klayout/src/tl/unit_tests/tlThreadedWorkersTests.cc

633 lines
13 KiB
C++

/*
KLayout Layout Viewer
Copyright (C) 2006-2024 Matthias Koefferlein
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "tlThreadedWorkers.h"
#include "tlTimer.h"
#include "tlUnitTest.h"
#include "tlThreads.h"
#include "tlSleep.h"
#include <stdio.h>
class Sum
{
public:
Sum () : m_sum(0), m_flag (false) { }
void reset () { lock.lock (); m_sum = 0; lock.unlock (); m_flag = false; }
void add(int n) { lock.lock (); m_sum += n; lock.unlock (); m_flag = true; }
int sum() {
int s;
lock.lock ();
s = m_sum;
lock.unlock ();
return s;
}
bool flag() const { return m_flag; }
private:
tl::Mutex lock;
int m_sum;
volatile bool m_flag;
};
static Sum s_sum[4];
class SchedulerTask : public tl::Task
{
public:
SchedulerTask (tl::JobBase *job, int m, int n) : mp_job (job), m_m (m), m_n (n) { }
tl::JobBase *mp_job;
int m_m, m_n;
};
class MyTask : public tl::Task
{
public:
MyTask (int n) : m_n (n) { }
int m_n;
};
class MyWorker : public tl::Worker
{
public:
MyWorker () : tl::Worker () { }
protected:
void perform_task(tl::Task *task)
{
MyTask *mytask = dynamic_cast<MyTask *> (task);
if (mytask) {
for (int i = 0; i < mytask->m_n; ++i) {
checkpoint ();
if (worker_index () >= 0) {
s_sum[worker_index ()].add (1);
} else {
s_sum[0].add (1);
}
}
} else {
SchedulerTask *schtask = dynamic_cast<SchedulerTask *> (task);
if (schtask) {
for (int i = 0; i < schtask->m_m; ++i) {
schtask->mp_job->schedule (new MyTask (schtask->m_n));
}
}
}
}
};
class MyJob : public tl::Job<MyWorker>
{
public:
MyJob (int w) : tl::Job<MyWorker> (w) { }
std::string m_name;
};
TEST(1)
{
size_t n;
tl::Boss boss1, boss2;
MyJob *job1 = new MyJob (2);
MyJob *job2 = new MyJob (1);
boss1.register_job(job1);
boss2.register_job(job1);
n = 0; for (tl::Boss::iterator j = boss1.begin (); j != boss1.end (); ++j) { ++n; }
EXPECT_EQ (n, size_t (1));
n = 0; for (tl::Boss::iterator j = boss2.begin (); j != boss2.end (); ++j) { ++n; }
EXPECT_EQ (n, size_t (1));
delete job1;
job1 = new MyJob (2);
n = 0; for (tl::Boss::iterator j = boss1.begin (); j != boss1.end (); ++j) { ++n; }
EXPECT_EQ (n, size_t (0));
n = 0; for (tl::Boss::iterator j = boss2.begin (); j != boss2.end (); ++j) { ++n; }
EXPECT_EQ (n, size_t (0));
tl::Boss *tmp_boss = new tl::Boss ();
tmp_boss->register_job(job1);
tmp_boss->register_job(job2);
boss1.register_job(job1);
boss2.register_job(job1);
boss2.register_job(job2);
delete tmp_boss;
n = 0; for (tl::Boss::iterator j = boss1.begin (); j != boss1.end (); ++j) { ++n; }
EXPECT_EQ (n, size_t (1));
n = 0; for (tl::Boss::iterator j = boss2.begin (); j != boss2.end (); ++j) { ++n; }
EXPECT_EQ (n, size_t (2));
delete job1;
delete job2;
n = 0; for (tl::Boss::iterator j = boss1.begin (); j != boss1.end (); ++j) { ++n; }
EXPECT_EQ (n, size_t (0));
n = 0; for (tl::Boss::iterator j = boss2.begin (); j != boss2.end (); ++j) { ++n; }
EXPECT_EQ (n, size_t (0));
}
TEST(2)
{
MyJob job (1);
s_sum[0].reset ();
for (int i = 0; i < 100; ++i) {
job.schedule (new MyTask (100000));
}
job.start ();
tl::usleep (2000000);
EXPECT_EQ (s_sum[0].sum (), 10000000);
}
TEST(3)
{
MyJob job (1);
s_sum[0].reset ();
for (int i = 0; i < 100; ++i) {
job.schedule (new MyTask (100000));
}
job.start ();
int status = job.wait ();
EXPECT_EQ (status, 1);
EXPECT_EQ (s_sum[0].sum (), 10000000);
}
TEST(4)
{
MyJob job (1);
s_sum[0].reset ();
for (int i = 0; i < 10000; ++i) {
job.schedule (new MyTask (100000));
}
job.start ();
bool status = job.wait (100);
EXPECT_EQ (status, false /*timed out*/);
EXPECT_EQ (s_sum[0].sum () < 10000000, true);
}
TEST(5)
{
MyJob job (1);
s_sum[0].reset ();
for (int i = 0; i < 10000; ++i) {
job.schedule (new MyTask (100000));
}
job.start ();
tl::usleep (100000);
job.terminate ();
EXPECT_EQ (s_sum[0].sum () < 10000000, true);
}
TEST(10)
{
MyJob job (4);
s_sum[0].reset ();
s_sum[1].reset ();
s_sum[2].reset ();
s_sum[3].reset ();
for (int i = 0; i < 1000; ++i) {
job.schedule (new MyTask (10000));
}
job.start ();
tl::usleep (2000000);
EXPECT_EQ (s_sum[0].sum () > 0, true);
EXPECT_EQ (s_sum[1].sum () > 0, true);
EXPECT_EQ (s_sum[2].sum () > 0, true);
EXPECT_EQ (s_sum[3].sum () > 0, true);
EXPECT_EQ (s_sum[0].sum () % 1000, 0);
EXPECT_EQ (s_sum[1].sum () % 1000, 0);
EXPECT_EQ (s_sum[2].sum () % 1000, 0);
EXPECT_EQ (s_sum[3].sum () % 1000, 0);
EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() + s_sum[2].sum() + s_sum[3].sum(), 10000000);
}
TEST(11)
{
MyJob job (4);
s_sum[0].reset ();
s_sum[1].reset ();
s_sum[2].reset ();
s_sum[3].reset ();
for (int i = 0; i < 10000; ++i) {
job.schedule (new MyTask (1000));
}
job.start ();
int status = job.wait ();
EXPECT_EQ (job.is_running (), false);
EXPECT_EQ (status, 1);
EXPECT_EQ (s_sum[0].sum () > 0, true);
EXPECT_EQ (s_sum[1].sum () > 0, true);
EXPECT_EQ (s_sum[2].sum () > 0, true);
EXPECT_EQ (s_sum[3].sum () > 0, true);
EXPECT_EQ (s_sum[0].sum () % 1000, 0);
EXPECT_EQ (s_sum[1].sum () % 1000, 0);
EXPECT_EQ (s_sum[2].sum () % 1000, 0);
EXPECT_EQ (s_sum[3].sum () % 1000, 0);
EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() + s_sum[2].sum() + s_sum[3].sum(), 10000000);
// check the restart capabilities ..
job.terminate ();
for (int i = 0; i < 10000; ++i) {
job.schedule (new MyTask (1000));
}
job.start ();
status = job.wait ();
EXPECT_EQ (job.is_running (), false);
EXPECT_EQ (status, 1);
EXPECT_EQ (s_sum[0].sum () > 0, true);
EXPECT_EQ (s_sum[1].sum () > 0, true);
EXPECT_EQ (s_sum[2].sum () > 0, true);
EXPECT_EQ (s_sum[3].sum () > 0, true);
EXPECT_EQ (s_sum[0].sum () % 1000, 0);
EXPECT_EQ (s_sum[1].sum () % 1000, 0);
EXPECT_EQ (s_sum[2].sum () % 1000, 0);
EXPECT_EQ (s_sum[3].sum () % 1000, 0);
EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() + s_sum[2].sum() + s_sum[3].sum(), 20000000);
}
TEST(12)
{
MyJob job (4);
s_sum[0].reset ();
s_sum[1].reset ();
s_sum[2].reset ();
s_sum[3].reset ();
for (int i = 0; i < 10000; ++i) {
job.schedule (new MyTask (1000));
}
job.start ();
bool status = job.wait (100);
EXPECT_EQ (status, false /*timed out*/);
EXPECT_EQ (job.is_running (), true);
// at least one must be caught in the perform task ...
EXPECT_EQ ((s_sum[0].sum () % 1000) + (s_sum[1].sum () % 1000) + (s_sum[2].sum () % 1000) + (s_sum[3].sum () % 1000) > 0, true);
EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() + s_sum[2].sum() + s_sum[3].sum() < 10000000, true);
}
void run_thread_tests (tl::TestBase *_this, int wait)
{
int tries = 4;
bool stopped_in_action = false;
for (int i = 0; i < tries && !stopped_in_action; ++i) {
MyJob job (4);
s_sum[0].reset ();
s_sum[1].reset ();
s_sum[2].reset ();
s_sum[3].reset ();
for (int i = 0; i < 10000; ++i) {
job.schedule (new MyTask (100000));
}
job.start ();
tl::usleep (wait);
job.terminate ();
EXPECT_EQ (job.is_running (), false);
EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() + s_sum[2].sum() + s_sum[3].sum() < 400000000, true);
// at least one must be stopped in the perform task - as this is not always the case,
// we retry a few times.
stopped_in_action = (s_sum[0].sum () % 10000) + (s_sum[1].sum () % 10000) + (s_sum[2].sum () % 10000) + (s_sum[3].sum () % 10000) > 0;
}
EXPECT_EQ (stopped_in_action, true);
}
TEST(13)
{
run_thread_tests (_this, 20000);
}
TEST(14)
{
run_thread_tests (_this, 200000);
}
TEST(20)
{
MyJob job (4);
for (int l = 0; l < 100; ++l) {
s_sum[0].reset ();
s_sum[1].reset ();
s_sum[2].reset ();
s_sum[3].reset ();
for (int i = 0; i < 1000; ++i) {
job.schedule (new MyTask (100));
}
job.start ();
job.wait ();
EXPECT_EQ (job.is_running (), false);
EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() + s_sum[2].sum() + s_sum[3].sum(), 100000);
}
}
TEST(21)
{
MyJob job (1);
for (int l = 0; l < 100; ++l) {
s_sum[0].reset ();
for (int i = 0; i < 1000; ++i) {
job.schedule (new MyTask (100));
}
job.start ();
job.wait ();
EXPECT_EQ (job.is_running (), false);
EXPECT_EQ (s_sum[0].sum (), 100000);
}
}
TEST(22)
{
tl::SelfTimer timer ("4 threads, 20 iterations with all threads running");
MyJob job (4);
for (int l = 0; l < 20; ++l) {
s_sum[0].reset ();
s_sum[1].reset ();
s_sum[2].reset ();
s_sum[3].reset ();
for (int i = 0; i < 1000; ++i) {
job.schedule (new MyTask (100000));
}
job.start ();
while (!s_sum[0].flag () || !s_sum[1].flag () || !s_sum[2].flag () || !s_sum[3].flag ()) {
tl::usleep (10000);
}
job.stop ();
EXPECT_EQ (job.is_running (), false);
EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() + s_sum[2].sum() + s_sum[3].sum() < 100000000, true);
}
}
TEST(23)
{
tl::SelfTimer timer ("2 threads, 40 iterations with all threads running");
MyJob job (2);
for (int l = 0; l < 40; ++l) {
s_sum[0].reset ();
s_sum[1].reset ();
s_sum[2].reset ();
s_sum[3].reset ();
for (int i = 0; i < 1000; ++i) {
job.schedule (new MyTask (100000));
}
job.start ();
while (!s_sum[0].flag () || !s_sum[1].flag ()) {
tl::usleep (10000);
}
job.stop ();
EXPECT_EQ (job.is_running (), false);
EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() < 100000000, true);
}
}
TEST(24)
{
tl::SelfTimer timer ("4 threads, 20 iterations with at least one thread running");
MyJob job (4);
for (int l = 0; l < 20; ++l) {
s_sum[0].reset ();
s_sum[1].reset ();
s_sum[2].reset ();
s_sum[3].reset ();
for (int i = 0; i < 1000; ++i) {
job.schedule (new MyTask (100000));
}
job.start ();
while (!s_sum[0].flag () && !s_sum[1].flag () && !s_sum[2].flag () && !s_sum[3].flag ()) {
tl::usleep (10000);
}
job.stop ();
EXPECT_EQ (job.is_running (), false);
EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() + s_sum[2].sum() + s_sum[3].sum() < 100000000, true);
}
}
TEST(25)
{
tl::SelfTimer timer ("2 threads, 40 iterations with all at least one thread running");
MyJob job (2);
for (int l = 0; l < 40; ++l) {
s_sum[0].reset ();
s_sum[1].reset ();
s_sum[2].reset ();
s_sum[3].reset ();
for (int i = 0; i < 1000; ++i) {
job.schedule (new MyTask (100000));
}
job.start ();
while (!s_sum[0].flag () && !s_sum[1].flag ()) {
tl::usleep (10000);
}
job.stop ();
EXPECT_EQ (job.is_running (), false);
EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() < 100000000, true);
}
}
TEST(26)
{
tl::SelfTimer timer ("2 threads, 500 iterations with waiting");
MyJob job (2);
for (int l = 0; l < 500; ++l) {
s_sum[0].reset ();
s_sum[1].reset ();
s_sum[2].reset ();
s_sum[3].reset ();
for (int i = 0; i < 100; ++i) {
job.schedule (new MyTask (100));
}
job.start ();
job.wait ();
EXPECT_EQ (job.is_running (), false);
EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() == 10000, true);
}
}
TEST(27)
{
tl::SelfTimer timer ("4 threads, 500 iterations with waiting");
MyJob job (4);
for (int l = 0; l < 500; ++l) {
s_sum[0].reset ();
s_sum[1].reset ();
s_sum[2].reset ();
s_sum[3].reset ();
for (int i = 0; i < 100; ++i) {
job.schedule (new MyTask (100));
}
job.start ();
job.wait ();
EXPECT_EQ (job.is_running (), false);
EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() + s_sum[2].sum() + s_sum[3].sum () == 10000, true);
}
}
TEST(28)
{
tl::SelfTimer timer ("4 threads, 500 self-scheduled iterations with waiting");
MyJob job (4);
for (int l = 0; l < 500; ++l) {
s_sum[0].reset ();
s_sum[1].reset ();
s_sum[2].reset ();
s_sum[3].reset ();
job.schedule (new SchedulerTask (&job, 100, 100));
job.start ();
job.wait ();
EXPECT_EQ (job.is_running (), false);
EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() + s_sum[2].sum() + s_sum[3].sum () == 10000, true);
}
}
TEST(29)
{
tl::SelfTimer timer ("0 threads, 500 self-scheduled iterations with waiting");
MyJob job (0);
for (int l = 0; l < 500; ++l) {
s_sum[0].reset ();
s_sum[1].reset ();
s_sum[2].reset ();
s_sum[3].reset ();
job.schedule (new SchedulerTask (&job, 100, 100));
job.start ();
job.wait ();
EXPECT_EQ (job.is_running (), false);
EXPECT_EQ (s_sum[0].sum () + s_sum[1].sum() + s_sum[2].sum() + s_sum[3].sum () == 10000, true);
}
}