
||
else
|
||
fprintf(f, " OBS\n");
|
||
}
|
||
lefdata->numWrites++;
|
||
|
||
if (ttype != lefdata->lastType)
|
||
if (lefMagicToLefLayer[ttype].lefInfo != NULL)
|
||
{
|
||
fprintf(f, " LAYER %s ;\n",
|
||
lefMagicToLefLayer[ttype].lefName);
|
||
lefdata->lastType = ttype;
|
||
}
|
||
|
||
if (IsSplit(tile))
|
||
if (otype & TT_SIDE)
|
||
{
|
||
if (otype & TT_DIRECTION)
|
||
fprintf(f, " POLYGON %.4f %.4f %.4f %.4f %.4f %.4f ;\n",
|
||
scale * (float)(LEFT(tile) - lefdata->origin.p_x),
|
||
scale * (float)(TOP(tile) - lefdata->origin.p_y),
|
||
scale * (float)(RIGHT(tile) - lefdata->origin.p_x),
|
||
scale * (float)(TOP(tile) - lefdata->origin.p_y),
|
||
scale * (float)(RIGHT(tile) - lefdata->origin.p_x),
|
||
scale * (float)(BOTTOM(tile) - lefdata->origin.p_y));
|
||
else
|
||
fprintf(f, " POLYGON %.4f %.4f %.4f %.4f %.4f %.4f ;\n",
|
||
scale * (float)(RIGHT(tile) - lefdata->origin.p_x),
|
||
scale * (float)(TOP(tile) - lefdata->origin.p_y),
|
||
scale * (float)(RIGHT(tile) - lefdata->origin.p_x),
|
||
scale * (float)(BOTTOM(tile) - lefdata->origin.p_y),
|
||
scale * (float)(LEFT(tile) - lefdata->origin.p_x),
|
||
scale * (float)(BOTTOM(tile) - lefdata->origin.p_y));
|
||
}
|
||
else
|
||
{
|
||
if (otype & TT_DIRECTION)
|
||
fprintf(f, " POLYGON %.4f %.4f %.4f %.4f %.4f %.4f ;\n",
|
||
scale * (float)(LEFT(tile) - lefdata->origin.p_x),
|
||
scale * (float)(TOP(tile) - lefdata->origin.p_y),
|
||
scale * (float)(RIGHT(tile) - lefdata->origin.p_x),
|
||
scale * (float)(BOTTOM(tile) - lefdata->origin.p_y),
|
||
scale * (float)(LEFT(tile) - lefdata->origin.p_x),
|
||
scale * (float)(BOTTOM(tile) - lefdata->origin.p_y));
|
||
else
|
||
fprintf(f, " POLYGON %.4f %.4f %.4f %.4f %.4f %.4f ;\n",
|
||
scale * (float)(LEFT(tile) - lefdata->origin.p_x),
|
||
scale * (float)(TOP(tile) - lefdata->origin.p_y),
|
||
scale * (float)(RIGHT(tile) - lefdata->origin.p_x),
|
||
scale * (float)(TOP(tile) - lefdata->origin.p_y),
|
||
scale * (float)(LEFT(tile) - lefdata->origin.p_x),
|
||
scale * (float)(BOTTOM(tile) - lefdata->origin.p_y));
|
||
}
|
||
else
|
||
fprintf(f, " RECT %.4f %.4f %.4f %.4f ;\n",
|
||
scale * (float)(LEFT(tile) - lefdata->origin.p_x),
|
||
scale * (float)(BOTTOM(tile) - lefdata->origin.p_y),
|
||
scale * (float)(RIGHT(tile) - lefdata->origin.p_x),
|
||
scale * (float)(TOP(tile) - lefdata->origin.p_y));
|
||
|
||
return 0;
|
||
}
|
||
|
||
/*
|
||
* ----------------------------------------------------------------------------
|
||
*
|
||
* MakeLegalLEFSyntax --
|
||
*
|
||
* Follow syntactical rules of the LEF spec. Most notably, Magic
|
||
* node names often contain the hash mark '#', which is illegal
|
||
* in LEF output. Other illegal LEF characters are space, newline,
|
||
* semicolon, and for literal names: dash, asterisk, and percent.
|
||
* All of the above will be replaced with underscores if found.
|
||
*
|
||
* Results:
|
||
* Returns an allocated string containing the modified result, or
|
||
* else returns the original string pointer. It is the responsibility
|
||
* of the calling function to free the result if it is not equal to
|
||
* the argument.
|
||
*
|
||
* Side effects:
|
||
* Allocated memory.
|
||
*
|
||
* ----------------------------------------------------------------------------
|
||
*/
|
||
|
||
char *
|
||
MakeLegalLEFSyntax(text)
|
||
char *text;
|
||
{
|
||
static char *badLEFchars = ";# -*$\n";
|
||
char *cptr, *bptr;
|
||
char *rstr;
|
||
|
||
for (cptr = text; *cptr != '\0'; cptr++)
|
||
for (bptr = badLEFchars; *bptr != '\0'; bptr++)
|
||
if (*cptr == *bptr) break;
|
||
|
||
if (*cptr == '\0' && *bptr == '\0')
|
||
return text;
|
||
|
||
rstr = StrDup((char **)NULL, text);
|
||
|
||
for (cptr = rstr; *cptr != '\0'; cptr++)
|
||
for (bptr = badLEFchars; bptr != '\0'; bptr++)
|
||
if (*cptr == *bptr)
|
||
{
|
||
*cptr = '_';
|
||
break;
|
||
}
|
||
|
||
return rstr;
|
||
}
|
||
|
||
/* Linked list structure for holding PIN PORT geometry areas */
|
||
|
||
typedef struct _labelLinkedList {
|
||
Label *lll_label;
|
||
Rect lll_area;
|
||
struct _labelLinkedList *lll_next;
|
||
} labelLinkedList;
|
||
|
||
/*
|
||
* ----------------------------------------------------------------------------
|
||
*
|
||
* LefWritePinHeader --
|
||
*
|
||
* Write the PIN record for the LEF macro along with any known properties
|
||
* such as CLASS and USE. Discover the USE POWER or GROUND if it is not
|
||
* set as a property and the label name matches the Tcl variables $VDD
|
||
* or $GND.
|
||
*
|
||
* Returns TRUE if the pin is a power pin, otherwise FALSE.
|
||
*
|
||
* ----------------------------------------------------------------------------
|
||
*/
|
||
|
||
bool
|
||
LefWritePinHeader(f, lab)
|
||
FILE *f;
|
||
Label *lab;
|
||
{
|
||
bool ispwrrail = FALSE;
|
||
|
||
fprintf(f, " PIN %s\n", lab->lab_text);
|
||
if (lab->lab_flags & PORT_CLASS_MASK)
|
||
{
|
||
fprintf(f, " DIRECTION ");
|
||
switch(lab->lab_flags & PORT_CLASS_MASK)
|
||
{
|
||
case PORT_CLASS_INPUT:
|
||
fprintf(f, "INPUT");
|
||
break;
|
||
case PORT_CLASS_OUTPUT:
|
||
fprintf(f, "OUTPUT");
|
||
break;
|
||
case PORT_CLASS_TRISTATE:
|
||
fprintf(f, "OUTPUT TRISTATE");
|
||
break;
|
||
case PORT_CLASS_BIDIRECTIONAL:
|
||
fprintf(f, "INOUT");
|
||
break;
|
||
case PORT_CLASS_FEEDTHROUGH:
|
||
fprintf(f, "FEEDTHRU");
|
||
break;
|
||
}
|
||
fprintf(f, " ;\n");
|
||
}
|
||
ispwrrail = FALSE;
|
||
if (lab->lab_flags & PORT_USE_MASK)
|
||
{
|
||
fprintf(f, " USE ");
|
||
switch(lab->lab_flags & PORT_USE_MASK)
|
||
{
|
||
case PORT_USE_SIGNAL:
|
||
fprintf(f, "SIGNAL");
|
||
break;
|
||
case PORT_USE_ANALOG:
|
||
fprintf(f, "ANALOG");
|
||
break;
|
||
case PORT_USE_POWER:
|
||
fprintf(f, "POWER");
|
||
ispwrrail = TRUE;
|
||
break;
|
||
case PORT_USE_GROUND:
|
||
fprintf(f, "GROUND");
|
||
ispwrrail = TRUE;
|
||
break;
|
||
case PORT_USE_CLOCK:
|
||
fprintf(f, "CLOCK");
|
||
break;
|
||
}
|
||
fprintf(f, " ;\n");
|
||
}
|
||
#ifdef MAGIC_WRAPPER
|
||
else
|
||
{
|
||
char *pwr;
|
||
|
||
/* Determine power rails by matching the $VDD and $GND Tcl variables */
|
||
|
||
pwr = (char *)Tcl_GetVar(magicinterp, "VDD", TCL_GLOBAL_ONLY);
|
||
if (pwr && (!strcmp(lab->lab_text, pwr)))
|
||
{
|
||
ispwrrail = TRUE;
|
||
fprintf(f, " USE POWER ;\n");
|
||
}
|
||
pwr = (char *)Tcl_GetVar(magicinterp, "GND", TCL_GLOBAL_ONLY);
|
||
if (pwr && (!strcmp(lab->lab_text, pwr)))
|
||
{
|
||
ispwrrail = TRUE;
|
||
fprintf(f, " USE GROUND ;\n");
|
||
}
|
||
}
|
||
#endif
|
||
return ispwrrail;
|
||
}
|
||
|
||
/*
|
||
* ----------------------------------------------------------------------------
|
||
*
|
||
* lefWriteMacro --
|
||
*
|
||
* This routine generates LEF output for a cell in the form of a LEF
|
||
* "MACRO" block. Includes information on cell dimensions, pins,
|
||
* ports (physical layout associated with pins), and routing obstructions.
|
||
*
|
||
* Results:
|
||
* None.
|
||
*
|
||
* Side effects:
|
||
* Writes output to the open file "f".
|
||
*
|
||
* ----------------------------------------------------------------------------
|
||
*/
|
||
|
||
void
|
||
lefWriteMacro(def, f, scale, hide)
|
||
CellDef *def; /* Def for which to generate LEF output */
|
||
FILE *f; /* Output to this file */
|
||
float scale; /* Output distance units conversion factor */
|
||
bool hide; /* If TRUE, hide all detail except pins */
|
||
{
|
||
bool propfound, ispwrrail;
|
||
char *propvalue, *class = NULL;
|
||
Label *lab, *tlab, *reflab;
|
||
Rect boundary, labr;
|
||
SearchContext scx;
|
||
CellDef *lefFlatDef;
|
||
CellUse lefFlatUse, lefSourceUse;
|
||
TileTypeBitMask lmask, boundmask, *lrmask, gatetypemask, difftypemask;
|
||
TileType ttype;
|
||
lefClient lc;
|
||
int idx, pNum, maxport, curport;
|
||
char *LEFtext;
|
||
HashSearch hs;
|
||
HashEntry *he;
|
||
labelLinkedList *lll = NULL;
|
||
|
||
extern CellDef *SelectDef;
|
||
|
||
UndoDisable();
|
||
|
||
TxPrintf("Diagnostic: Writing LEF output for cell %s\n", def->cd_name);
|
||
|
||
lefFlatDef = DBCellLookDef("__lefFlat__");
|
||
if (lefFlatDef == (CellDef *)NULL)
|
||
lefFlatDef = DBCellNewDef("__lefFlat__");
|
||
DBCellSetAvail(lefFlatDef);
|
||
lefFlatDef->cd_flags |= CDINTERNAL;
|
||
|
||
lefFlatUse.cu_id = StrDup((char **)NULL, "Flattened cell");
|
||
lefFlatUse.cu_expandMask = CU_DESCEND_SPECIAL;
|
||
lefFlatUse.cu_def = lefFlatDef;
|
||
DBSetTrans(&lefFlatUse, &GeoIdentityTransform);
|
||
|
||
lefSourceUse.cu_id = StrDup((char **)NULL, "Source cell");
|
||
lefSourceUse.cu_expandMask = CU_DESCEND_ALL;
|
||
lefSourceUse.cu_def = def;
|
||
DBSetTrans(&lefSourceUse, &GeoIdentityTransform);
|
||
|
||
scx.scx_use = &lefSourceUse;
|
||
scx.scx_trans = GeoIdentityTransform;
|
||
scx.scx_area = def->cd_bbox;
|
||
DBCellCopyAllPaint(&scx, &DBAllButSpaceAndDRCBits, CU_DESCEND_ALL, &lefFlatUse);
|
||
|
||
/* Reset scx to point to the flattened use */
|
||
scx.scx_use = &lefFlatUse;
|
||
|
||
/* Set up client record. */
|
||
|
||
lc.file = f;
|
||
lc.oscale = scale;
|
||
lc.lefMagicMap = defMakeInverseLayerMap();
|
||
lc.lastType = TT_SPACE;
|
||
lc.lefFlat = lefFlatDef;
|
||
|
||
TxPrintf("Diagnostic: Scale value is %f\n", lc.oscale);
|
||
|
||
/* Which layers are routing layers are defined in the tech file. */
|
||
|
||
TTMaskZero(&lc.rmask);
|
||
TTMaskZero(&boundmask);
|
||
TTMaskZero(&lmask);
|
||
|
||
/* Any layer which has a port label attached to it should by */
|
||
/* necessity be considered a routing layer. Usually this will not */
|
||
/* add anything to the mask already created. */
|
||
|
||
for (lab = def->cd_labels; lab != NULL; lab = lab->lab_next)
|
||
if (lab->lab_flags & PORT_DIR_MASK)
|
||
TTMaskSetType(&lc.rmask, lab->lab_type);
|
||
|
||
HashStartSearch(&hs);
|
||
while (he = HashNext(&LefInfo, &hs))
|
||
{
|
||
lefLayer *lefl = (lefLayer *)HashGetValue(he);
|
||
if (lefl && (lefl->lefClass == CLASS_ROUTE || lefl->lefClass == CLASS_VIA))
|
||
if (lefl->type != -1)
|
||
{
|
||
TTMaskSetType(&lc.rmask, lefl->type);
|
||
if (DBIsContact(lefl->type))
|
||
{
|
||
lrmask = DBResidueMask(lefl->type);
|
||
TTMaskSetMask(&lc.rmask, lrmask);
|
||
}
|
||
if ((lefl->lefClass == CLASS_ROUTE) && (lefl->obsType != -1))
|
||
TTMaskSetType(&lmask, lefl->type);
|
||
}
|
||
if (lefl->obsType != -1)
|
||
TTMaskSetType(&lc.rmask, lefl->obsType);
|
||
|
||
if (lefl && (lefl->lefClass == CLASS_BOUND))
|
||
if (lefl->type != -1)
|
||
TTMaskSetType(&boundmask, lefl->type);
|
||
}
|
||
|
||
/* Gate and diff types are determined from the extraction style */
|
||
ExtGetGateTypesMask(&gatetypemask);
|
||
ExtGetDiffTypesMask(&difftypemask);
|
||
|
||
/* NOTE: This routine corresponds to Envisia LEF/DEF Language */
|
||
/* Reference version 5.3 (May 31, 2000) */
|
||
|
||
/* Macro header information (to be completed) */
|
||
|
||
fprintf(f, "MACRO %s\n", def->cd_name);
|
||
|
||
/* LEF data is stored in the "cd_props" hash table. If the hash */
|
||
/* table is NULL or a specific property undefined, then the LEF */
|
||
/* value takes the default. Generally, LEF properties which have */
|
||
/* default values are optional, so in this case we will leave those */
|
||
/* entries blank. */
|
||
|
||
propvalue = (char *)DBPropGet(def, "LEFclass", &propfound);
|
||
if (propfound)
|
||
{
|
||
fprintf(f, " CLASS %s ;\n", propvalue);
|
||
class = propvalue;
|
||
}
|
||
else
|
||
{
|
||
/* Needs a class of some kind. Use BLOCK as default if not defined */
|
||
fprintf(f, " CLASS BLOCK ;\n");
|
||
}
|
||
|
||
propvalue = (char *)DBPropGet(def, "LEFsource", &propfound);
|
||
if (propfound)
|
||
fprintf(f, " SOURCE %s ;\n", propvalue);
|
||
|
||
fprintf(f, " FOREIGN %s ;\n", def->cd_name);
|
||
|
||
/* If a boundary class was declared in the LEF section, then use */
|
||
/* that layer type to define the boundary. Otherwise, the cell */
|
||
/* boundary is defined by the magic database. If the boundary */
|
||
/* class is used, and the boundary layer corner is not on the */
|
||
/* origin, then shift all geometry by the difference. */
|
||
|
||
if (!TTMaskIsZero(&boundmask))
|
||
{
|
||
boundary.r_xbot = boundary.r_xtop = 0;
|
||
for (pNum = PL_TECHDEPBASE; pNum < DBNumPlanes; pNum++)
|
||
DBSrPaintArea((Tile *)NULL, lefFlatUse.cu_def->cd_planes[pNum],
|
||
&TiPlaneRect, &boundmask, lefGetBound,
|
||
(ClientData)(&boundary));
|
||
}
|
||
else
|
||
boundary = def->cd_bbox;
|
||
|
||
/* If a bounding box has been declared with the FIXED_BBOX property */
|
||
/* then it takes precedence over def->cd_bbox. */
|
||
|
||
if (def->cd_flags & CDFIXEDBBOX)
|
||
{
|
||
char *propvalue;
|
||
bool found;
|
||
|
||
propvalue = (char *)DBPropGet(def, "FIXED_BBOX", &found);
|
||
if (found)
|
||
sscanf(propvalue, "%d %d %d %d", &boundary.r_xbot,
|
||
&boundary.r_ybot, &boundary.r_xtop, &boundary.r_ytop);
|
||
}
|
||
|
||
/* Write position and size information */
|
||
|
||
fprintf(f, " ORIGIN %.4f %.4f ;\n",
|
||
-lc.oscale * (float)boundary.r_xbot,
|
||
-lc.oscale * (float)boundary.r_ybot);
|
||
|
||
fprintf(f, " SIZE %.4f BY %.4f ;\n",
|
||
lc.oscale * (float)(boundary.r_xtop - boundary.r_xbot),
|
||
lc.oscale * (float)(boundary.r_ytop - boundary.r_ybot));
|
||
|
||
lc.origin.p_x = 0;
|
||
lc.origin.p_y = 0;
|
||
|
||
propvalue = (char *)DBPropGet(def, "LEFsymmetry", &propfound);
|
||
if (propfound)
|
||
fprintf(f, " SYMMETRY %s ;\n", propvalue);
|
||
|
||
propvalue = (char *)DBPropGet(def, "LEFsite", &propfound);
|
||
if (propfound)
|
||
fprintf(f, " SITE %s ;\n", propvalue);
|
||
|
||
/* Generate cell for yanking obstructions */
|
||
|
||
lc.lefYank = DBCellLookDef("__lefYank__");
|
||
if (lc.lefYank == (CellDef *)NULL)
|
||
lc.lefYank = DBCellNewDef("__lefYank__");
|
||
|
||
DBCellSetAvail(lc.lefYank);
|
||
lc.lefYank->cd_flags |= CDINTERNAL;
|
||
|
||
/* List of pins (ports) (to be refined?) */
|
||
|
||
lc.lefMode = LEF_MODE_PORT;
|
||
lc.numWrites = 0;
|
||
|
||
/* Determine the maximum port number, then output ports in order */
|
||
maxport = -1;
|
||
curport = 0;
|
||
for (lab = def->cd_labels; lab != NULL; lab = lab->lab_next)
|
||
if (lab->lab_flags & PORT_DIR_MASK)
|
||
{
|
||
curport++;
|
||
idx = lab->lab_flags & PORT_NUM_MASK;
|
||
if (idx > maxport)
|
||
maxport = idx;
|
||
}
|
||
|
||
if (maxport < 0) lab = def->cd_labels;
|
||
|
||
/* Work through pins in port order, if defined, otherwise */
|
||
/* in order of the label list. */
|
||
|
||
for (idx = 0; idx < ((maxport < 0) ? curport : maxport + 1); idx++)
|
||
{
|
||
if (maxport >= 0)
|
||
{
|
||
for (lab = def->cd_labels; lab != NULL; lab = lab->lab_next)
|
||
if (lab->lab_flags & PORT_DIR_MASK)
|
||
if (!(lab->lab_flags & PORT_VISITED))
|
||
if ((lab->lab_flags & PORT_NUM_MASK) == idx)
|
||
break;
|
||
}
|
||
else
|
||
while (lab && !(lab->lab_flags & PORT_DIR_MASK)) lab = lab->lab_next;
|
||
|
||
if (lab == NULL) continue; /* Happens if indexes are skipped */
|
||
|
||
/* Ignore ports which we have already visited (shouldn't happen */
|
||
/* unless ports are shorted together). */
|
||
|
||
if (lab->lab_flags & PORT_VISITED) continue;
|
||
|
||
/* Query pin geometry for SHAPE (to be done?) */
|
||
|
||
/* Generate port layout geometry using SimSrConnect() */
|
||
/* Selects all electrically-connected material into the */
|
||
/* select def. Output all the layers and geometries of */
|
||
/* the select def. */
|
||
/* */
|
||
/* We use SimSrConnect() and not DBSrConnect() because */
|
||
/* SimSrConnect() leaves "marks" (tile->ti_client = 1) */
|
||
/* which allows us to later search through all tiles for */
|
||
/* anything that is not connected to a port, and generate */
|
||
/* an "obstruction" record for it. */
|
||
/* */
|
||
/* Note: Use DBIsContact() to check if the layer is a VIA. */
|
||
/* Presently, I am treating contacts like any other layer. */
|
||
|
||
lc.needHeader = TRUE;
|
||
reflab = lab;
|
||
|
||
while (lab != NULL)
|
||
{
|
||
int antgatearea, antdiffarea;
|
||
|
||
labr = lab->lab_rect;
|
||
|
||
/* Deal with degenerate (line or point) labels */
|
||
/* by growing by 1 in each direction. */
|
||
|
||
if (labr.r_xtop - labr.r_xbot == 0)
|
||
{
|
||
labr.r_xtop++;
|
||
labr.r_xbot--;
|
||
}
|
||
if (labr.r_ytop - labr.r_ybot == 0)
|
||
{
|
||
labr.r_ytop++;
|
||
labr.r_ybot--;
|
||
}
|
||
|
||
// Avoid errors caused by labels attached to space or
|
||
// various technology file issues.
|
||
TTMaskClearType(&lc.rmask, TT_SPACE);
|
||
|
||
scx.scx_area = labr;
|
||
SelectClear();
|
||
|
||
if (hide)
|
||
{
|
||
Rect carea;
|
||
labelLinkedList *newlll;
|
||
|
||
SelectChunk(&scx, lab->lab_type, 0, &carea, FALSE);
|
||
if (GEO_RECTNULL(&carea)) carea = labr;
|
||
|
||
/* Note that a sticky label could be placed over multiple */
|
||
/* tile types, which would cause SelectChunk to fail. So */
|
||
/* always paint the label type into the label area in */
|
||
/* SelectDef. */
|
||
|
||
pNum = DBPlane(lab->lab_type);
|
||
DBPaintPlane(SelectDef->cd_planes[pNum], &carea,
|
||
DBStdPaintTbl(lab->lab_type, pNum), (PaintUndoInfo *) NULL);
|
||
|
||
/* Remember this area since it's going to get erased */
|
||
newlll = (labelLinkedList *)mallocMagic(sizeof(labelLinkedList));
|
||
newlll->lll_label = lab;
|
||
newlll->lll_area = carea;
|
||
newlll->lll_next = lll;
|
||
lll = newlll;
|
||
}
|
||
else
|
||
SelectNet(&scx, lab->lab_type, 0, NULL, FALSE);
|
||
|
||
// Search for gate and diff types and accumulate antenna
|
||
// areas. For gates, check for all gate types tied to
|
||
// devices with MOSFET types (including "msubcircuit", etc.).
|
||
// For diffusion, use the types declared in the "tiedown"
|
||
// statement in the extract section of the techfile.
|
||
|
||
antgatearea = 0;
|
||
for (pNum = PL_TECHDEPBASE; pNum < DBNumPlanes; pNum++)
|
||
{
|
||
DBSrPaintArea((Tile *)NULL, SelectDef->cd_planes[pNum],
|
||
&TiPlaneRect, &gatetypemask,
|
||
lefAccumulateArea, (ClientData) &antgatearea);
|
||
}
|
||
|
||
antdiffarea = 0;
|
||
for (pNum = PL_TECHDEPBASE; pNum < DBNumPlanes; pNum++)
|
||
{
|
||
DBSrPaintArea((Tile *)NULL, SelectDef->cd_planes[pNum],
|
||
&TiPlaneRect, &difftypemask,
|
||
lefAccumulateArea, (ClientData) &antdiffarea);
|
||
}
|
||
|
||
// For all geometry in the selection, write LEF records,
|
||
// and mark the corresponding tiles in lefFlatDef as
|
||
// visited.
|
||
|
||
lc.numWrites = 0;
|
||
lc.lastType = TT_SPACE;
|
||
for (pNum = PL_TECHDEPBASE; pNum < DBNumPlanes; pNum++)
|
||
{
|
||
lc.pNum = pNum;
|
||
DBSrPaintArea((Tile *)NULL, SelectDef->cd_planes[pNum],
|
||
&TiPlaneRect, &DBAllButSpaceAndDRCBits,
|
||
lefYankGeometry, (ClientData) &lc);
|
||
|
||
while (DBSrPaintArea((Tile *)NULL, lc.lefYank->cd_planes[pNum],
|
||
&TiPlaneRect, &lc.rmask,
|
||
lefWriteGeometry, (ClientData) &lc) == 1)
|
||
{
|
||
/* needHeader was set and there was something to write, */
|
||
/* so write the headr and then re-run the search. */
|
||
|
||
ispwrrail = LefWritePinHeader(f, lab);
|
||
if (ispwrrail == FALSE)
|
||
{
|
||
if (antgatearea > 0)
|
||
fprintf(f, " ANTENNAGATEAREA %.4f ;\n",
|
||
lc.oscale * lc.oscale * (float)antgatearea);
|
||
if (antdiffarea > 0)
|
||
fprintf(f, " ANTENNADIFFAREA %.4f ;\n",
|
||
lc.oscale * lc.oscale * (float)antdiffarea);
|
||
}
|
||
lc.needHeader = FALSE;
|
||
}
|
||
|
||
DBSrPaintArea((Tile *)NULL, SelectDef->cd_planes[pNum],
|
||
&TiPlaneRect, &DBAllButSpaceAndDRCBits,
|
||
lefEraseGeometry, (ClientData) &lc);
|
||
}
|
||
DBCellClearDef(lc.lefYank);
|
||
lab->lab_flags |= PORT_VISITED;
|
||
|
||
/* Check if any other ports belong to this pin */
|
||
|
||
for (; lab != NULL; lab = lab->lab_next)
|
||
if (lab->lab_flags & PORT_DIR_MASK)
|
||
if (!(lab->lab_flags & PORT_VISITED))
|
||
if ((lab->lab_flags & PORT_NUM_MASK) == idx)
|
||
break;
|
||
|
||
if (lc.numWrites > 0)
|
||
fprintf(f, " END\n"); /* end of port geometries */
|
||
lc.numWrites = 0;
|
||
}
|
||
|
||
LEFtext = MakeLegalLEFSyntax(reflab->lab_text);
|
||
if (lc.needHeader == FALSE)
|
||
fprintf(f, " END %s\n", reflab->lab_text); /* end of pin */
|
||
if (LEFtext != reflab->lab_text) freeMagic(LEFtext);
|
||
|
||
if (maxport >= 0)
|
||
{
|
||
/* Sanity check to see if port number is a duplicate. ONLY */
|
||
/* flag this if the other index has a different text, as it */
|
||
/* is perfectly legal to have multiple ports with the same */
|
||
/* name and index. */
|
||
|
||
for (tlab = reflab->lab_next; tlab != NULL; tlab = tlab->lab_next)
|
||
{
|
||
if (tlab->lab_flags & PORT_DIR_MASK)
|
||
if ((tlab->lab_flags & PORT_NUM_MASK) == idx)
|
||
if (strcmp(reflab->lab_text, tlab->lab_text))
|
||
{
|
||
TxError("Index %d is used for ports \"%s\" and \"%s\"\n",
|
||
idx, reflab->lab_text, tlab->lab_text);
|
||
idx--;
|
||
}
|
||
}
|
||
}
|
||
else
|
||
lab = reflab->lab_next;
|
||
}
|
||
|
||
/* Clear all PORT_VISITED bits in labels */
|
||
for (lab = def->cd_labels; lab != NULL; lab = lab->lab_next)
|
||
if (lab->lab_flags & PORT_DIR_MASK)
|
||
lab->lab_flags &= ~(PORT_VISITED);
|
||
|
||
/* List of routing obstructions */
|
||
|
||
lc.lefMode = LEF_MODE_OBSTRUCT;
|
||
lc.lastType = TT_SPACE;
|
||
|
||
/* Restrict to routing planes only */
|
||
|
||
if (hide)
|
||
{
|
||
/* If details of the cell are to be hidden, then first paint */
|
||
/* all route layers with an obstruction rectangle the size of */
|
||
/* the cell bounding box. Then recompute the label chunk */
|
||
/* regions used above to write the ports, expand each chunk by */
|
||
/* the route metal spacing width, and erase that area from the */
|
||
/* obstruction. For the obstruction boundary, find the extent */
|
||
/* of paint on the layer, not the LEF macro boundary, since */
|
||
/* paint may extend beyond the boundary, and sometimes the */
|
||
/* boundary may extend beyond the paint. To be done: make */
|
||
/* sure that every pin has a legal path to the outside of the */
|
||
/* cell. Otherwise, this routine can block internal pins. */
|
||
|
||
Rect layerBound;
|
||
labelLinkedList *thislll;
|
||
|
||
for (ttype = TT_TECHDEPBASE; ttype < DBNumTypes; ttype++)
|
||
if (TTMaskHasType(&lmask, ttype))
|
||
{
|
||
layerBound.r_xbot = layerBound.r_xtop = 0;
|
||
for (pNum = PL_TECHDEPBASE; pNum < DBNumPlanes; pNum++)
|
||
if (TTMaskHasType(&DBPlaneTypes[pNum], ttype))
|
||
{
|
||
DBSrPaintArea((Tile *)NULL, lefFlatUse.cu_def->cd_planes[pNum],
|
||
&TiPlaneRect, &DBAllButSpaceAndDRCBits,
|
||
lefGetBound, (ClientData)(&layerBound));
|
||
}
|
||
|
||
DBPaint(lc.lefYank, &layerBound, ttype);
|
||
}
|
||
|
||
for (thislll = lll; thislll; thislll = thislll->lll_next)
|
||
{
|
||
int mspace;
|
||
|
||
lab = thislll->lll_label;
|
||
|
||
/* Look for wide spacing rules. If there are no wide spacing */
|
||
/* rules, then fall back on the default spacing rule. */
|
||
mspace = DRCGetDefaultWideLayerSpacing(lab->lab_type, (int)1E6);
|
||
if (mspace == 0)
|
||
mspace = DRCGetDefaultLayerSpacing(lab->lab_type, lab->lab_type);
|
||
|
||
thislll->lll_area.r_xbot -= mspace;
|
||
thislll->lll_area.r_ybot -= mspace;
|
||
thislll->lll_area.r_xtop += mspace;
|
||
thislll->lll_area.r_ytop += mspace;
|
||
|
||
DBErase(lc.lefYank, &thislll->lll_area, lab->lab_type);
|
||
freeMagic(thislll);
|
||
}
|
||
}
|
||
else
|
||
{
|
||
for (pNum = PL_TECHDEPBASE; pNum < DBNumPlanes; pNum++)
|
||
{
|
||
lc.pNum = pNum;
|
||
DBSrPaintArea((Tile *)NULL, lefFlatDef->cd_planes[pNum],
|
||
&TiPlaneRect, &DBAllButSpaceAndDRCBits,
|
||
lefYankGeometry, (ClientData) &lc);
|
||
}
|
||
}
|
||
|
||
/* Write all the geometry just generated */
|
||
|
||
for (pNum = PL_TECHDEPBASE; pNum < DBNumPlanes; pNum++)
|
||
{
|
||
DBSrPaintArea((Tile *)NULL, lc.lefYank->cd_planes[pNum],
|
||
&TiPlaneRect, &lc.rmask,
|
||
lefWriteGeometry, (ClientData) &lc);
|
||
}
|
||
|
||
if (lc.numWrites > 0)
|
||
fprintf(f, " END\n"); /* end of obstruction geometries */
|
||
|
||
fprintf(f, "END %s\n", def->cd_name); /* end of macro */
|
||
|
||
SigDisableInterrupts();
|
||
freeMagic(lc.lefMagicMap);
|
||
DBCellClearDef(lc.lefYank);
|
||
DBCellClearDef(lefFlatDef);
|
||
freeMagic(lefSourceUse.cu_id);
|
||
freeMagic(lefFlatUse.cu_id);
|
||
SelectClear();
|
||
SigEnableInterrupts();
|
||
|
||
UndoEnable();
|
||
}
|
||
|
||
/*
|
||
*------------------------------------------------------------
|
||
*
|
||
* LefWriteAll --
|
||
*
|
||
* Write LEF-format output for each cell, beginning with
|
||
* the top-level cell use "rootUse".
|
||
*
|
||
* Results:
|
||
* None.
|
||
*
|
||
* Side effects:
|
||
* Writes a .lef file to disk.
|
||
*
|
||
*------------------------------------------------------------
|
||
*/
|
||
|
||
void
|
||
LefWriteAll(rootUse, writeTopCell, lefTech, lefHide, recurse)
|
||
CellUse *rootUse;
|
||
bool writeTopCell;
|
||
bool lefTech;
|
||
bool lefHide;
|
||
bool recurse;
|
||
{
|
||
CellDef *def, *rootdef;
|
||
FILE *f;
|
||
char *filename;
|
||
float scale = CIFGetOutputScale(1000); /* conversion to microns */
|
||
|
||
rootdef = rootUse->cu_def;
|
||
|
||
/* Make sure the entire subtree is read in */
|
||
DBCellReadArea(rootUse, &rootdef->cd_bbox);
|
||
|
||
/* Fix up bounding boxes if they've changed */
|
||
DBFixMismatch();
|
||
|
||
/* Mark all defs as being unvisited */
|
||
(void) DBCellSrDefs(0, lefDefInitFunc, (ClientData) 0);
|
||
|
||
/* Recursively visit all defs in the tree and push on stack */
|
||
/* If "recurse" is false, then only the children of the root use */
|
||
/* are pushed (this is the default behavior). */
|
||
lefDefStack = StackNew(100);
|
||
if (writeTopCell)
|
||
lefDefPushFunc(rootUse, (bool *)NULL);
|
||
DBCellEnum(rootUse->cu_def, lefDefPushFunc, (ClientData)&recurse);
|
||
|
||
/* Open the file for output */
|
||
|
||
f = lefFileOpen(rootdef, (char *)NULL, ".lef", "w", &filename);
|
||
|
||
TxPrintf("Generating LEF output %s for hierarchy rooted at cell %s:\n",
|
||
filename, rootdef->cd_name);
|
||
|
||
if (f == NULL)
|
||
{
|
||
#ifdef MAGIC_WRAPPER
|
||
TxError("Cannot open output file %s (%s).\n", filename,
|
||
strerror(errno));
|
||
#else
|
||
TxError("Cannot open output file: ");
|
||
perror(filename);
|
||
#endif
|
||
return;
|
||
}
|
||
|
||
/* Now generate LEF output for all the cells we just found */
|
||
|
||
lefWriteHeader(rootdef, f, lefTech);
|
||
|
||
while (def = (CellDef *) StackPop(lefDefStack))
|
||
{
|
||
def->cd_client = (ClientData) 0;
|
||
if (!SigInterruptPending)
|
||
lefWriteMacro(def, f, scale, lefHide);
|
||
}
|
||
|
||
/* End the LEF file */
|
||
fprintf(f, "END LIBRARY ;\n");
|
||
|
||
fclose(f);
|
||
StackFree(lefDefStack);
|
||
}
|
||
|
||
/*
|
||
* Function to initialize the client data field of all
|
||
* cell defs, in preparation for generating LEF output
|
||
* for a subtree rooted at a particular def.
|
||
*/
|
||
|
||
int
|
||
lefDefInitFunc(def)
|
||
CellDef *def;
|
||
{
|
||
def->cd_client = (ClientData) 0;
|
||
return (0);
|
||
}
|
||
|
||
/*
|
||
* Function to push each cell def on lefDefStack
|
||
* if it hasn't already been pushed, and then recurse
|
||
* on all that def's children.
|
||
*/
|
||
|
||
int
|
||
lefDefPushFunc(use, recurse)
|
||
CellUse *use;
|
||
bool *recurse;
|
||
{
|
||
CellDef *def = use->cu_def;
|
||
|
||
if (def->cd_client || (def->cd_flags & CDINTERNAL))
|
||
return (0);
|
||
|
||
def->cd_client = (ClientData) 1;
|
||
StackPush((ClientData) def, lefDefStack);
|
||
if (recurse && (*recurse))
|
||
(void) DBCellEnum(def, lefDefPushFunc, (ClientData)recurse);
|
||
return (0);
|
||
}
|
||
|
||
/*
|
||
*------------------------------------------------------------
|
||
*
|
||
* LefWriteCell --
|
||
*
|
||
* Write LEF-format output for the indicated cell.
|
||
*
|
||
* Results:
|
||
* None.
|
||
*
|
||
* Side effects:
|
||
* Writes a single .lef file to disk.
|
||
*
|
||
*------------------------------------------------------------
|
||
*/
|
||
|
||
void
|
||
LefWriteCell(def, outName, isRoot, lefTech, lefHide)
|
||
CellDef *def; /* Cell being written */
|
||
char *outName; /* Name of output file, or NULL. */
|
||
bool isRoot; /* Is this the root cell? */
|
||
bool lefTech; /* Output layer information if TRUE */
|
||
bool lefHide; /* Hide detail other than pins if TRUE */
|
||
{
|
||
char *filename;
|
||
FILE *f;
|
||
float scale = CIFGetOutputScale(1000);
|
||
|
||
f = lefFileOpen(def, outName, ".lef", "w", &filename);
|
||
|
||
TxPrintf("Generating LEF output %s for cell %s:\n", filename, def->cd_name);
|
||
|
||
if (f == NULL)
|
||
{
|
||
#ifdef MAGIC_WRAPPER
|
||
TxError("Cannot open output file %s (%s).\n", filename,
|
||
strerror(errno));
|
||
#else
|
||
TxError("Cannot open output file: ");
|
||
perror(filename);
|
||
#endif
|
||
return;
|
||
}
|
||
|
||
if (isRoot)
|
||
lefWriteHeader(def, f, lefTech);
|
||
lefWriteMacro(def, f, scale, lefHide);
|
||
fclose(f);
|
||
}
|
||
|