klayout/src/db/db/dbLayoutToNetlist.cc

1531 lines
50 KiB
C++

/*
KLayout Layout Viewer
Copyright (C) 2006-2021 Matthias Koefferlein
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
*/
#include "dbCommon.h"
#include "dbLayoutToNetlist.h"
#include "dbDeepRegion.h"
#include "dbDeepTexts.h"
#include "dbShapeRepository.h"
#include "dbCellMapping.h"
#include "dbLayoutToNetlistWriter.h"
#include "dbLayoutToNetlistReader.h"
#include "dbLayoutVsSchematic.h"
#include "dbLayoutToNetlistFormatDefs.h"
#include "dbLayoutVsSchematicFormatDefs.h"
#include "dbShapeProcessor.h"
#include "tlGlobPattern.h"
namespace db
{
// the iterator provides the hierarchical selection (enabling/disabling cells etc.)
LayoutToNetlist::LayoutToNetlist (const db::RecursiveShapeIterator &iter)
: m_iter (iter), m_layout_index (0), m_netlist_extracted (false), m_is_flat (false), m_device_scaling (1.0), m_include_floating_subcircuits (false)
{
// check the iterator
if (iter.has_complex_region () || iter.region () != db::Box::world ()) {
throw tl::Exception (tl::to_string (tr ("The netlist extractor cannot work on clipped layouts")));
}
mp_internal_dss.reset (new db::DeepShapeStore ());
mp_dss.reset (mp_internal_dss.get ());
// the dummy layer acts as a reference holder for the layout
// NOTE: this probably can be done better
db::RecursiveShapeIterator empty_iter = iter;
empty_iter.set_layers (std::vector<unsigned int> ());
m_dummy_layer = dss ().create_polygon_layer (empty_iter);
init ();
}
LayoutToNetlist::LayoutToNetlist (db::DeepShapeStore *dss, unsigned int layout_index)
: mp_dss (dss), m_layout_index (layout_index), m_netlist_extracted (false), m_is_flat (false), m_device_scaling (1.0), m_include_floating_subcircuits (false)
{
if (dss->is_valid_layout_index (m_layout_index)) {
m_iter = db::RecursiveShapeIterator (dss->layout (m_layout_index), dss->initial_cell (m_layout_index), std::set<unsigned int> ());
}
}
LayoutToNetlist::LayoutToNetlist (const std::string &topcell_name, double dbu)
: m_iter (), m_netlist_extracted (false), m_is_flat (true), m_device_scaling (1.0), m_include_floating_subcircuits (false)
{
mp_internal_dss.reset (new db::DeepShapeStore (topcell_name, dbu));
mp_dss.reset (mp_internal_dss.get ());
m_layout_index = 0 ;
init ();
}
LayoutToNetlist::LayoutToNetlist ()
: m_iter (), mp_internal_dss (new db::DeepShapeStore ()), mp_dss (mp_internal_dss.get ()), m_layout_index (0),
m_netlist_extracted (false), m_is_flat (false), m_device_scaling (1.0), m_include_floating_subcircuits (false)
{
init ();
}
LayoutToNetlist::~LayoutToNetlist ()
{
// NOTE: do this in this order because of unregistration of the layers
m_named_regions.clear ();
m_dlrefs.clear ();
mp_internal_dss.reset (0);
mp_netlist.reset (0);
m_net_clusters.clear ();
}
void LayoutToNetlist::keep_dss ()
{
if (mp_dss.get () && ! mp_internal_dss.get ()) {
mp_dss->keep ();
mp_internal_dss.reset (mp_dss.get ());
}
}
void LayoutToNetlist::init ()
{
dss ().set_text_enlargement (1);
dss ().set_text_property_name (tl::Variant ("LABEL"));
}
void LayoutToNetlist::set_threads (int n)
{
dss ().set_threads (n);
}
int LayoutToNetlist::threads () const
{
return dss ().threads ();
}
void LayoutToNetlist::set_area_ratio (double ar)
{
dss ().set_max_area_ratio (ar);
}
double LayoutToNetlist::area_ratio () const
{
return dss ().max_area_ratio ();
}
void LayoutToNetlist::set_max_vertex_count (size_t n)
{
dss ().set_max_vertex_count (n);
}
size_t LayoutToNetlist::max_vertex_count () const
{
return dss ().max_vertex_count ();
}
void LayoutToNetlist::set_device_scaling (double s)
{
m_device_scaling = s;
}
double LayoutToNetlist::device_scaling () const
{
return m_device_scaling;
}
db::Region *LayoutToNetlist::make_layer (const std::string &n)
{
db::RecursiveShapeIterator si (m_iter);
si.shape_flags (db::ShapeIterator::Nothing);
std::unique_ptr <db::Region> region (new db::Region (si, dss ()));
if (! n.empty ()) {
register_layer (*region, n);
}
return region.release ();
}
db::Region *LayoutToNetlist::make_layer (unsigned int layer_index, const std::string &n)
{
db::RecursiveShapeIterator si (m_iter);
si.set_layer (layer_index);
si.shape_flags (db::ShapeIterator::All);
std::unique_ptr <db::Region> region (new db::Region (si, dss ()));
if (! n.empty ()) {
register_layer (*region, n);
}
return region.release ();
}
db::Texts *LayoutToNetlist::make_text_layer (unsigned int layer_index, const std::string &n)
{
db::RecursiveShapeIterator si (m_iter);
si.set_layer (layer_index);
si.shape_flags (db::ShapeIterator::Texts);
std::unique_ptr <db::Texts> texts (new db::Texts (si, dss ()));
if (! n.empty ()) {
register_layer (*texts, n);
}
return texts.release ();
}
db::Region *LayoutToNetlist::make_polygon_layer (unsigned int layer_index, const std::string &n)
{
db::RecursiveShapeIterator si (m_iter);
si.set_layer (layer_index);
si.shape_flags (db::ShapeIterator::Paths | db::ShapeIterator::Polygons | db::ShapeIterator::Boxes);
std::unique_ptr <db::Region> region (new db::Region (si, dss ()));
if (! n.empty ()) {
register_layer (*region, n);
}
return region.release ();
}
void LayoutToNetlist::link_nets (const db::Net *net, const db::Net *with)
{
if (! net->circuit () || net->circuit () != with->circuit () || ! internal_layout ()
|| ! internal_layout ()->is_valid_cell_index (net->circuit ()->cell_index ())
|| net->cluster_id () == 0 || with->cluster_id () == 0) {
return;
}
connected_clusters<db::NetShape> &clusters = m_net_clusters.clusters_per_cell (net->circuit ()->cell_index ());
clusters.join_cluster_with (net->cluster_id (), with->cluster_id ());
}
size_t LayoutToNetlist::link_net_to_parent_circuit (const Net *subcircuit_net, Circuit *parent_circuit, const DCplxTrans &dtrans)
{
if (! subcircuit_net->circuit () || ! has_internal_layout ()
|| ! internal_layout ()->is_valid_cell_index (parent_circuit->cell_index ())
|| subcircuit_net->cluster_id () == 0) {
return 0;
}
db::CplxTrans dbu_trans (internal_layout ()->dbu ());
db::ICplxTrans trans = dbu_trans.inverted () * dtrans * dbu_trans;
connected_clusters<db::NetShape> &parent_net_clusters = m_net_clusters.clusters_per_cell (parent_circuit->cell_index ());
size_t id = parent_net_clusters.insert_dummy ();
parent_net_clusters.add_connection (id, db::ClusterInstance (subcircuit_net->cluster_id (), subcircuit_net->circuit ()->cell_index (), trans, 0));
return id;
}
void LayoutToNetlist::ensure_netlist ()
{
if (! mp_netlist.get ()) {
mp_netlist.reset (new db::Netlist (this));
}
}
void LayoutToNetlist::extract_devices (db::NetlistDeviceExtractor &extractor, const std::map<std::string, db::ShapeCollection *> &layers)
{
if (m_netlist_extracted) {
throw tl::Exception (tl::to_string (tr ("The netlist has already been extracted")));
}
ensure_netlist ();
extractor.extract (dss (), m_layout_index, layers, *mp_netlist, m_net_clusters, m_device_scaling);
}
void LayoutToNetlist::reset_extracted ()
{
if (m_netlist_extracted) {
m_net_clusters.clear ();
mp_netlist.reset (0);
m_netlist_extracted = false;
}
}
void LayoutToNetlist::connect (const db::Region &l)
{
reset_extracted ();
if (! is_persisted (l)) {
register_layer (l, make_new_name ());
}
// we need to keep a reference, so we can safely delete the region
db::DeepLayer dl = deep_layer_of (l);
m_dlrefs.insert (dl);
m_conn.connect (dl.layer ());
}
void LayoutToNetlist::connect_impl (const db::ShapeCollection &a, const db::ShapeCollection &b)
{
reset_extracted ();
if (! is_persisted (a)) {
register_layer (a, make_new_name ());
}
if (! is_persisted (b)) {
register_layer (b, make_new_name ());
}
// we need to keep a reference, so we can safely delete the region
db::DeepLayer dla = deep_layer_of (a);
db::DeepLayer dlb = deep_layer_of (b);
m_dlrefs.insert (dla);
m_dlrefs.insert (dlb);
m_conn.connect (dla.layer (), dlb.layer ());
}
size_t LayoutToNetlist::connect_global_impl (const db::ShapeCollection &l, const std::string &gn)
{
reset_extracted ();
if (! is_persisted (l)) {
register_layer (l, make_new_name ());
}
// we need to keep a reference, so we can safely delete the region
db::DeepLayer dl = deep_layer_of (l);
m_dlrefs.insert (dl);
return m_conn.connect_global (dl.layer (), gn);
}
const std::string &LayoutToNetlist::global_net_name (size_t id) const
{
return m_conn.global_net_name (id);
}
size_t LayoutToNetlist::global_net_id (const std::string &name)
{
return m_conn.global_net_id (name);
}
void LayoutToNetlist::set_include_floating_subcircuits (bool f)
{
m_include_floating_subcircuits = f;
}
void LayoutToNetlist::clear_join_net_names ()
{
m_joined_net_names.clear ();
m_joined_net_names_per_cell.clear ();
}
void LayoutToNetlist::join_net_names (const tl::GlobPattern &gp)
{
m_joined_net_names.push_back (gp);
}
void LayoutToNetlist::join_net_names (const tl::GlobPattern &cell, const tl::GlobPattern &gp)
{
m_joined_net_names_per_cell.push_back (std::make_pair (cell, gp));
}
void LayoutToNetlist::clear_join_nets ()
{
m_joined_nets.clear ();
m_joined_nets_per_cell.clear ();
}
void LayoutToNetlist::join_nets (const std::set<std::string> &jn)
{
m_joined_nets.push_back (jn);
}
void LayoutToNetlist::join_nets (const tl::GlobPattern &cell, const std::set<std::string> &gp)
{
m_joined_nets_per_cell.push_back (std::make_pair (cell, gp));
}
void LayoutToNetlist::extract_netlist ()
{
if (m_netlist_extracted) {
throw tl::Exception (tl::to_string (tr ("The netlist has already been extracted")));
}
ensure_netlist ();
const db::Layout &layout = dss ().layout (m_layout_index);
db::NetlistExtractor netex;
netex.set_joined_net_names (m_joined_net_names);
std::map<std::string, std::list<tl::GlobPattern> > jp_per_cell;
for (std::list<std::pair<tl::GlobPattern, tl::GlobPattern> >::const_iterator j = m_joined_net_names_per_cell.begin (); j != m_joined_net_names_per_cell.end (); ++j) {
if (j->first.is_const ()) {
jp_per_cell [j->first.pattern ()].push_back (j->second);
} else {
for (db::Layout::const_iterator c = layout.begin (); c != layout.end (); ++c) {
if (j->first.match (layout.cell_name (c->cell_index ()))) {
jp_per_cell [layout.cell_name (c->cell_index ())].push_back (j->second);
}
}
}
}
for (std::map<std::string, std::list<tl::GlobPattern> >::const_iterator i = jp_per_cell.begin (); i != jp_per_cell.end (); ++i) {
netex.set_joined_net_names (i->first, i->second);
}
netex.set_joined_nets (m_joined_nets);
std::map<std::string, std::list<std::set<std::string> > > jn_per_cell;
for (std::list<std::pair<tl::GlobPattern, std::set<std::string> > >::const_iterator j = m_joined_nets_per_cell.begin (); j != m_joined_nets_per_cell.end (); ++j) {
if (j->first.is_const ()) {
jn_per_cell [j->first.pattern ()].push_back (j->second);
} else {
for (db::Layout::const_iterator c = layout.begin (); c != layout.end (); ++c) {
if (j->first.match (layout.cell_name (c->cell_index ()))) {
jn_per_cell [layout.cell_name (c->cell_index ())].push_back (j->second);
}
}
}
}
for (std::map<std::string, std::list<std::set<std::string> > >::const_iterator i = jn_per_cell.begin (); i != jn_per_cell.end (); ++i) {
netex.set_joined_nets (i->first, i->second);
}
netex.set_include_floating_subcircuits (m_include_floating_subcircuits);
netex.extract_nets (dss (), m_layout_index, m_conn, *mp_netlist, m_net_clusters);
if (tl::verbosity () >= 41) {
MemStatisticsCollector m (false);
mem_stat (&m, db::MemStatistics::None, 0);
m.print ();
}
m_netlist_extracted = true;
}
void LayoutToNetlist::mem_stat (MemStatistics *stat, MemStatistics::purpose_t purpose, int cat, bool no_self, void *parent) const
{
if (! no_self) {
stat->add (typeid (*this), (void *) this, sizeof (*this), sizeof (*this), parent, purpose, cat);
}
db::mem_stat (stat, purpose, cat, m_description, true, (void *) this);
db::mem_stat (stat, purpose, cat, m_name, true, (void *) this);
db::mem_stat (stat, purpose, cat, m_original_file, true, (void *) this);
db::mem_stat (stat, purpose, cat, m_filename, true, (void *) this);
db::mem_stat (stat, purpose, cat, m_net_clusters, true, (void *) this);
db::mem_stat (stat, purpose, cat, mp_netlist, true, (void *) this);
db::mem_stat (stat, purpose, cat, m_dlrefs, true, (void *) this);
db::mem_stat (stat, purpose, cat, m_named_regions, true, (void *) this);
db::mem_stat (stat, purpose, cat, m_name_of_layer, true, (void *) this);
db::mem_stat (stat, purpose, cat, m_joined_net_names, true, (void *) this);
db::mem_stat (stat, purpose, cat, m_joined_net_names_per_cell, true, (void *) this);
db::mem_stat (stat, purpose, cat, m_joined_nets, true, (void *) this);
db::mem_stat (stat, purpose, cat, m_joined_nets_per_cell, true, (void *) this);
m_net_clusters.mem_stat (stat, MemStatistics::LayoutToNetlist, cat, true, (void *) this);
if (mp_netlist.get ()) {
db::mem_stat (stat, MemStatistics::Netlist, cat, *mp_netlist, false, (void *) this);
}
}
void LayoutToNetlist::set_netlist_extracted ()
{
m_netlist_extracted = true;
}
bool LayoutToNetlist::has_internal_layout () const
{
return mp_dss.get () && mp_dss->is_valid_layout_index (m_layout_index);
}
const db::Layout *LayoutToNetlist::internal_layout () const
{
ensure_layout ();
return &dss ().const_layout (m_layout_index);
}
const db::Cell *LayoutToNetlist::internal_top_cell () const
{
ensure_layout ();
return &dss ().const_initial_cell (m_layout_index);
}
db::Layout *LayoutToNetlist::internal_layout ()
{
ensure_layout ();
return &dss ().layout (m_layout_index);
}
db::Cell *LayoutToNetlist::internal_top_cell ()
{
ensure_layout ();
return &dss ().initial_cell (m_layout_index);
}
void LayoutToNetlist::ensure_layout () const
{
if (! dss ().is_valid_layout_index (m_layout_index)) {
LayoutToNetlist *non_const_this = const_cast<LayoutToNetlist *> (this);
non_const_this->dss ().make_layout (m_layout_index, db::RecursiveShapeIterator ());
// the dummy layer acts as a reference holder for the layout
unsigned int dummy_layer_index = non_const_this->dss ().layout (m_layout_index).insert_layer ();
non_const_this->m_dummy_layer = db::DeepLayer (& non_const_this->dss (), m_layout_index, dummy_layer_index);
}
}
std::string LayoutToNetlist::make_new_name (const std::string &stem)
{
int m = std::numeric_limits<int>::max () / 2 + 1;
int n = m;
std::string name;
while (m > 0) {
m /= 2;
name = stem;
name += std::string ("$");
name += tl::to_string (n - m);
if (m_named_regions.find (name) == m_named_regions.end ()) {
n -= m;
}
}
return name;
}
std::string LayoutToNetlist::name (unsigned int l) const
{
std::map<unsigned int, std::string>::const_iterator n = m_name_of_layer.find (l);
if (n != m_name_of_layer.end ()) {
return n->second;
} else {
return std::string ();
}
}
db::Region *LayoutToNetlist::layer_by_name (const std::string &name)
{
std::map<std::string, db::DeepLayer>::const_iterator l = m_named_regions.find (name);
if (l == m_named_regions.end ()) {
return 0;
} else {
return new db::Region (new db::DeepRegion (l->second));
}
}
db::Region *LayoutToNetlist::layer_by_index (unsigned int index)
{
std::map<unsigned int, std::string>::const_iterator n = m_name_of_layer.find (index);
if (n == m_name_of_layer.end ()) {
return 0;
} else {
return layer_by_name (n->second);
}
}
static db::DeepLayer dss_create_from_flat (db::DeepShapeStore &dss, const db::ShapeCollection &coll)
{
const db::Region *region = dynamic_cast<const db::Region *> (&coll);
const db::Texts *texts = dynamic_cast<const db::Texts *> (&coll);
if (region) {
return dss.create_from_flat (*region, true);
} else if (texts) {
return dss.create_from_flat (*texts);
} else {
tl_assert (false);
}
}
std::string LayoutToNetlist::name (const ShapeCollection &coll) const
{
std::map<unsigned int, std::string>::const_iterator n = m_name_of_layer.find (layer_of (coll));
if (n != m_name_of_layer.end ()) {
return n->second;
} else {
return std::string ();
}
}
void LayoutToNetlist::register_layer (const ShapeCollection &collection, const std::string &n)
{
if (m_named_regions.find (n) != m_named_regions.end ()) {
throw tl::Exception (tl::to_string (tr ("Layer name is already used: ")) + n);
}
db::DeepLayer dl;
if (m_is_flat) {
dl = dss_create_from_flat (dss (), collection);
} else {
db::DeepShapeCollectionDelegateBase *delegate = collection.get_delegate ()->deep ();
if (! delegate) {
dl = dss_create_from_flat (dss (), collection);
} else {
if (is_persisted (collection)) {
std::string prev_name = name (collection);
m_named_regions.erase (prev_name);
}
dl = delegate->deep_layer ();
}
}
m_named_regions [n] = dl;
m_name_of_layer [dl.layer ()] = n;
}
db::DeepLayer LayoutToNetlist::deep_layer_of (const db::ShapeCollection &coll) const
{
const db::DeepShapeCollectionDelegateBase *dr = coll.get_delegate ()->deep ();
if (! dr) {
std::pair<bool, db::DeepLayer> lff = dss ().layer_for_flat (coll);
if (lff.first) {
return lff.second;
} else {
throw (tl::Exception (tl::to_string (tr ("Non-hierarchical layers cannot be used in netlist extraction"))));
}
} else {
return dr->deep_layer ();
}
}
db::CellMapping LayoutToNetlist::make_cell_mapping_into (db::Layout &layout, db::Cell &cell, const std::vector<const db::Net *> *nets, bool with_device_cells)
{
std::set<db::cell_index_type> device_cells;
if (! with_device_cells && mp_netlist.get ()) {
for (db::Netlist::device_abstract_iterator i = mp_netlist->begin_device_abstracts (); i != mp_netlist->end_device_abstracts (); ++i) {
device_cells.insert (i->cell_index ());
}
}
std::set<db::cell_index_type> net_cells;
if (nets) {
// Compute the "included cell" list for cell_mapping_to_original: these are all cells which
// are required to represent the net hierarchically.
for (std::vector<const db::Net *>::const_iterator n = nets->begin (); n != nets->end (); ++n) {
const db::Net *net = *n;
db::cell_index_type net_cell = net->circuit ()->cell_index ();
if (net_cells.find (net_cell) == net_cells.end ()) {
net_cells.insert (net_cell);
internal_layout()->cell (net_cell).collect_caller_cells (net_cells);
}
}
}
return dss ().cell_mapping_to_original (m_layout_index, &layout, cell.cell_index (), &device_cells, nets ? &net_cells : 0);
}
db::CellMapping LayoutToNetlist::cell_mapping_into (db::Layout &layout, db::Cell &cell, const std::vector<const db::Net *> &nets, bool with_device_cells)
{
return make_cell_mapping_into (layout, cell, &nets, with_device_cells);
}
db::CellMapping LayoutToNetlist::cell_mapping_into (db::Layout &layout, db::Cell &cell, bool with_device_cells)
{
return make_cell_mapping_into (layout, cell, 0, with_device_cells);
}
db::CellMapping LayoutToNetlist::const_cell_mapping_into (const db::Layout &layout, const db::Cell &cell)
{
db::CellMapping cm;
if (layout.cells () == 1) {
cm.create_single_mapping (layout, cell.cell_index (), *internal_layout(), internal_top_cell()->cell_index ());
} else {
cm.create_from_geometry (layout, cell.cell_index (), *internal_layout(), internal_top_cell()->cell_index ());
}
return cm;
}
std::map<unsigned int, const db::Region *>
LayoutToNetlist::create_layermap (db::Layout &target_layout, int ln) const
{
std::map<unsigned int, const db::Region *> lm;
if (! internal_layout ()) {
return lm;
}
const db::Layout &source_layout = *internal_layout ();
std::set<unsigned int> layers_to_copy;
const db::Connectivity &conn = connectivity ();
for (db::Connectivity::layer_iterator layer = conn.begin_layers (); layer != conn.end_layers (); ++layer) {
layers_to_copy.insert (*layer);
}
for (std::set<unsigned int>::const_iterator l = layers_to_copy.begin (); l != layers_to_copy.end (); ++l) {
const db::LayerProperties &lp = source_layout.get_properties (*l);
unsigned int tl;
if (! lp.is_null ()) {
tl = target_layout.insert_layer (lp);
} else {
tl = target_layout.insert_layer (db::LayerProperties (ln++, 0, name (*l)));
}
lm.insert (std::make_pair (tl, const_cast<LayoutToNetlist *> (this)->layer_by_index (*l)));
}
return lm;
}
db::Netlist *LayoutToNetlist::netlist () const
{
return mp_netlist.get ();
}
db::Netlist *LayoutToNetlist::make_netlist ()
{
ensure_netlist ();
return mp_netlist.get ();
}
namespace
{
struct StopOnFirst { };
}
template <class Tr>
static bool deliver_shape (const db::NetShape &, StopOnFirst, const Tr &, db::properties_id_type)
{
return false;
}
template <class Tr>
static bool deliver_shape (const db::NetShape &s, db::Region &region, const Tr &tr, db::properties_id_type /*propid*/)
{
if (s.type () == db::NetShape::Polygon) {
db::PolygonRef pr = s.polygon_ref ();
if (pr.obj ().is_box ()) {
region.insert (pr.obj ().box ().transformed (pr.trans ()).transformed (tr));
} else {
region.insert (pr.obj ().transformed (pr.trans ()).transformed (tr));
}
}
return true;
}
template <class Tr>
static bool deliver_shape (const db::NetShape &s, db::Shapes &shapes, const Tr &tr, db::properties_id_type propid)
{
if (s.type () == db::NetShape::Polygon) {
db::PolygonRef pr = s.polygon_ref ();
if (pr.obj ().is_box ()) {
if (propid) {
shapes.insert (db::BoxWithProperties (pr.obj ().box ().transformed (pr.trans ()).transformed (tr), propid));
} else {
shapes.insert (pr.obj ().box ().transformed (pr.trans ()).transformed (tr));
}
} else {
db::Layout *layout = shapes.layout ();
if (layout) {
db::PolygonRef polygon_ref (pr.obj ().transformed (pr.trans ()).transformed (tr), layout->shape_repository ());
if (propid) {
shapes.insert (db::PolygonRefWithProperties (polygon_ref, propid));
} else {
shapes.insert (polygon_ref);
}
} else {
db::Polygon polygon (pr.obj ().transformed (pr.trans ()).transformed (tr));
if (propid) {
shapes.insert (db::PolygonWithProperties (polygon, propid));
} else {
shapes.insert (polygon);
}
}
}
} else if (s.type () == db::NetShape::Text) {
db::TextRef pr = s.text_ref ();
db::Layout *layout = shapes.layout ();
if (layout) {
db::TextRef text_ref (pr.obj ().transformed (pr.trans ()).transformed (tr), layout->shape_repository ());
if (propid) {
shapes.insert (db::TextRefWithProperties (text_ref, propid));
} else {
shapes.insert (text_ref);
}
} else {
db::Text text (pr.obj ().transformed (pr.trans ()).transformed (tr));
if (propid) {
shapes.insert (db::TextWithProperties (text, propid));
} else {
shapes.insert (text);
}
}
}
return true;
}
template <class To, class Shape>
static bool deliver_shapes_of_net_recursive (const db::Netlist * /*nl*/, const db::hier_clusters<Shape> &clusters, db::cell_index_type ci, size_t cid, unsigned int layer_id, const db::ICplxTrans &tr, To &to, db::properties_id_type propid)
{
// deliver the net shapes
for (db::recursive_cluster_shape_iterator<Shape> rci (clusters, layer_id, ci, cid); !rci.at_end (); ++rci) {
if (! deliver_shape (*rci, to, tr * rci.trans (), propid)) {
return false;
}
}
return true;
}
template <class To, class Shape>
static bool deliver_shapes_of_net (bool recursive, const db::Netlist *nl, const db::hier_clusters<Shape> &clusters, db::cell_index_type ci, size_t cid, const std::map<unsigned int, To *> &lmap, const db::ICplxTrans &tr, db::properties_id_type propid)
{
// shortcut
if (lmap.empty ()) {
return true;
}
const db::connected_clusters<Shape> &cc = clusters.clusters_per_cell (ci);
const db::local_cluster<Shape> &lc = cc.cluster_by_id (cid);
for (typename std::map<unsigned int, To *>::const_iterator l = lmap.begin (); l != lmap.end (); ++l) {
for (typename db::local_cluster<Shape>::shape_iterator s = lc.begin (l->first); ! s.at_end (); ++s) {
if (! deliver_shape (*s, *l->second, tr, propid)) {
return false;
}
}
}
const typename db::connected_clusters<Shape>::connections_type &conn = cc.connections_for_cluster (cid);
for (typename db::connected_clusters<Shape>::connections_type::const_iterator c = conn.begin (); c != conn.end (); ) {
db::cell_index_type cci = c->inst_cell_index ();
if (! recursive && (! nl || nl->circuit_by_cell_index (cci) || nl->device_abstract_by_cell_index (cci))) {
// skip this cell in non-recursive mode (and all following instances of the same cell too)
typename db::connected_clusters<Shape>::connections_type::const_iterator cc = c;
while (++cc != conn.end ()) {
if (cc->inst_cell_index () != cci) {
break;
}
}
c = cc;
continue;
}
if (! deliver_shapes_of_net (recursive, nl, clusters, cci, c->id (), lmap, tr * c->inst_trans (), propid)) {
return false;
}
++c;
}
return true;
}
void LayoutToNetlist::shapes_of_net (const db::Net &net, const db::Region &of_layer, bool recursive, db::Shapes &to, db::properties_id_type propid) const
{
unsigned int lid = layer_of (of_layer);
const db::Circuit *circuit = net.circuit ();
tl_assert (circuit != 0);
std::map<unsigned int, db::Shapes *> lmap;
lmap [lid] = &to;
deliver_shapes_of_net (recursive, mp_netlist.get (), m_net_clusters, circuit->cell_index (), net.cluster_id (), lmap, db::ICplxTrans (), propid);
}
db::Region *LayoutToNetlist::shapes_of_net (const db::Net &net, const db::Region &of_layer, bool recursive) const
{
unsigned int lid = layer_of (of_layer);
const db::Circuit *circuit = net.circuit ();
tl_assert (circuit != 0);
std::unique_ptr<db::Region> res (new db::Region ());
std::map<unsigned int, db::Region *> lmap;
lmap [lid] = res.get ();
deliver_shapes_of_net (recursive, mp_netlist.get (), m_net_clusters, circuit->cell_index (), net.cluster_id (), lmap, db::ICplxTrans (), 0);
return res.release ();
}
void
LayoutToNetlist::build_net_rec (const db::Net &net, db::Layout &target, db::Cell &target_cell, const std::map<unsigned int, const db::Region *> &lmap, const char *net_cell_name_prefix, db::properties_id_type netname_propid, BuildNetHierarchyMode hier_mode, const char *cell_name_prefix, const char *device_cell_name_prefix, cell_reuse_table_type &reuse_table, const db::ICplxTrans &tr) const
{
const db::Circuit *circuit = net.circuit ();
tl_assert (circuit != 0);
build_net_rec (circuit->cell_index (), net.cluster_id (), target, target_cell, lmap, &net, net_cell_name_prefix, netname_propid, hier_mode, cell_name_prefix, device_cell_name_prefix, reuse_table, tr);
}
void
LayoutToNetlist::build_net_rec (db::cell_index_type ci, size_t cid, db::Layout &target, db::Cell &tc, const std::map<unsigned int, const db::Region *> &lmap, const db::Net *net, const char *net_cell_name_prefix, db::properties_id_type netname_propid, BuildNetHierarchyMode hier_mode, const char *circuit_cell_name_prefix, const char *device_cell_name_prefix, cell_reuse_table_type &reuse_table, const db::ICplxTrans &tr) const
{
db::Cell *target_cell = &tc;
if (net_cell_name_prefix) {
const db::connected_clusters<db::NetShape> &ccl = m_net_clusters.clusters_per_cell (ci);
bool any_connections = circuit_cell_name_prefix && ! ccl.connections_for_cluster (cid).empty ();
if (! any_connections) {
StopOnFirst sof;
std::map<unsigned int, StopOnFirst *> sof_lmap;
for (std::map<unsigned int, const db::Region *>::const_iterator l = lmap.begin (); l != lmap.end (); ++l) {
if (l->second) {
sof_lmap.insert (std::make_pair (layer_of (*l->second), &sof));
}
}
bool consider_cell = ! deliver_shapes_of_net (hier_mode == BNH_Flatten, mp_netlist.get (), m_net_clusters, ci, cid, sof_lmap, tr, 0);
if (! consider_cell) {
// shortcut if cell is empty -> no net cell will be produced
return;
}
}
// make a specific cell for the net if requested
target_cell = &target.cell (target.add_cell ((std::string (net_cell_name_prefix) + net->expanded_name ()).c_str ()));
tc.insert (db::CellInstArray (db::CellInst (target_cell->cell_index ()), db::Trans ()));
}
std::map<unsigned int, db::Shapes *> target_lmap;
for (std::map<unsigned int, const db::Region *>::const_iterator l = lmap.begin (); l != lmap.end (); ++l) {
if (l->second) {
target_lmap.insert (std::make_pair (layer_of (*l->second), &target_cell->shapes (l->first)));
}
}
deliver_shapes_of_net (hier_mode == BNH_Flatten, mp_netlist.get (), m_net_clusters, ci, cid, target_lmap, tr, netname_propid);
if (hier_mode != BNH_SubcircuitCells && ! device_cell_name_prefix) {
return;
}
// NOTE: we propagate the magnification part of tr down, but keep the rotation/translation part in the instance
// (we want to avoid magnified instances)
db::ICplxTrans tr_wo_mag = tr * db::ICplxTrans (1.0 / tr.mag ());
db::ICplxTrans tr_mag (tr.mag ());
const db::connected_clusters<db::NetShape> &clusters = m_net_clusters.clusters_per_cell (ci);
typedef db::connected_clusters<db::NetShape>::connections_type connections_type;
const connections_type &connections = clusters.connections_for_cluster (cid);
for (connections_type::const_iterator c = connections.begin (); c != connections.end (); ++c) {
db::cell_index_type subci = c->inst_cell_index ();
size_t subcid = c->id ();
CellReuseTableKey cmap_key (subci, netname_propid, subcid);
cell_reuse_table_type::const_iterator cm = reuse_table.find (cmap_key);
if (cm == reuse_table.end ()) {
const char *name_prefix = 0;
if (mp_netlist->device_abstract_by_cell_index (subci)) {
name_prefix = device_cell_name_prefix;
} else {
name_prefix = circuit_cell_name_prefix;
}
if (name_prefix) {
std::string cell_name = internal_layout ()->cell_name (subci);
db::cell_index_type target_ci = target.add_cell ((std::string (name_prefix) + cell_name).c_str ());
cm = reuse_table.insert (std::make_pair (cmap_key, target_ci)).first;
build_net_rec (subci, subcid, target, target.cell (target_ci), lmap, 0, 0, netname_propid, hier_mode, circuit_cell_name_prefix, device_cell_name_prefix, reuse_table, tr_mag);
} else {
cm = reuse_table.insert (std::make_pair (cmap_key, std::numeric_limits<db::cell_index_type>::max ())).first;
}
}
if (cm->second != std::numeric_limits<db::cell_index_type>::max ()) {
db::CellInstArray ci (db::CellInst (cm->second), tr_wo_mag * c->inst_trans ());
ci.transform_into (tr_mag);
target_cell->insert (ci);
}
}
}
db::properties_id_type
LayoutToNetlist::make_netname_propid (db::Layout &ly, const tl::Variant &netname_prop, const db::Net &net) const
{
if (! netname_prop.is_nil () || net.begin_properties () != net.end_properties ()) {
db::PropertiesRepository::properties_set propset;
// add the user properties too (TODO: make this configurable?)
for (db::Net::property_iterator p = net.begin_properties (); p != net.end_properties (); ++p) {
db::property_names_id_type key_propnameid = ly.properties_repository ().prop_name_id (p->first);
propset.insert (std::make_pair (key_propnameid, p->second));
}
if (! netname_prop.is_nil ()) {
db::property_names_id_type name_propnameid = ly.properties_repository ().prop_name_id (netname_prop);
propset.insert (std::make_pair (name_propnameid, tl::Variant (net.expanded_name ())));
}
return ly.properties_repository ().properties_id (propset);
} else {
return 0;
}
}
void
LayoutToNetlist::build_net (const db::Net &net, db::Layout &target, db::Cell &target_cell, const std::map<unsigned int, const db::Region *> &lmap, const tl::Variant &netname_prop, BuildNetHierarchyMode hier_mode, const char *cell_name_prefix, const char *device_cell_name_prefix) const
{
if (! m_netlist_extracted) {
throw tl::Exception (tl::to_string (tr ("The netlist has not been extracted yet")));
}
cell_reuse_table_type cell_reuse_table;
double mag = internal_layout ()->dbu () / target.dbu ();
db::properties_id_type netname_propid = make_netname_propid (target, netname_prop, net);
build_net_rec (net, target, target_cell, lmap, 0, netname_propid, hier_mode, cell_name_prefix, device_cell_name_prefix, cell_reuse_table, db::ICplxTrans (mag));
}
void
LayoutToNetlist::build_all_nets (const db::CellMapping &cmap, db::Layout &target, const std::map<unsigned int, const db::Region *> &lmap, const char *net_cell_name_prefix, const tl::Variant &netname_prop, BuildNetHierarchyMode hier_mode, const char *circuit_cell_name_prefix, const char *device_cell_name_prefix) const
{
build_nets (0, cmap, target, lmap, net_cell_name_prefix, netname_prop, hier_mode, circuit_cell_name_prefix, device_cell_name_prefix);
}
void
LayoutToNetlist::build_net_rec (const db::Net &net, db::Layout &target, db::cell_index_type circuit_cell, const db::CellMapping &cmap, const std::map<unsigned int, const db::Region *> &lmap, const char *net_cell_name_prefix, db::properties_id_type netname_propid, BuildNetHierarchyMode hier_mode, const char *cell_name_prefix, const char *device_cell_name_prefix, cell_reuse_table_type &reuse_table, const ICplxTrans &tr) const
{
if (! cmap.has_mapping (circuit_cell)) {
const db::Cell &cc = internal_layout ()->cell (circuit_cell);
for (db::Cell::parent_inst_iterator p = cc.begin_parent_insts (); ! p.at_end (); ++p) {
db::CellInstArray ci = p->child_inst ().cell_inst ();
for (db::CellInstArray::iterator ia = ci.begin (); ! ia.at_end(); ++ia) {
db::ICplxTrans tr_parent = ci.complex_trans (*ia) * tr;
build_net_rec (net, target, p->parent_cell_index (), cmap, lmap, net_cell_name_prefix, netname_propid, hier_mode, cell_name_prefix, device_cell_name_prefix, reuse_table, tr_parent);
}
}
} else {
double mag = internal_layout ()->dbu () / target.dbu ();
db::cell_index_type target_ci = cmap.cell_mapping (circuit_cell);
build_net_rec (net, target, target.cell (target_ci), lmap, net_cell_name_prefix, netname_propid, hier_mode, cell_name_prefix, device_cell_name_prefix, reuse_table, db::ICplxTrans (mag) * tr);
}
}
void
LayoutToNetlist::build_nets (const std::vector<const db::Net *> *nets, const db::CellMapping &cmap, db::Layout &target, const std::map<unsigned int, const db::Region *> &lmap, const char *net_cell_name_prefix, const tl::Variant &netname_prop, BuildNetHierarchyMode hier_mode, const char *circuit_cell_name_prefix, const char *device_cell_name_prefix) const
{
if (! m_netlist_extracted) {
throw tl::Exception (tl::to_string (tr ("The netlist has not been extracted yet")));
}
std::set<const db::Net *> net_set;
if (nets) {
net_set.insert (nets->begin (), nets->end ());
}
cell_reuse_table_type cell_reuse_table;
const db::Netlist *netlist = mp_netlist.get ();
for (db::Netlist::const_circuit_iterator c = netlist->begin_circuits (); c != netlist->end_circuits (); ++c) {
bool is_top_circuit = c->begin_parents () == c->end_parents ();
for (db::Circuit::const_net_iterator n = c->begin_nets (); n != c->end_nets (); ++n) {
// exlude local nets in recursive mode except if they are explicitly selected
if (! nets && hier_mode != BNH_Disconnected && ! is_top_circuit && n->pin_count () > 0) {
continue;
}
if (! nets || net_set.find (n.operator-> ()) != net_set.end ()) {
db::properties_id_type netname_propid = make_netname_propid (target, netname_prop, *n);
build_net_rec (*n, target, c->cell_index (), cmap, lmap, net_cell_name_prefix, netname_propid, hier_mode, circuit_cell_name_prefix, device_cell_name_prefix, cell_reuse_table, db::ICplxTrans ());
}
}
if (hier_mode != BNH_Disconnected && ! nets) {
// With recursive nets we skip nets in subcircuits which are connected upwards. This means, nets will
// get lost if there is no connection to this pin from the outside. Hence we need to deliver nets from
// subcircuits as part of the circuit which calls the subcircuit - but NOT in a subcircuit cell, because
// this will just apply to nets from certain instances. But the net cell name will be formed as "subcircuit:net"
//
// In explicit selection mode we don't care about this as nets are explicitly taken or not.
const db::Circuit &circuit = *c;
for (db::Circuit::const_subcircuit_iterator sc = circuit.begin_subcircuits (); sc != circuit.end_subcircuits (); ++sc) {
const db::SubCircuit &subcircuit = *sc;
for (db::Circuit::const_pin_iterator p = subcircuit.circuit_ref ()->begin_pins (); p != subcircuit.circuit_ref ()->end_pins (); ++p) {
if (! subcircuit.net_for_pin (p->id ())) {
const db::Net *n = subcircuit.circuit_ref ()->net_for_pin (p->id ());
if (n) {
double dbu = target.dbu ();
db::ICplxTrans tr = db::CplxTrans (dbu).inverted () * subcircuit.trans () * db::CplxTrans (dbu);
db::properties_id_type netname_propid = make_netname_propid (target, netname_prop, *n);
if (net_cell_name_prefix) {
std::string ncn = std::string (net_cell_name_prefix) + subcircuit.expanded_name () + ":";
build_net_rec (*n, target, c->cell_index (), cmap, lmap, ncn.c_str (), netname_propid, hier_mode, circuit_cell_name_prefix, device_cell_name_prefix, cell_reuse_table, tr);
} else {
build_net_rec (*n, target, c->cell_index (), cmap, lmap, net_cell_name_prefix, netname_propid, hier_mode, circuit_cell_name_prefix, device_cell_name_prefix, cell_reuse_table, tr);
}
}
}
}
}
}
}
}
db::Net *LayoutToNetlist::probe_net (const db::Region &of_region, const db::DPoint &point, std::vector<db::SubCircuit *> *sc_path_out, db::Circuit *initial_circuit)
{
return probe_net (of_region, db::CplxTrans (internal_layout ()->dbu ()).inverted () * point, sc_path_out, initial_circuit);
}
size_t LayoutToNetlist::search_net (const db::ICplxTrans &trans, const db::Cell *cell, const db::local_cluster<db::NetShape> &test_cluster, std::vector<db::InstElement> &rev_inst_path)
{
db::Box local_box = trans * test_cluster.bbox ();
const db::local_clusters<db::NetShape> &lcc = net_clusters ().clusters_per_cell (cell->cell_index ());
for (db::local_clusters<db::NetShape>::touching_iterator i = lcc.begin_touching (local_box); ! i.at_end (); ++i) {
const db::local_cluster<db::NetShape> &lc = *i;
if (lc.interacts (test_cluster, trans, m_conn)) {
return lc.id ();
}
}
for (db::Cell::touching_iterator i = cell->begin_touching (local_box); ! i.at_end (); ++i) {
for (db::CellInstArray::iterator ia = i->begin_touching (local_box, internal_layout ()); ! ia.at_end (); ++ia) {
db::ICplxTrans trans_inst = i->complex_trans (*ia);
db::ICplxTrans t = trans_inst.inverted () * trans;
size_t cluster_id = search_net (t, &internal_layout ()->cell (i->cell_index ()), test_cluster, rev_inst_path);
if (cluster_id > 0) {
rev_inst_path.push_back (db::InstElement (*i, ia));
return cluster_id;
}
}
}
return 0;
}
db::Net *LayoutToNetlist::probe_net (const db::Region &of_region, const db::Point &point, std::vector<db::SubCircuit *> *sc_path_out, db::Circuit *initial_circuit)
{
if (! m_netlist_extracted) {
throw tl::Exception (tl::to_string (tr ("The netlist has not been extracted yet")));
}
tl_assert (mp_netlist.get ());
db::CplxTrans dbu_trans (internal_layout ()->dbu ());
db::VCplxTrans dbu_trans_inv = dbu_trans.inverted ();
unsigned int layer = layer_of (of_region);
const db::Cell *top_cell = internal_top_cell ();
if (initial_circuit && internal_layout ()->is_valid_cell_index (initial_circuit->cell_index ())) {
top_cell = &internal_layout ()->cell (initial_circuit->cell_index ());
}
if (! top_cell) {
return 0;
}
// Prepare a test cluster
db::Box box (point - db::Vector (1, 1), point + db::Vector (1, 1));
db::GenericRepository sr;
db::local_cluster<db::NetShape> test_cluster;
test_cluster.add (db::PolygonRef (db::Polygon (box), sr), layer);
std::vector<db::InstElement> inst_path;
size_t cluster_id = search_net (db::ICplxTrans (), top_cell, test_cluster, inst_path);
if (cluster_id > 0) {
// search_net delivers the path in reverse order
std::reverse (inst_path.begin (), inst_path.end ());
std::vector<db::cell_index_type> cell_indexes;
cell_indexes.reserve (inst_path.size () + 1);
cell_indexes.push_back (top_cell->cell_index ());
for (std::vector<db::InstElement>::const_iterator i = inst_path.begin (); i != inst_path.end (); ++i) {
cell_indexes.push_back (i->inst_ptr.cell_index ());
}
db::Circuit *circuit = 0;
db::Net *net = 0;
while (true) {
circuit = mp_netlist->circuit_by_cell_index (cell_indexes.back ());
if (circuit) {
net = circuit->net_by_cluster_id (cluster_id);
if (net) {
break;
}
}
// The net might have been propagated to the parent. So move there.
if (inst_path.empty ()) {
return 0;
}
db::ClusterInstance ci (cluster_id, inst_path.back ());
cell_indexes.pop_back ();
inst_path.pop_back ();
cluster_id = m_net_clusters.clusters_per_cell (cell_indexes.back ()).find_cluster_with_connection (ci);
// no parent cluster found
if (cluster_id == 0) {
return 0;
}
}
std::vector<db::SubCircuit *> sc_path;
db::Net *topmost_net = net;
// follow the path up in the net hierarchy using the transformation and the upper cell index as the
// guide line
while (circuit && ! inst_path.empty ()) {
cell_indexes.pop_back ();
const db::Pin *pin = 0;
if (net && net->pin_count () > 0) {
pin = circuit->pin_by_id (net->begin_pins ()->pin_id ());
tl_assert (pin != 0);
}
db::DCplxTrans dtrans = dbu_trans * inst_path.back ().complex_trans () * dbu_trans_inv;
// try to find a parent circuit which connects to this net
db::Circuit *upper_circuit = 0;
db::SubCircuit *subcircuit = 0;
db::Net *upper_net = 0;
for (db::Circuit::refs_iterator r = circuit->begin_refs (); r != circuit->end_refs () && ! upper_circuit; ++r) {
if (r->trans ().equal (dtrans) && r->circuit () && r->circuit ()->cell_index () == cell_indexes.back ()) {
subcircuit = r.operator-> ();
if (pin) {
upper_net = subcircuit->net_for_pin (pin->id ());
}
upper_circuit = subcircuit->circuit ();
}
}
net = upper_net;
if (upper_net) {
topmost_net = upper_net;
} else {
sc_path.push_back (subcircuit);
}
circuit = upper_circuit;
inst_path.pop_back ();
}
if (sc_path_out) {
std::reverse (sc_path.begin (), sc_path.end ());
*sc_path_out = sc_path;
}
return topmost_net;
} else {
return 0;
}
}
namespace
{
class PolygonAreaAndPerimeterCollector
: public db::PolygonSink
{
public:
typedef db::Polygon polygon_type;
typedef polygon_type::perimeter_type perimeter_type;
typedef polygon_type::area_type area_type;
PolygonAreaAndPerimeterCollector ()
: m_area (0), m_perimeter (0)
{ }
area_type area () const
{
return m_area;
}
perimeter_type perimeter () const
{
return m_perimeter;
}
virtual void put (const db::Polygon &poly)
{
m_area += poly.area ();
m_perimeter += poly.perimeter ();
}
public:
area_type m_area;
perimeter_type m_perimeter;
};
}
static void
compute_area_and_perimeter_of_net_shapes (const db::hier_clusters<db::NetShape> &clusters, db::cell_index_type ci, size_t cid, unsigned int layer_id, db::Polygon::area_type &area, db::Polygon::perimeter_type &perimeter)
{
db::EdgeProcessor ep;
// count vertices and reserve space
size_t n = 0;
for (db::recursive_cluster_shape_iterator<db::NetShape> rci (clusters, layer_id, ci, cid); !rci.at_end (); ++rci) {
n += rci->polygon_ref ().vertices ();
}
ep.reserve (n);
size_t p = 0;
for (db::recursive_cluster_shape_iterator<db::NetShape> rci (clusters, layer_id, ci, cid); !rci.at_end (); ++rci) {
ep.insert (rci.trans () * rci->polygon_ref (), ++p);
}
PolygonAreaAndPerimeterCollector ap_collector;
db::PolygonGenerator pg (ap_collector, false);
db::SimpleMerge op;
ep.process (pg, op);
area = ap_collector.area ();
perimeter = ap_collector.perimeter ();
}
static void
get_merged_shapes_of_net (const db::hier_clusters<db::NetShape> &clusters, db::cell_index_type ci, size_t cid, unsigned int layer_id, db::Shapes &shapes)
{
db::EdgeProcessor ep;
// count vertices and reserve space
size_t n = 0;
for (db::recursive_cluster_shape_iterator<db::NetShape> rci (clusters, layer_id, ci, cid); !rci.at_end (); ++rci) {
n += rci->polygon_ref ().vertices ();
}
ep.reserve (n);
size_t p = 0;
for (db::recursive_cluster_shape_iterator<db::NetShape> rci (clusters, layer_id, ci, cid); !rci.at_end (); ++rci) {
ep.insert (rci.trans () * rci->polygon_ref (), ++p);
}
db::ShapeGenerator sg (shapes);
db::PolygonGenerator pg (sg, false);
db::SimpleMerge op;
ep.process (pg, op);
}
db::Region LayoutToNetlist::antenna_check (const db::Region &gate, double gate_area_factor, double gate_perimeter_factor, const db::Region &metal, double metal_area_factor, double metal_perimeter_factor, double ratio, const std::vector<std::pair<const db::Region *, double> > &diodes)
{
// TODO: that's basically too much .. we only need the clusters
if (! m_netlist_extracted) {
throw tl::Exception (tl::to_string (tr ("The netlist has not been extracted yet")));
}
db::Layout &ly = dss ().layout (m_layout_index);
double dbu = ly.dbu ();
db::DeepLayer dl (&dss (), m_layout_index, ly.insert_layer ());
for (db::Layout::bottom_up_const_iterator cid = ly.begin_bottom_up (); cid != ly.end_bottom_up (); ++cid) {
const connected_clusters<db::NetShape> &clusters = m_net_clusters.clusters_per_cell (*cid);
if (clusters.empty ()) {
continue;
}
for (connected_clusters<db::NetShape>::all_iterator c = clusters.begin_all (); ! c.at_end (); ++c) {
if (! clusters.is_root (*c)) {
continue;
}
db::Polygon::area_type agate_int = 0;
db::Polygon::perimeter_type pgate_int = 0;
compute_area_and_perimeter_of_net_shapes (m_net_clusters, *cid, *c, layer_of (gate), agate_int, pgate_int);
db::Polygon::area_type ametal_int = 0;
db::Polygon::perimeter_type pmetal_int = 0;
compute_area_and_perimeter_of_net_shapes (m_net_clusters, *cid, *c, layer_of (metal), ametal_int, pmetal_int);
double agate = 0.0;
if (fabs (gate_area_factor) > 1e-6) {
agate += agate_int * dbu * dbu * gate_area_factor;
}
if (fabs (gate_perimeter_factor) > 1e-6) {
agate += pgate_int * dbu * gate_perimeter_factor;
}
double ametal = 0.0;
if (fabs (metal_area_factor) > 1e-6) {
ametal += ametal_int * dbu * dbu * metal_area_factor;
}
if (fabs (metal_perimeter_factor) > 1e-6) {
ametal += pmetal_int * dbu * metal_perimeter_factor;
}
double r = ratio;
bool skip = false;
for (std::vector<std::pair<const db::Region *, double> >::const_iterator d = diodes.begin (); d != diodes.end () && ! skip; ++d) {
db::Polygon::area_type adiode_int = 0;
db::Polygon::perimeter_type pdiode_int = 0;
compute_area_and_perimeter_of_net_shapes (m_net_clusters, *cid, *c, layer_of (*d->first), adiode_int, pdiode_int);
if (fabs (d->second) < db::epsilon) {
if (adiode_int > 0) {
skip = true;
}
} else {
r += adiode_int * dbu * dbu * d->second;
}
}
if (! skip) {
if (tl::verbosity () >= 50) {
tl::info << "cell [" << ly.cell_name (*cid) << "]: agate=" << tl::to_string (agate) << ", ametal=" << tl::to_string (ametal) << ", r=" << tl::sprintf ("%.12g", r);
}
if (agate > dbu * dbu && ametal / agate > r + db::epsilon) {
db::Shapes &shapes = ly.cell (*cid).shapes (dl.layer ());
get_merged_shapes_of_net (m_net_clusters, *cid, *c, layer_of (metal), shapes);
}
}
}
}
return db::Region (new db::DeepRegion (dl));
}
void LayoutToNetlist::save (const std::string &path, bool short_format)
{
tl::OutputStream stream (path);
db::LayoutToNetlistStandardWriter writer (stream, short_format);
set_filename (path);
writer.write (this);
}
void LayoutToNetlist::load (const std::string &path)
{
tl::InputStream stream (path);
db::LayoutToNetlistStandardReader reader (stream);
set_filename (path);
set_name (stream.filename ());
reader.read (this);
}
db::LayoutToNetlist *LayoutToNetlist::create_from_file (const std::string &path)
{
std::unique_ptr<db::LayoutToNetlist> db;
// TODO: generic concept to detect format
std::string first_line;
{
tl::InputStream stream (path);
tl::TextInputStream text_stream (stream);
first_line = text_stream.get_line ();
}
if (first_line.find (db::lvs_std_format::keys<false>::lvs_magic_string) == 0) {
db::LayoutVsSchematic *lvs_db = new db::LayoutVsSchematic ();
db.reset (lvs_db);
lvs_db->load (path);
} else {
db.reset (new db::LayoutToNetlist ());
db->load (path);
}
return db.release ();
}
void LayoutToNetlist::set_generator (const std::string &g)
{
m_generator = g;
}
}