magic/router/rtrTravers.c

514 lines
14 KiB
C
Raw Normal View History

/* rtrTraverse.c -
*
* This file contains routines for traversing electrically
* connected regions of a layout.
* This code was copied from DBconnect.c and
* modified to maintain a traversal path using
* the C runtime stack.
*
* *********************************************************************
* * Copyright (C) 1985, 1990 Regents of the University of California. *
* * Permission to use, copy, modify, and distribute this *
* * software and its documentation for any purpose and without *
* * fee is hereby granted, provided that the above copyright *
* * notice appear in all copies. The University of California *
* * makes no representations about the suitability of this *
* * software for any purpose. It is provided "as is" without *
* * express or implied warranty. Export of this software outside *
* * of the United States of America may require an export license. *
* *********************************************************************
*/
#ifndef lint
static char rcsid[] __attribute__ ((unused)) = "$Header: /usr/cvsroot/magic-8.0/router/rtrTravers.c,v 1.1.1.1 2008/02/03 20:43:50 tim Exp $";
#endif /* not lint */
#include <stdio.h>
#include "utils/magic.h"
#include "utils/geometry.h"
#include "tiles/tile.h"
#include "utils/hash.h"
#include "database/database.h"
#include "utils/signals.h"
#include "utils/malloc.h"
#include "router/router.h"
#include "windows/windows.h"
#include "utils/main.h"
#include "gcr/gcr.h"
#include "router/routerInt.h"
int rtrTarget; /* Via minimization, target type */
int rtrReplace; /* Via minimization, replacement type */
int rtrDelta; /* Change in layer width */
/* General note for rtrSrTraverse:
*
* The connectivity extractor works in two passes, in order to avoid
* circularities. During the first pass, each connected tile gets
* marked, using the ti_client field. This marking is needed to
* avoid infinite searches on circular structures. The second pass
* is used to clear the markings again.
*/
/*
* The search path is maintained on the C runtime stack
* with rtrTileStack sructures. Each entry on the stack
* points back to the previous connected tile.
*/
struct rtrTileStack
{
Tile *ts_tile; /* Tile at this level in the stack */
struct rtrTileStack *ts_link; /* Pointer to previous stack entry */
struct conSrArg *ts_csa; /* Pointer to search arguments */
};
/*
* ----------------------------------------------------------------------------
*
* rtrSrTraverse --
*
* This function is almost identical to DBSrConnect
* in that it searches through a cell to find all
* paint that is electrically connected to things
* in a given starting area.
* It differs in that it maintains a stack
* (on the C runtime stack) of the search path.
* This enables the client routine to examine
* the stack and recognize patterns of material
* in the connection path. Since the connection path
* is a tree, a stack is convenient data structure for
* recording a particular path originating from a single node.
*
* Results:
* 0 is returned if the search finished normally. 1 is returned
* if the search was aborted.
*
* Side effects:
* The search starts from one (random) non-space tile in "startArea"
* that matches the types in the mask parameter. For every paint
* tile that is electrically connected to the initial tile and that
* intersects the rectangle "bounds", func is called. Func should
* have the following form:
*
* int
* func(tile, clientData)
* Tile *tile;
* ClientData clientData;
* {
* }
*
* The clientData passed to func is the same one that was passed
* to us. Func returns 0 under normal conditions; if it returns
* 1 then the search is aborted.
*
* *** WARNING ***
*
* Func should not modify any paint during the search, since this
* will mess up pointers kept by these procedures and likely cause
* a core-dump.
*
* ----------------------------------------------------------------------------
*/
int
rtrSrTraverse(def, startArea, mask, connect, bounds, func, clientData)
CellDef *def; /* Cell definition in which to carry out
* the connectivity search. Only paint
* in this definition is considered.
*/
Rect *startArea; /* Area to search for an initial tile. Only
* tiles OVERLAPPING the area are considered.
* This area should have positive x and y
* dimensions.
*/
TileTypeBitMask *mask; /* Only tiles of one of these types are used
* as initial tiles.
*/
TileTypeBitMask *connect; /* Pointer to a table indicating what tile
* types connect to what other tile types.
* Each entry gives a mask of types that
* connect to tiles of a given type.
*/
Rect *bounds; /* Area, in coords of scx->scx_use->cu_def,
* that limits the search: only tiles
* overalapping this area will be returned.
* Use TiPlaneRect to search everywhere.
*/
int (*func)(); /* Function to apply at each connected tile. */
ClientData clientData; /* Client data for above function. */
{
struct conSrArg csa;
struct rtrTileStack ts;
int startPlane, result;
Tile *startTile; /* Starting tile for search. */
extern int rtrSrTraverseFunc(); /* Forward declaration. */
extern int rtrSrTraverseStartFunc();
result = 0;
csa.csa_def = def;
csa.csa_bounds = *bounds;
/* Find a starting tile (if there are many tiles underneath the
* starting area, pick any one). The search function just saves
* the tile address and returns.
*/
startTile = NULL;
for (startPlane = PL_TECHDEPBASE; startPlane < DBNumPlanes; startPlane++)
{
if (DBSrPaintArea((Tile *) NULL,
def->cd_planes[startPlane], startArea, mask,
rtrSrTraverseStartFunc, (ClientData) &startTile) != 0) break;
}
if (startTile == NULL)
return 0;
/* Pass 1. During this pass the client function gets called. */
csa.csa_clientFunc = func;
csa.csa_clientData = clientData;
csa.csa_clear = FALSE;
csa.csa_connect = connect;
csa.csa_pNum = startPlane;
ts.ts_tile = (Tile *) NULL;
ts.ts_link = (struct rtrTileStack *) NULL;
ts.ts_csa = &csa;
if (rtrSrTraverseFunc(startTile, &ts) != 0)
result = 1;
/* Pass 2. Don't call any client function, just clear the marks.
* Don't allow any interruptions.
*/
SigDisableInterrupts();
csa.csa_clientFunc = NULL;
csa.csa_clear = TRUE;
csa.csa_pNum = startPlane;
(void) rtrSrTraverseFunc(startTile, &ts);
SigEnableInterrupts();
return result;
}
int
rtrSrTraverseStartFunc(tile, pTile)
Tile *tile; /* This will be the starting tile. */
Tile **pTile; /* We store tile's address here. */
{
*pTile = tile;
return 1;
}
/*
* ----------------------------------------------------------------------------
*
* rtrSrTraverseFunc --
*
* This search function gets called by DBSrPaintArea as part
* of rtrSrTraverse, and also recursively by itself. Each invocation
* is made to process a single tile that is of interest.
* This function is copied from dbSrConnectFunc and differs by
* maintaining a stack (on the C-run time stack) of the search
* path.
*
* Results:
* 0 is returned unless the client function returns a non-zero
* value, in which case 1 is returned.
*
* Side effects:
* If this tile has been seen before, then just return
* immediately. If this tile hasn't been seen before, it is
* marked and the client procedure is called. A NULL client
* procedure is not called, of course. In addition, we scan
* the tiles perimeter for any connected tiles, and call
* ourselves recursively on them.
*
* Design note:
* This one procedure is used during both the marking and clearing
* passes, so "seen before" is a function both of the ti_client
* field in the tile and the csa_clear value.
*
* ----------------------------------------------------------------------------
*/
int
rtrSrTraverseFunc(tile, ts)
Tile *tile; /* Tile that is connected. */
struct rtrTileStack *ts; /* Contains information about the search. */
{
Tile *t2;
Rect tileArea;
int i;
const TileTypeBitMask *connectMask;
TileType ttype;
unsigned int planes;
struct conSrArg *csa = ts->ts_csa;
struct rtrTileStack nts;
nts.ts_csa = csa;
nts.ts_tile = tile;
nts.ts_link = ts;
TiToRect(tile, &tileArea);
ttype = TiGetType(tile);
/* Make sure this tile overlaps the area we're interested in. */
if (!GEO_OVERLAP(&tileArea, &csa->csa_bounds)) return 0;
/* See if we've already been here before, and mark the tile as already
* visited.
*/
if (csa->csa_clear)
{
if (TiGetClient(tile) == CLIENTDEFAULT) return 0;
TiSetClient(tile, CLIENTDEFAULT);
}
else
{
if (TiGetClient(tile) != CLIENTDEFAULT) return 0;
TiSetClientINT(tile, 1);
}
/* Call the client function, if there is one. */
if (csa->csa_clientFunc != NULL)
{
if ((*csa->csa_clientFunc)(tile, &nts) != 0)
return 1;
}
/* Now search around each of the four sides of this tile for
* connected tiles. For each one found, call ourselves
* recursively.
*/
connectMask = &csa->csa_connect[ttype];
/* Left side: */
for (t2 = BL(tile); BOTTOM(t2) < tileArea.r_ytop; t2 = RT(t2))
{
if (TTMaskHasType(connectMask, TiGetType(t2)))
{
if (csa->csa_clear)
{
if (TiGetClient(t2) == CLIENTDEFAULT) continue;
}
else if (TiGetClient(t2) != CLIENTDEFAULT) continue;
if (rtrSrTraverseFunc(t2, &nts) != 0) return 1;
}
}
/* Bottom side: */
for (t2 = LB(tile); LEFT(t2) < tileArea.r_xtop; t2 = TR(t2))
{
if (TTMaskHasType(connectMask, TiGetType(t2)))
{
if (csa->csa_clear)
{
if (TiGetClient(t2) == CLIENTDEFAULT) continue;
}
else if (TiGetClient(t2) != CLIENTDEFAULT) continue;
if (rtrSrTraverseFunc(t2, &nts) != 0) return 1;
}
}
/* Right side: */
for (t2 = TR(tile); ; t2 = LB(t2))
{
if (TTMaskHasType(connectMask, TiGetType(t2)))
{
if (csa->csa_clear)
{
if (TiGetClient(t2) == CLIENTDEFAULT) goto nextRight;
}
else if (TiGetClient(t2) != CLIENTDEFAULT) goto nextRight;
if (rtrSrTraverseFunc(t2, &nts) != 0) return 1;
}
nextRight: if (BOTTOM(t2) <= tileArea.r_ybot) break;
}
/* Top side: */
for (t2 = RT(tile); ; t2 = BL(t2))
{
if (TTMaskHasType(connectMask, TiGetType(t2)))
{
if (csa->csa_clear)
{
if (TiGetClient(t2) == CLIENTDEFAULT) goto nextTop;
}
else if (TiGetClient(t2) != CLIENTDEFAULT) goto nextTop;
if (rtrSrTraverseFunc(t2, &nts) != 0) return 1;
}
nextTop: if (LEFT(t2) <= tileArea.r_xbot) break;
}
/* Lastly, check to see if this tile connects to anything on
* other planes. If so, search those planes.
*/
planes = DBConnPlanes[ttype];
planes &= ~(csa->csa_pNum);
if (planes != 0)
{
struct conSrArg newcsa;
newcsa = *csa;
nts.ts_csa = &newcsa;
for (i = PL_TECHDEPBASE; i < DBNumPlanes; i++)
{
newcsa.csa_pNum = i;
if (DBSrPaintArea((Tile *) NULL,
newcsa.csa_def->cd_planes[i],
&tileArea, connectMask, rtrSrTraverseFunc,
(ClientData) &nts) != 0)
return 1;
}
}
return 0;
}
/*
* ----------------------------------------------------------------------------
*
* rtrExamineTile --
*
* Examine a tile to see if it overlaps or connects
* the target tile.
*
* Results:
* Returns 1 if tile overlaps or connects
* the target tile. This means the target tile
* cannot be moved to another routing layer.
* Returns 0 otherwise.
*
* Side effects:
* None.
*
* ----------------------------------------------------------------------------
*/
int
rtrExamineTile(tile, cdata)
Tile *tile;
ClientData cdata;
{
if ( TiGetType(tile) == rtrTarget )
return 1;
if ( (tile != (Tile *) cdata) &&
(TiGetType(tile) == rtrReplace) )
return 1;
return 0;
}
/*
* ----------------------------------------------------------------------------
*
* rtrExamineStack --
*
* Examine a segment of the traversal path
* and identify segments of replacement material
* connected by vias at both ends and not overlapped
* or electrically connected to other routing material.
*
* Results:
* Always returns 0 to continue search.
*
* Side effects:
* Segments of replacement material are added to a list
* for later conversion to the target material.
* The vias are added to a list for later removal.
* They can't be processed now as pointers would get
* fouled up for the area search.
*
* ----------------------------------------------------------------------------
*/
int
rtrExamineStack(tile, ts)
Tile *tile;
struct rtrTileStack *ts;
{
int i;
Tile *tp[3];
struct conSrArg *csa = ts->ts_csa;
CellDef *def = csa->csa_def;
/*
* Collect topmost three elements of the stack.
*/
i = 0;
while ( i < 3 && ts && ts->ts_tile )
{
tp[i++] = ts->ts_tile;
ts = ts->ts_link;
}
if ( i == 3 )
{
/*
* Identify pattern -- *via* *replacement_material* *via*
*/
if ( DBIsContact(TiGetType(tp[0])) &&
(TiGetType(tp[1]) == rtrReplace) &&
DBIsContact(TiGetType(tp[2])))
{
int plane;
Rect area;
TileTypeBitMask mask;
int deltax = rtrDelta, deltay = rtrDelta;
/*
* Search for overlapping or
* electrically connected routing material.
*/
TTMaskZero(&mask);
TTMaskSetType(&mask, RtrPolyType);
TTMaskSetType(&mask, RtrMetalType);
TITORECT(tp[1], &area);
area.r_xbot--;
area.r_xtop++;
for ( plane = PL_PAINTBASE; plane < DBNumPlanes; plane++ )
if ( DBPaintOnPlane(RtrPolyType, plane) ||
DBPaintOnPlane(RtrMetalType, plane) )
if ( DBSrPaintArea((Tile *)NULL, def->cd_planes[plane],
&area, &mask, rtrExamineTile, (ClientData) tp[1]) )
return 0;
/*
* Mark areas for later processing.
*/
if ( rtrDelta < 0 )
{
if ( (TOP(tp[1]) == BOTTOM(tp[0])) || (TOP(tp[1]) == BOTTOM(tp[2])))
deltay = 0;
if ( (RIGHT(tp[1]) == LEFT(tp[0])) || (RIGHT(tp[1]) == LEFT(tp[2])))
deltax = 0;
}
rtrListVia (tp[0]);
rtrListArea(tp[1], rtrReplace, rtrTarget, deltax, deltay);
rtrListVia (tp[2]);
}
}
return 0;
}