All naked access to `ti_client` now uses the function-like-macro
to encapsulate this action. This macro existed before this just
makes all sites utilize it.
Added additional INT and PTR variants to remove the programmer
load on thinking about casing and casts polluting the point
of use. So the use now looks cleaner.
Equivalent prototypes:
void TiSetClient(Tile*, ClientData)
void TiSetClientINT(Tile*, intptr_t) /* pointertype */
void TiSetClientPTR(Tile*, void*)
ClientData TiGetClient(Tile*)
intptr_t TiGetClientINT(Tile*) /* pointertype */
void *TiGetClientPTR(Tile*)
this appears to work correctly but does not yet handle the implicit
substrate (space as substrate) or "virtually" isolated substrate regions
(which need to be removed for full parasitic extraction).
a long-standing error (introduced with the "extresist geometry"
option) that can cause nets not to be extracted (due to the first
record not having extraction data, which was itself a long-standing
error in the code but which was not fixed correctly); (2) handle
"device mosfet" type transistors (previously only handled the old
"fet" type extraction devices); and (3) correct for the res.ext
file having a different scalefactor relative to the .ext file. The
latter item was solved by forcing all input to scale like
ExtCurStyle->exts_unitsPerLambda, locally correcting all input as
needed. Note that extresist still needs to handle other extraction
devices (e.g., resistors and capacitors) but those will require
additional handling in the routines which analyze the current path
to determine how to break up wires into paths.
simple FET device in extresist. Also: Extended the bloat-all CIF operator
again, allowing the trigger layer for the bloat operation to include both
CIF layers and magic layers (previously only magic layers were supported).
This extension is possible due to the previous extension allowing the
trigger layer and bloating layers to be on separate planes. This operator
extension is useful for tagging geometry that is in the proximity of, but
not overlapping, geometry on another plane.