klayout/testdata/ruby/dbLayoutToNetlist.rb

1035 lines
38 KiB
Ruby

# encoding: UTF-8
# KLayout Layout Viewer
# Copyright (C) 2006-2024 Matthias Koefferlein
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 51 Franklin St, Fifth Floor, Boston, MA 02110-1301 USA
if !$:.member?(File::dirname($0))
$:.push(File::dirname($0))
end
load("test_prologue.rb")
class DBLayoutToNetlist_TestClass < TestBase
def test_1_Basic
ly = RBA::Layout::new
ly.read(File.join($ut_testsrc, "testdata", "algo", "device_extract_l1.gds"))
l2n = RBA::LayoutToNetlist::new(RBA::RecursiveShapeIterator::new(ly, ly.top_cell, []))
l2n.threads = 17
l2n.max_vertex_count = 42
l2n.area_ratio = 7.5
assert_equal(l2n.threads, 17)
assert_equal(l2n.max_vertex_count, 42)
assert_equal(l2n.area_ratio, 7.5)
r = l2n.make_layer(ly.layer(6, 0))
assert_not_equal(l2n.internal_layout.object_id, ly.object_id)
assert_equal(l2n.internal_layout.top_cell.name, ly.top_cell.name)
assert_equal(l2n.internal_top_cell.name, ly.top_cell.name)
assert_not_equal(l2n.layer_of(r), ly.layer(6, 0)) # would be a strange coincidence ...
cm = l2n.const_cell_mapping_into(ly, ly.top_cell)
(0 .. l2n.internal_layout.cells - 1).each do |ci|
assert_equal(l2n.internal_layout.cell(ci).name, ly.cell(cm.cell_mapping(ci)).name)
end
ly2 = RBA::Layout::new
ly2.create_cell(ly.top_cell.name)
cm = l2n.cell_mapping_into(ly2, ly2.top_cell)
assert_equal(ly2.cells, ly.cells)
(0 .. l2n.internal_layout.cells - 1).each do |ci|
assert_equal(l2n.internal_layout.cell(ci).name, ly2.cell(cm.cell_mapping(ci)).name)
end
rmetal1 = l2n.make_polygon_layer( ly.layer(6, 0), "metal1" )
bulk_id = l2n.connect_global(rmetal1, "BULK")
assert_equal(l2n.global_net_name(bulk_id), "BULK")
# cell mapping with nets
l2n = RBA::LayoutToNetlist::new
l2n.read(File.join($ut_testsrc, "testdata", "algo", "l2n_reader_in.txt"))
nets = [
l2n.netlist.circuit_by_name("RINGO").net_by_name("VSS"),
l2n.netlist.circuit_by_name("RINGO").net_by_name("VDD")
]
ly2 = RBA::Layout::new
ly2.create_cell("TOP")
cm = l2n.cell_mapping_into(ly2, ly2.top_cell, nets)
map = (0 .. l2n.internal_layout.cells - 1).collect do |ci|
cm.has_mapping?(ci) && (l2n.internal_layout.cell(ci).name + "=>" + ly2.cell(cm.cell_mapping(ci)).name)
end
assert_equal(map.select { |i| i }.join(","), "RINGO=>TOP")
nets = [
l2n.netlist.circuit_by_name("INV2").net_by_name("IN"),
]
ly2 = RBA::Layout::new
ly2.create_cell("TOP")
cm = l2n.cell_mapping_into(ly2, ly2.top_cell, nets)
map = (0 .. l2n.internal_layout.cells - 1).collect do |ci|
cm.has_mapping?(ci) && (l2n.internal_layout.cell(ci).name + "=>" + ly2.cell(cm.cell_mapping(ci)).name)
end
assert_equal(map.select { |i| i }.join(","), "RINGO=>TOP,INV2=>INV2")
# extended attributes for extract_netlist
l2n = RBA::LayoutToNetlist::new
l2n.include_floating_subcircuits = true
assert_equal(l2n.include_floating_subcircuits, true)
l2n.include_floating_subcircuits = false
assert_equal(l2n.include_floating_subcircuits, false)
assert_equal(l2n.dump_joined_nets, "")
l2n.join_nets([ "VDD", "NWELL" ])
l2n.join_nets([ "VSS", "BULK" ])
assert_equal(l2n.dump_joined_nets, "NWELL+VDD,BULK+VSS")
l2n.clear_join_nets
assert_equal(l2n.dump_joined_nets, "")
assert_equal(l2n.dump_joined_nets_per_cell, "")
l2n.join_nets("INV*", [ "VDD", "NWELL" ])
l2n.join_nets("ND2*", [ "VSS", "BULK" ])
assert_equal(l2n.dump_joined_nets_per_cell, "INV*:NWELL+VDD,ND2*:BULK+VSS")
l2n.clear_join_nets
assert_equal(l2n.dump_joined_nets, "")
assert_equal(l2n.dump_joined_nets_per_cell, "")
assert_equal(l2n.dump_joined_net_names, "")
l2n.join_net_names("VDD")
l2n.join_net_names("VSS")
assert_equal(l2n.dump_joined_net_names, "VDD,VSS")
l2n.clear_join_net_names
assert_equal(l2n.dump_joined_net_names, "")
assert_equal(l2n.dump_joined_net_names_per_cell, "")
l2n.join_net_names("INV*", "VDD")
l2n.join_net_names("ND2*", "VSS")
assert_equal(l2n.dump_joined_net_names_per_cell, "INV*:VDD,ND2*:VSS")
l2n.clear_join_net_names
assert_equal(l2n.dump_joined_net_names, "")
assert_equal(l2n.dump_joined_net_names_per_cell, "")
end
def test_2_ShapesFromNet
ly = RBA::Layout::new
ly.read(File.join($ut_testsrc, "testdata", "algo", "device_extract_l1_with_inv_nodes.gds"))
l2n = RBA::LayoutToNetlist::new(RBA::RecursiveShapeIterator::new(ly, ly.top_cell, []))
# only plain backend connectivity
rmetal1 = l2n.make_polygon_layer( ly.layer(6, 0), "metal1" )
rmetal1_lbl = l2n.make_text_layer( ly.layer(6, 1), "metal1_lbl" )
rvia1 = l2n.make_polygon_layer( ly.layer(7, 0), "via1" )
rmetal2 = l2n.make_polygon_layer( ly.layer(8, 0), "metal2" )
rmetal2_lbl = l2n.make_text_layer( ly.layer(8, 1), "metal2_lbl" )
# Intra-layer
l2n.connect(rmetal1)
l2n.connect(rvia1)
l2n.connect(rmetal2)
# Inter-layer
l2n.connect(rmetal1, rvia1)
l2n.connect(rvia1, rmetal2)
l2n.connect(rmetal1, rmetal1_lbl) # attaches labels
l2n.connect(rmetal2, rmetal2_lbl) # attaches labels
# Perform netlist extraction
l2n.extract_netlist
nl_string = l2n.netlist.to_s
assert_equal(nl_string, <<END)
circuit TRANS ($1=$1,$2=$2);
end;
circuit INV2 (OUT=OUT,$2=$3,$3=$4);
subcircuit TRANS $1 ($1=$4,$2=OUT);
subcircuit TRANS $2 ($1=$3,$2=OUT);
subcircuit TRANS $3 ($1=$2,$2=$4);
subcircuit TRANS $4 ($1=$2,$2=$3);
end;
circuit RINGO ();
subcircuit INV2 $1 (OUT='FB,OSC',$2=VSS,$3=VDD);
subcircuit INV2 $2 (OUT=$I20,$2=VSS,$3=VDD);
subcircuit INV2 $3 (OUT=$I19,$2=VSS,$3=VDD);
subcircuit INV2 $4 (OUT=$I21,$2=VSS,$3=VDD);
subcircuit INV2 $5 (OUT=$I22,$2=VSS,$3=VDD);
subcircuit INV2 $6 (OUT=$I23,$2=VSS,$3=VDD);
subcircuit INV2 $7 (OUT=$I24,$2=VSS,$3=VDD);
subcircuit INV2 $8 (OUT=$I25,$2=VSS,$3=VDD);
subcircuit INV2 $9 (OUT=$I26,$2=VSS,$3=VDD);
subcircuit INV2 $10 (OUT=$I27,$2=VSS,$3=VDD);
end;
END
assert_equal(l2n.probe_net(rmetal2, RBA::DPoint::new(0.0, 1.8)).to_s, "RINGO:FB,OSC")
sc_path = []
assert_equal(l2n.probe_net(rmetal2, RBA::DPoint::new(0.0, 1.8), sc_path).to_s, "RINGO:FB,OSC")
assert_equal(sc_path.size, 0)
assert_equal(l2n.probe_net(rmetal2, RBA::DPoint::new(-2.0, 1.8)).inspect, "nil")
n = l2n.probe_net(rmetal1, RBA::Point::new(2600, 1000), nil)
assert_equal(n.to_s, "INV2:$2")
sc_path = []
n = l2n.probe_net(rmetal1, RBA::Point::new(2600, 1000), sc_path)
assert_equal(n.to_s, "INV2:$2")
assert_equal(sc_path.size, 1)
assert_equal(sc_path.collect(&:expanded_name).join(","), "$2")
assert_equal(sc_path.collect(&:trans).inject(&:*).to_s, "r0 *1 2.64,0")
assert_equal(l2n.shapes_of_net(n, rmetal1, true).to_s,
"(-980,-420;-980,2420;-620,2420;-620,-420);(-800,820;-800,1180;580,1180;580,820);(-980,2420;-980,3180;-620,3180;-620,2420);(-980,-380;-980,380;-620,380;-620,-380)")
shapes = RBA::Shapes::new
l2n.shapes_of_net(n, rmetal1, true, shapes)
r = RBA::Region::new
shapes.each { |s| r.insert(s.polygon) }
assert_equal(r.to_s,
"(-980,-420;-980,2420;-620,2420;-620,-420);(-800,820;-800,1180;580,1180;580,820);(-980,2420;-980,3180;-620,3180;-620,2420);(-980,-380;-980,380;-620,380;-620,-380)")
assert_equal(l2n.is_extracted?, true)
l2n.reset_extracted
assert_equal(l2n.is_extracted?, false)
assert_equal(l2n.netlist.inspect, "nil")
l2n.extract_netlist
assert_equal(l2n.is_extracted?, true)
assert_equal(l2n.netlist.to_s, nl_string)
end
def test_10_LayoutToNetlistExtractionWithoutDevices
ly = RBA::Layout::new
ly.read(File.join($ut_testsrc, "testdata", "algo", "device_extract_l1.gds"))
l2n = RBA::LayoutToNetlist::new(RBA::RecursiveShapeIterator::new(ly, ly.top_cell, []))
# only plain connectivity
ractive = l2n.make_layer( ly.layer(2, 0), "active" )
rpoly = l2n.make_polygon_layer( ly.layer(3, 0), "poly" )
rpoly_lbl = l2n.make_text_layer( ly.layer(3, 1), "poly_lbl" )
rdiff_cont = l2n.make_polygon_layer( ly.layer(4, 0), "diff_cont" )
rpoly_cont = l2n.make_polygon_layer( ly.layer(5, 0), "poly_cont" )
rmetal1 = l2n.make_polygon_layer( ly.layer(6, 0), "metal1" )
rmetal1_lbl = l2n.make_text_layer( ly.layer(6, 1), "metal1_lbl" )
rvia1 = l2n.make_polygon_layer( ly.layer(7, 0), "via1" )
rmetal2 = l2n.make_polygon_layer( ly.layer(8, 0), "metal2" )
rmetal2_lbl = l2n.make_text_layer( ly.layer(8, 1), "metal2_lbl" )
rsd = ractive - rpoly
l2n.register(rsd, "sd")
# Intra-layer
l2n.connect(rsd)
l2n.connect(rpoly)
l2n.connect(rdiff_cont)
l2n.connect(rpoly_cont)
l2n.connect(rmetal1)
l2n.connect(rvia1)
l2n.connect(rmetal2)
# Inter-layer
l2n.connect(rsd, rdiff_cont)
l2n.connect(rpoly, rpoly_cont)
l2n.connect(rpoly_cont, rmetal1)
l2n.connect(rdiff_cont, rmetal1)
l2n.connect(rmetal1, rvia1)
l2n.connect(rvia1, rmetal2)
l2n.connect(rpoly, rpoly_lbl) # attaches labels
l2n.connect(rmetal1, rmetal1_lbl) # attaches labels
l2n.connect(rmetal2, rmetal2_lbl) # attaches labels
# Perform netlist extraction
l2n.extract_netlist
assert_equal(l2n.netlist.to_s, <<END)
circuit TRANS ($1=$1,$2=$2,$3=$3);
end;
circuit INV2 (IN=IN,$2=$2,OUT=OUT,$4=$4,$5=$5);
subcircuit TRANS $1 ($1=$2,$2=$4,$3=IN);
subcircuit TRANS $2 ($1=$2,$2=$5,$3=IN);
subcircuit TRANS $3 ($1=$5,$2=OUT,$3=$2);
subcircuit TRANS $4 ($1=$4,$2=OUT,$3=$2);
end;
circuit RINGO ();
subcircuit INV2 $1 (IN=$I8,$2=FB,OUT=OSC,$4=VSS,$5=VDD);
subcircuit INV2 $2 (IN=FB,$2=$I38,OUT=$I19,$4=VSS,$5=VDD);
subcircuit INV2 $3 (IN=$I19,$2=$I39,OUT=$I1,$4=VSS,$5=VDD);
subcircuit INV2 $4 (IN=$I1,$2=$I40,OUT=$I2,$4=VSS,$5=VDD);
subcircuit INV2 $5 (IN=$I2,$2=$I41,OUT=$I3,$4=VSS,$5=VDD);
subcircuit INV2 $6 (IN=$I3,$2=$I42,OUT=$I4,$4=VSS,$5=VDD);
subcircuit INV2 $7 (IN=$I4,$2=$I43,OUT=$I5,$4=VSS,$5=VDD);
subcircuit INV2 $8 (IN=$I5,$2=$I44,OUT=$I6,$4=VSS,$5=VDD);
subcircuit INV2 $9 (IN=$I6,$2=$I45,OUT=$I7,$4=VSS,$5=VDD);
subcircuit INV2 $10 (IN=$I7,$2=$I46,OUT=$I8,$4=VSS,$5=VDD);
end;
END
end
def test_11_LayoutToNetlistExtractionWithDevices
ly = RBA::Layout::new
ly.read(File.join($ut_testsrc, "testdata", "algo", "device_extract_l1.gds"))
l2n = RBA::LayoutToNetlist::new(RBA::RecursiveShapeIterator::new(ly, ly.top_cell, []))
rnwell = l2n.make_layer( ly.layer(1, 0), "nwell" )
ractive = l2n.make_layer( ly.layer(2, 0), "active" )
rpoly = l2n.make_polygon_layer( ly.layer(3, 0), "poly" )
rpoly_lbl = l2n.make_text_layer( ly.layer(3, 1), "poly_lbl" )
rdiff_cont = l2n.make_polygon_layer( ly.layer(4, 0), "diff_cont" )
rpoly_cont = l2n.make_polygon_layer( ly.layer(5, 0), "poly_cont" )
rmetal1 = l2n.make_polygon_layer( ly.layer(6, 0), "metal1" )
rmetal1_lbl = l2n.make_text_layer( ly.layer(6, 1), "metal1_lbl" )
rvia1 = l2n.make_polygon_layer( ly.layer(7, 0), "via1" )
rmetal2 = l2n.make_polygon_layer( ly.layer(8, 0), "metal2" )
rmetal2_lbl = l2n.make_text_layer( ly.layer(8, 1), "metal2_lbl" )
rpactive = ractive & rnwell
rpgate = rpactive & rpoly
rpsd = rpactive - rpgate
rnactive = ractive - rnwell
rngate = rnactive & rpoly
rnsd = rnactive - rngate
# PMOS transistor device extraction
pmos_ex = RBA::DeviceExtractorMOS3Transistor::new("PMOS")
l2n.extract_devices(pmos_ex, { "SD" => rpsd, "G" => rpgate, "P" => rpoly })
# NMOS transistor device extraction
nmos_ex = RBA::DeviceExtractorMOS3Transistor::new("NMOS")
l2n.extract_devices(nmos_ex, { "SD" => rnsd, "G" => rngate, "P" => rpoly })
# Define connectivity for netlist extraction
l2n.register(rpsd, "psd")
l2n.register(rnsd, "nsd")
# Intra-layer
l2n.connect(rpsd)
l2n.connect(rnsd)
l2n.connect(rpoly)
l2n.connect(rdiff_cont)
l2n.connect(rpoly_cont)
l2n.connect(rmetal1)
l2n.connect(rvia1)
l2n.connect(rmetal2)
# Inter-layer
l2n.connect(rpsd, rdiff_cont)
l2n.connect(rnsd, rdiff_cont)
l2n.connect(rpoly, rpoly_cont)
l2n.connect(rpoly_cont, rmetal1)
l2n.connect(rdiff_cont, rmetal1)
l2n.connect(rmetal1, rvia1)
l2n.connect(rvia1, rmetal2)
l2n.connect(rpoly, rpoly_lbl) # attaches labels
l2n.connect(rmetal1, rmetal1_lbl) # attaches labels
l2n.connect(rmetal2, rmetal2_lbl) # attaches labels
# Perform netlist extraction
l2n.extract_netlist
assert_equal(l2n.netlist.to_s, <<END)
circuit RINGO ();
subcircuit INV2 $1 (IN=$I8,$2=FB,OUT=OSC,$4=VSS,$5=VDD);
subcircuit INV2 $2 (IN=FB,$2=$I38,OUT=$I19,$4=VSS,$5=VDD);
subcircuit INV2 $3 (IN=$I19,$2=$I39,OUT=$I1,$4=VSS,$5=VDD);
subcircuit INV2 $4 (IN=$I1,$2=$I40,OUT=$I2,$4=VSS,$5=VDD);
subcircuit INV2 $5 (IN=$I2,$2=$I41,OUT=$I3,$4=VSS,$5=VDD);
subcircuit INV2 $6 (IN=$I3,$2=$I42,OUT=$I4,$4=VSS,$5=VDD);
subcircuit INV2 $7 (IN=$I4,$2=$I43,OUT=$I5,$4=VSS,$5=VDD);
subcircuit INV2 $8 (IN=$I5,$2=$I44,OUT=$I6,$4=VSS,$5=VDD);
subcircuit INV2 $9 (IN=$I6,$2=$I45,OUT=$I7,$4=VSS,$5=VDD);
subcircuit INV2 $10 (IN=$I7,$2=$I46,OUT=$I8,$4=VSS,$5=VDD);
end;
circuit INV2 (IN=IN,$2=$2,OUT=OUT,$4=$4,$5=$5);
device PMOS $1 (S=$2,G=IN,D=$5) (L=0.25,W=0.95,AS=0.49875,AD=0.26125,PS=2.95,PD=1.5);
device PMOS $2 (S=$5,G=$2,D=OUT) (L=0.25,W=0.95,AS=0.26125,AD=0.49875,PS=1.5,PD=2.95);
device NMOS $3 (S=$2,G=IN,D=$4) (L=0.25,W=0.95,AS=0.49875,AD=0.26125,PS=2.95,PD=1.5);
device NMOS $4 (S=$4,G=$2,D=OUT) (L=0.25,W=0.95,AS=0.26125,AD=0.49875,PS=1.5,PD=2.95);
subcircuit TRANS $1 ($1=$2,$2=$4,$3=IN);
subcircuit TRANS $2 ($1=$2,$2=$5,$3=IN);
subcircuit TRANS $3 ($1=$5,$2=OUT,$3=$2);
subcircuit TRANS $4 ($1=$4,$2=OUT,$3=$2);
end;
circuit TRANS ($1=$1,$2=$2,$3=$3);
end;
END
# cleanup now
l2n._destroy
end
def test_12_LayoutToNetlistExtractionWithDevicesAndGlobalNets
ly = RBA::Layout::new
ly.read(File.join($ut_testsrc, "testdata", "algo", "device_extract_l3.gds"))
l2n = RBA::LayoutToNetlist::new(RBA::RecursiveShapeIterator::new(ly, ly.top_cell, []))
rbulk = l2n.make_layer( "bulk" )
rnwell = l2n.make_polygon_layer( ly.layer(1, 0) , "nwell" )
ractive = l2n.make_polygon_layer( ly.layer(2, 0) , "active" )
rpoly = l2n.make_polygon_layer( ly.layer(3, 0) , "poly" )
rpoly_lbl = l2n.make_text_layer( ly.layer(3, 1) , "poly_lbl" )
rdiff_cont = l2n.make_polygon_layer( ly.layer(4, 0) , "diff_cont" )
rpoly_cont = l2n.make_polygon_layer( ly.layer(5, 0) , "poly_cont" )
rmetal1 = l2n.make_polygon_layer( ly.layer(6, 0) , "metal1" )
rmetal1_lbl = l2n.make_text_layer( ly.layer(6, 1) , "metal1_lbl" )
rvia1 = l2n.make_polygon_layer( ly.layer(7, 0) , "via1" )
rmetal2 = l2n.make_polygon_layer( ly.layer(8, 0) , "metal2" )
rmetal2_lbl = l2n.make_text_layer( ly.layer(8, 1) , "metal2_lbl" )
rpplus = l2n.make_polygon_layer( ly.layer(10, 0) , "pplus" )
rnplus = l2n.make_polygon_layer( ly.layer(11, 0) , "nplus" )
ractive_in_nwell = ractive & rnwell
rpactive = ractive_in_nwell & rpplus
rntie = ractive_in_nwell & rnplus
rpgate = rpactive & rpoly
rpsd = rpactive - rpgate
ractive_outside_nwell = ractive - rnwell
rnactive = ractive_outside_nwell & rnplus
rptie = ractive_outside_nwell & rpplus
rngate = rnactive & rpoly
rnsd = rnactive - rngate
# PMOS transistor device extraction
pmos_ex = RBA::DeviceExtractorMOS4Transistor::new("PMOS")
l2n.extract_devices(pmos_ex, { "SD" => rpsd, "G" => rpgate, "P" => rpoly, "W" => rnwell })
# NMOS transistor device extraction
nmos_ex = RBA::DeviceExtractorMOS4Transistor::new("NMOS")
l2n.extract_devices(nmos_ex, { "SD" => rnsd, "G" => rngate, "P" => rpoly, "W" => rbulk })
# Define connectivity for netlist extraction
l2n.register(rpsd, "psd")
l2n.register(rnsd, "nsd")
l2n.register(rptie, "ptie")
l2n.register(rntie, "ntie")
# Intra-layer
l2n.connect(rpsd)
l2n.connect(rnsd)
l2n.connect(rnwell)
l2n.connect(rpoly)
l2n.connect(rdiff_cont)
l2n.connect(rpoly_cont)
l2n.connect(rmetal1)
l2n.connect(rvia1)
l2n.connect(rmetal2)
l2n.connect(rptie)
l2n.connect(rntie)
# Inter-layer
l2n.connect(rpsd, rdiff_cont)
l2n.connect(rnsd, rdiff_cont)
l2n.connect(rpoly, rpoly_cont)
l2n.connect(rpoly_cont, rmetal1)
l2n.connect(rdiff_cont, rmetal1)
l2n.connect(rdiff_cont, rntie)
l2n.connect(rdiff_cont, rptie)
l2n.connect(rnwell, rntie)
l2n.connect(rmetal1, rvia1)
l2n.connect(rvia1, rmetal2)
l2n.connect(rpoly, rpoly_lbl) # attaches labels
l2n.connect(rmetal1, rmetal1_lbl) # attaches labels
l2n.connect(rmetal2, rmetal2_lbl) # attaches labels
# Global connections
l2n.connect_global(rptie, "BULK")
l2n.connect_global(rbulk, "BULK")
# Perform netlist extraction
l2n.extract_netlist
assert_equal(l2n.netlist.to_s, <<END)
circuit RINGO ();
subcircuit INV2PAIR $1 (BULK=VSS,$2=FB,$3=VDD,$4=VSS,$5=$I11,$6=OSC,$7=VDD);
subcircuit INV2PAIR $2 (BULK=VSS,$2=$I22,$3=VDD,$4=VSS,$5=FB,$6=$I17,$7=VDD);
subcircuit INV2PAIR $3 (BULK=VSS,$2=$I23,$3=VDD,$4=VSS,$5=$I17,$6=$I9,$7=VDD);
subcircuit INV2PAIR $4 (BULK=VSS,$2=$I24,$3=VDD,$4=VSS,$5=$I9,$6=$I10,$7=VDD);
subcircuit INV2PAIR $5 (BULK=VSS,$2=$I25,$3=VDD,$4=VSS,$5=$I10,$6=$I11,$7=VDD);
end;
circuit INV2PAIR (BULK=BULK,$2=$I8,$3=$I6,$4=$I5,$5=$I3,$6=$I2,$7=$I1);
subcircuit INV2 $1 ($1=$I1,IN=$I3,$3=$I7,OUT=$I4,VSS=$I5,VDD=$I6,BULK=BULK);
subcircuit INV2 $2 ($1=$I1,IN=$I4,$3=$I8,OUT=$I2,VSS=$I5,VDD=$I6,BULK=BULK);
end;
circuit INV2 ($1=$1,IN=IN,$3=$3,OUT=OUT,VSS=VSS,VDD=VDD,BULK=BULK);
device PMOS $1 (S=$3,G=IN,D=VDD,B=$1) (L=0.25,W=0.95,AS=0.49875,AD=0.26125,PS=2.95,PD=1.5);
device PMOS $2 (S=VDD,G=$3,D=OUT,B=$1) (L=0.25,W=0.95,AS=0.26125,AD=0.49875,PS=1.5,PD=2.95);
device NMOS $3 (S=$3,G=IN,D=VSS,B=BULK) (L=0.25,W=0.95,AS=0.49875,AD=0.26125,PS=2.95,PD=1.5);
device NMOS $4 (S=VSS,G=$3,D=OUT,B=BULK) (L=0.25,W=0.95,AS=0.26125,AD=0.49875,PS=1.5,PD=2.95);
subcircuit TRANS $1 ($1=$3,$2=VSS,$3=IN);
subcircuit TRANS $2 ($1=$3,$2=VDD,$3=IN);
subcircuit TRANS $3 ($1=VDD,$2=OUT,$3=$3);
subcircuit TRANS $4 ($1=VSS,$2=OUT,$3=$3);
end;
circuit TRANS ($1=$1,$2=$2,$3=$3);
end;
END
l2n.netlist.combine_devices
l2n.netlist.make_top_level_pins
l2n.netlist.purge
assert_equal(l2n.netlist.to_s, <<END)
circuit RINGO (FB=FB,OSC=OSC,VDD=VDD,VSS=VSS);
subcircuit INV2PAIR $1 (BULK=VSS,$2=FB,$3=VDD,$4=VSS,$5=$I11,$6=OSC,$7=VDD);
subcircuit INV2PAIR $2 (BULK=VSS,$2=$I22,$3=VDD,$4=VSS,$5=FB,$6=$I17,$7=VDD);
subcircuit INV2PAIR $3 (BULK=VSS,$2=$I23,$3=VDD,$4=VSS,$5=$I17,$6=$I9,$7=VDD);
subcircuit INV2PAIR $4 (BULK=VSS,$2=$I24,$3=VDD,$4=VSS,$5=$I9,$6=$I10,$7=VDD);
subcircuit INV2PAIR $5 (BULK=VSS,$2=$I25,$3=VDD,$4=VSS,$5=$I10,$6=$I11,$7=VDD);
end;
circuit INV2PAIR (BULK=BULK,$2=$I8,$3=$I6,$4=$I5,$5=$I3,$6=$I2,$7=$I1);
subcircuit INV2 $1 ($1=$I1,IN=$I3,$3=$I7,OUT=$I4,VSS=$I5,VDD=$I6,BULK=BULK);
subcircuit INV2 $2 ($1=$I1,IN=$I4,$3=$I8,OUT=$I2,VSS=$I5,VDD=$I6,BULK=BULK);
end;
circuit INV2 ($1=$1,IN=IN,$3=$3,OUT=OUT,VSS=VSS,VDD=VDD,BULK=BULK);
device PMOS $1 (S=$3,G=IN,D=VDD,B=$1) (L=0.25,W=0.95,AS=0.49875,AD=0.26125,PS=2.95,PD=1.5);
device PMOS $2 (S=VDD,G=$3,D=OUT,B=$1) (L=0.25,W=0.95,AS=0.26125,AD=0.49875,PS=1.5,PD=2.95);
device NMOS $3 (S=$3,G=IN,D=VSS,B=BULK) (L=0.25,W=0.95,AS=0.49875,AD=0.26125,PS=2.95,PD=1.5);
device NMOS $4 (S=VSS,G=$3,D=OUT,B=BULK) (L=0.25,W=0.95,AS=0.26125,AD=0.49875,PS=1.5,PD=2.95);
end;
END
# cleanup now
l2n._destroy
end
def test_13_ReadAndWrite
l2n = RBA::LayoutToNetlist::new
input = File.join($ut_testsrc, "testdata", "algo", "l2n_reader_in.txt")
l2n.read(input)
tmp = File::join($ut_testtmp, "tmp.txt")
l2n.write(tmp)
assert_equal(File.open(tmp, "r").read, File.open(input, "r").read)
assert_equal(l2n.layer_names.join(","), "poly,poly_lbl,diff_cont,poly_cont,metal1,metal1_lbl,via1,metal2,metal2_lbl,psd,nsd")
assert_equal(l2n.layer_indexes.join(","), "1,2,3,4,5,6,7,8,9,10,11")
assert_equal(l2n.layer_indexes.collect { |li| l2n.layer_info(li).to_s }.join(","), "3/0,3/1,4/0,5/0,6/0,6/1,7/0,8/0,8/1,,")
assert_equal(l2n.layer_name(l2n.layer_by_name("metal1")), "metal1")
assert_equal(l2n.layer_name(l2n.layer_by_index(l2n.layer_of(l2n.layer_by_name("metal1")))), "metal1")
end
def test_14_BuildNets
l2n = RBA::LayoutToNetlist::new
input = File.join($ut_testsrc, "testdata", "algo", "l2n_reader_in.txt")
l2n.read(input)
# build_all_nets
ly = RBA::Layout::new
ly.create_cell("TOP")
cm = l2n.cell_mapping_into(ly, ly.top_cell)
lmap = {
ly.insert_layer(RBA::LayerInfo::new(10, 0)) => l2n.layer_by_name("psd"),
ly.insert_layer(RBA::LayerInfo::new(11, 0)) => l2n.layer_by_name("nsd"),
ly.insert_layer(RBA::LayerInfo::new(3, 0)) => l2n.layer_by_name("poly"),
ly.insert_layer(RBA::LayerInfo::new(4, 0)) => l2n.layer_by_name("diff_cont"),
ly.insert_layer(RBA::LayerInfo::new(5, 0)) => l2n.layer_by_name("poly_cont"),
ly.insert_layer(RBA::LayerInfo::new(6, 0)) => l2n.layer_by_name("metal1"),
ly.insert_layer(RBA::LayerInfo::new(7, 0)) => l2n.layer_by_name("via1"),
ly.insert_layer(RBA::LayerInfo::new(8, 0)) => l2n.layer_by_name("metal2")
}
l2n.build_all_nets(cm, ly, lmap, "NET_", nil, RBA::LayoutToNetlist::BNH_Disconnected, nil, "DEVICE_")
ly_au = RBA::Layout::new
au_file = File.join($ut_testsrc, "testdata", "algo", "l2n_reader_au_1.gds")
ly_au.read(au_file)
lmap.each do |li,v|
li_au = ly_au.layer(ly.get_info(li))
ly_region = RBA::Region::new(ly.top_cell.begin_shapes_rec(li))
ly_au_region = RBA::Region::new(ly_au.top_cell.begin_shapes_rec(li_au))
info = ly.get_info(li).to_s + ":"
assert_equal(info + (ly_region ^ ly_au_region).to_s, info)
end
# build_nets
ly = RBA::Layout::new
ly.create_cell("TOP")
cm = l2n.cell_mapping_into(ly, ly.top_cell)
lmap = {
ly.insert_layer(RBA::LayerInfo::new(10, 0)) => l2n.layer_by_name("psd"),
ly.insert_layer(RBA::LayerInfo::new(11, 0)) => l2n.layer_by_name("nsd"),
ly.insert_layer(RBA::LayerInfo::new(3, 0)) => l2n.layer_by_name("poly"),
ly.insert_layer(RBA::LayerInfo::new(4, 0)) => l2n.layer_by_name("diff_cont"),
ly.insert_layer(RBA::LayerInfo::new(5, 0)) => l2n.layer_by_name("poly_cont"),
ly.insert_layer(RBA::LayerInfo::new(6, 0)) => l2n.layer_by_name("metal1"),
ly.insert_layer(RBA::LayerInfo::new(7, 0)) => l2n.layer_by_name("via1"),
ly.insert_layer(RBA::LayerInfo::new(8, 0)) => l2n.layer_by_name("metal2")
}
nets = [
l2n.netlist.circuit_by_name("RINGO").net_by_name("VSS"),
l2n.netlist.circuit_by_name("RINGO").net_by_name("VDD")
]
l2n.build_nets(nets, cm, ly, lmap, "NET_", nil, RBA::LayoutToNetlist::BNH_SubcircuitCells, "CIRCUIT_", "DEVICE_")
ly_au = RBA::Layout::new
au_file = File.join($ut_testsrc, "testdata", "algo", "l2n_reader_au_1d.gds")
ly_au.read(au_file)
lmap.each do |li,v|
li_au = ly_au.layer(ly.get_info(li))
ly_region = RBA::Region::new(ly.top_cell.begin_shapes_rec(li))
ly_au_region = RBA::Region::new(ly_au.top_cell.begin_shapes_rec(li_au))
info = ly.get_info(li).to_s + ":"
assert_equal(info + (ly_region ^ ly_au_region).to_s, info)
end
end
def test_15_BuildNetShapes
l2n = RBA::LayoutToNetlist::new
input = File.join($ut_testsrc, "testdata", "algo", "l2n_reader_in.txt")
l2n.read(input)
# build_all_nets using Region#net
metal1 = l2n.layer_by_name("metal1")
metal1_all = metal1.nets(l2n)
metal1_vdd = metal1.nets(l2n, nil, l2n.netlist.nets_by_name("VDD"))
metal1_all_wp = metal1.nets(l2n, 1)
ly = RBA::Layout::new
tc = ly.create_cell("TOP")
metal1_all.insert_into(ly, tc.cell_index, ly.layer(1, 0))
metal1_vdd.insert_into(ly, tc.cell_index, ly.layer(2, 0))
metal1_all_wp.insert_into(ly, tc.cell_index, ly.layer(3, 0))
si = tc.begin_shapes_rec(ly.layer(1, 0))
assert_equal(si.each.count, 111)
si = tc.begin_shapes_rec(ly.layer(1, 0))
si.each do |i|
assert_equal(i.shape.prop_id, 0)
end
# VDD net is smaller
si = tc.begin_shapes_rec(ly.layer(2, 0))
assert_equal(si.each.count, 20)
assert_equal(tc.dbbox(ly.layer(2, 0)).to_s, "(-0.18,2.42;23.94,3.18)")
si = tc.begin_shapes_rec(ly.layer(3, 0))
assert_equal(si.each.count, 111)
# properties are net names + ID
si = tc.begin_shapes_rec(ly.layer(3, 0))
net_names = []
si.each do |i|
ly.properties(i.shape.prop_id).each do |k,v|
if k == 1
net_names << v[0]
end
end
end
assert_equal(net_names.sort.uniq.join(";"), "$10;$11;$12;$13;$14;$15;$16;$17;$18;$19;$20;$21;$22;$5;$6;$7;$8;$9;FB;OSC;VDD;VSS")
end
def test_20_Antenna
# --- simple antenna check
input = File.join($ut_testsrc, "testdata", "algo", "antenna_l1.gds")
ly = RBA::Layout::new
ly.read(input)
au = File.join($ut_testsrc, "testdata", "algo", "antenna_au1.gds")
ly_au = RBA::Layout::new
ly_au.read(au)
dss = RBA::DeepShapeStore::new
assert_equal(dss.is_singular?, false)
rdiode = RBA::Region::new(ly.top_cell.begin_shapes_rec(ly.layer(1, 0)), dss)
rpoly = RBA::Region::new(ly.top_cell.begin_shapes_rec(ly.layer(6, 0)), dss)
rcont = RBA::Region::new(ly.top_cell.begin_shapes_rec(ly.layer(8, 0)), dss)
rmetal1 = RBA::Region::new(ly.top_cell.begin_shapes_rec(ly.layer(9, 0)), dss)
rvia1 = RBA::Region::new(ly.top_cell.begin_shapes_rec(ly.layer(11, 0)), dss)
rmetal2 = RBA::Region::new(ly.top_cell.begin_shapes_rec(ly.layer(12, 0)), dss)
assert_equal(dss.is_singular?, true)
l2n = RBA::LayoutToNetlist::new(dss)
l2n.register(rdiode, "diode")
l2n.register(rpoly, "poly")
l2n.register(rcont, "cont")
l2n.register(rmetal1, "metal1")
l2n.register(rvia1, "via1")
l2n.register(rmetal2, "metal2")
l2n.connect(rpoly)
l2n.connect(rcont)
l2n.connect(rmetal1)
l2n.connect(rpoly, rcont)
l2n.connect(rcont, rmetal1)
l2n.extract_netlist
a1_3 = l2n.antenna_check(rpoly, rmetal1, 3)
a1_10 = l2n.antenna_check(rpoly, rmetal1, 10)
a1_30 = l2n.antenna_check(rpoly, rmetal1, 30)
# Note: flatten.merged performs some normalization
assert_equal((a1_3.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(100, 0)))).to_s, "")
assert_equal((a1_10.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(101, 0)))).to_s, "")
assert_equal((a1_30.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(102, 0)))).to_s, "")
# --- same with flat
l2n._destroy
input = File.join($ut_testsrc, "testdata", "algo", "antenna_l1.gds")
ly = RBA::Layout::new
ly.read(input)
au = File.join($ut_testsrc, "testdata", "algo", "antenna_au1.gds")
ly_au = RBA::Layout::new
ly_au.read(au)
rfdiode = RBA::Region::new(ly.top_cell.begin_shapes_rec(ly.layer(1, 0)))
rfpoly = RBA::Region::new(ly.top_cell.begin_shapes_rec(ly.layer(6, 0)))
rfcont = RBA::Region::new(ly.top_cell.begin_shapes_rec(ly.layer(8, 0)))
rfmetal1 = RBA::Region::new(ly.top_cell.begin_shapes_rec(ly.layer(9, 0)))
rfvia1 = RBA::Region::new(ly.top_cell.begin_shapes_rec(ly.layer(11, 0)))
rfmetal2 = RBA::Region::new(ly.top_cell.begin_shapes_rec(ly.layer(12, 0)))
assert_equal(rfdiode.is_deep?, false)
assert_equal(rfpoly.is_deep?, false)
assert_equal(rfmetal1.is_deep?, false)
assert_equal(rfvia1.is_deep?, false)
assert_equal(rfmetal2.is_deep?, false)
l2n = RBA::LayoutToNetlist::new(ly.top_cell.name, ly.dbu)
l2n.register(rfdiode, "diode")
l2n.register(rfpoly, "poly")
l2n.register(rfcont, "cont")
l2n.register(rfmetal1, "metal1")
l2n.register(rfvia1, "via1")
l2n.register(rfmetal2, "metal2")
l2n.connect(rfpoly)
l2n.connect(rfcont)
l2n.connect(rfmetal1)
l2n.connect(rfpoly, rfcont)
l2n.connect(rfcont, rfmetal1)
l2n.extract_netlist
a1_3 = l2n.antenna_check(rfpoly, rfmetal1, 3)
a1_10 = l2n.antenna_check(rfpoly, rfmetal1, 10)
a1_30 = l2n.antenna_check(rfpoly, rfmetal1, 30)
# Note: flatten.merged performs some normalization
assert_equal((a1_3.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(100, 0)))).to_s, "")
assert_equal((a1_10.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(101, 0)))).to_s, "")
assert_equal((a1_30.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(102, 0)))).to_s, "")
# --- simple antenna check with metal2
l2n._destroy
l2n = RBA::LayoutToNetlist::new(dss)
l2n.register(rdiode, "diode")
l2n.register(rpoly, "poly")
l2n.register(rcont, "cont")
l2n.register(rmetal1, "metal1")
l2n.register(rvia1, "via1")
l2n.register(rmetal2, "metal2")
l2n.connect(rpoly)
l2n.connect(rcont)
l2n.connect(rmetal1)
l2n.connect(rmetal2)
l2n.connect(rpoly, rcont)
l2n.connect(rcont, rmetal1)
l2n.connect(rmetal1, rvia1)
l2n.connect(rvia1, rmetal2)
l2n.extract_netlist
a2_5 = l2n.antenna_check(rpoly, rmetal2, 5)
a2_10 = l2n.antenna_check(rpoly, rmetal2, 10)
a2_17 = l2n.antenna_check(rpoly, rmetal2, 17)
# Note: flatten.merged performs some normalization
assert_equal((a2_5.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(200, 0)))).to_s, "")
assert_equal((a2_10.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(201, 0)))).to_s, "")
assert_equal((a2_17.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(202, 0)))).to_s, "")
# --- simple incremental antenna check with metal1 + metal2
l2n._destroy
l2n = RBA::LayoutToNetlist::new(dss)
l2n.register(rdiode, "diode")
l2n.register(rpoly, "poly")
l2n.register(rcont, "cont")
l2n.register(rmetal1, "metal1")
l2n.register(rvia1, "via1")
l2n.register(rmetal2, "metal2")
l2n.connect(rpoly)
l2n.connect(rcont)
l2n.connect(rmetal1)
l2n.connect(rmetal2)
l2n.connect(rpoly, rcont)
l2n.connect(rcont, rmetal1)
assert_equal(l2n.is_extracted?, false)
l2n.extract_netlist
assert_equal(l2n.is_extracted?, true)
a1_3 = l2n.antenna_check(rpoly, rmetal1, 3)
a1_10 = l2n.antenna_check(rpoly, rmetal1, 10)
a1_30 = l2n.antenna_check(rpoly, rmetal1, 30)
# Note: flatten.merged performs some normalization
assert_equal((a1_3.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(100, 0)))).to_s, "")
assert_equal((a1_10.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(101, 0)))).to_s, "")
assert_equal((a1_30.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(102, 0)))).to_s, "")
l2n.connect(rmetal1, rvia1)
l2n.connect(rvia1, rmetal2)
assert_equal(l2n.is_extracted?, false)
l2n.extract_netlist
assert_equal(l2n.is_extracted?, true)
a2_5 = l2n.antenna_check(rpoly, rmetal2, 5)
a2_10 = l2n.antenna_check(rpoly, rmetal2, 10)
a2_17 = l2n.antenna_check(rpoly, rmetal2, 17)
# Note: flatten.merged performs some normalization
assert_equal((a2_5.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(200, 0)))).to_s, "")
assert_equal((a2_10.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(201, 0)))).to_s, "")
assert_equal((a2_17.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(202, 0)))).to_s, "")
# --- antenna check with diodes and antenna effect reduction
l2n._destroy
l2n = RBA::LayoutToNetlist::new(dss)
l2n.register(rdiode, "diode")
l2n.register(rpoly, "poly")
l2n.register(rcont, "cont")
l2n.register(rmetal1, "metal1")
l2n.register(rvia1, "via1")
l2n.register(rmetal2, "metal2")
l2n.connect(rdiode)
l2n.connect(rpoly)
l2n.connect(rcont)
l2n.connect(rmetal1)
l2n.connect(rdiode, rcont)
l2n.connect(rpoly, rcont)
l2n.connect(rcont, rmetal1)
l2n.extract_netlist
a3_3 = l2n.antenna_check(rpoly, rmetal1, 3, [ [ rdiode, 8.0 ] ] )
a3_10 = l2n.antenna_check(rpoly, rmetal1, 10, [ [ rdiode, 8.0 ] ])
a3_30 = l2n.antenna_check(rpoly, rmetal1, 30, [ [ rdiode, 8.0 ] ])
# Note: flatten.merged performs some normalization
assert_equal((a3_3.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(300, 0)))).to_s, "")
assert_equal((a3_10.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(301, 0)))).to_s, "")
assert_equal((a3_30.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(302, 0)))).to_s, "")
# --- antenna check with diodes
l2n._destroy
l2n = RBA::LayoutToNetlist::new(dss)
l2n.register(rdiode, "diode")
l2n.register(rpoly, "poly")
l2n.register(rcont, "cont")
l2n.register(rmetal1, "metal1")
l2n.register(rvia1, "via1")
l2n.register(rmetal2, "metal2")
l2n.connect(rdiode)
l2n.connect(rpoly)
l2n.connect(rcont)
l2n.connect(rmetal1)
l2n.connect(rdiode, rcont)
l2n.connect(rpoly, rcont)
l2n.connect(rcont, rmetal1)
l2n.extract_netlist
a4_3 = l2n.antenna_check(rpoly, rmetal1, 3, [ rdiode ])
a4_10 = l2n.antenna_check(rpoly, rmetal1, 10, [ rdiode ])
a4_30 = l2n.antenna_check(rpoly, rmetal1, 30, [ rdiode ])
# Note: flatten.merged performs some normalization
assert_equal((a4_3.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(400, 0)))).to_s, "")
assert_equal((a4_10.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(401, 0)))).to_s, "")
assert_equal((a4_30.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(402, 0)))).to_s, "")
# --- antenna check metal perimeter included
l2n._destroy
l2n = RBA::LayoutToNetlist::new(dss)
l2n.register(rpoly, "poly")
l2n.register(rcont, "cont")
l2n.register(rmetal1, "metal1")
l2n.register(rvia1, "via1")
l2n.register(rmetal2, "metal2")
l2n.connect(rpoly)
l2n.connect(rcont)
l2n.connect(rmetal1)
l2n.connect(rvia1)
l2n.connect(rmetal2)
l2n.connect(rpoly, rcont)
l2n.connect(rcont, rmetal1)
l2n.connect(rmetal1, rvia1)
l2n.connect(rvia1, rmetal2)
l2n.extract_netlist
a5_5 = l2n.antenna_check(rpoly, 0.0, rmetal2, 1.0, 5)
a5_15 = l2n.antenna_check(rpoly, 0.0, rmetal2, 1.0, 15)
a5_29 = l2n.antenna_check(rpoly, 0.0, rmetal2, 1.0, 29)
# Note: flatten.merged performs some normalization
assert_equal((a5_5.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(500, 0)))).to_s, "")
assert_equal((a5_15.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(501, 0)))).to_s, "")
assert_equal((a5_29.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(502, 0)))).to_s, "")
b5_5 = l2n.antenna_check(rpoly, 2.0, 0.0, rmetal2, 1.0, 1.0, 2.5)
b5_15 = l2n.antenna_check(rpoly, 2.0, 0.0, rmetal2, 1.0, 1.0, 7.5)
b5_29 = l2n.antenna_check(rpoly, 2.0, 0.0, rmetal2, 1.0, 1.0, 14.5)
# Note: flatten.merged performs some normalization
assert_equal((b5_5.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(500, 0)))).to_s, "")
assert_equal((b5_15.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(501, 0)))).to_s, "")
assert_equal((b5_29.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(502, 0)))).to_s, "")
# --- antenna check gate perimeter included
l2n._destroy
l2n = RBA::LayoutToNetlist::new(dss)
l2n.register(rpoly, "poly")
l2n.register(rcont, "cont")
l2n.register(rmetal1, "metal1")
l2n.register(rvia1, "via1")
l2n.register(rmetal2, "metal2")
l2n.connect(rpoly)
l2n.connect(rcont)
l2n.connect(rmetal1)
l2n.connect(rvia1)
l2n.connect(rmetal2)
l2n.connect(rpoly, rcont)
l2n.connect(rcont, rmetal1)
l2n.connect(rmetal1, rvia1)
l2n.connect(rvia1, rmetal2)
l2n.extract_netlist
a6_3 = l2n.antenna_check(rpoly, 0.3, rmetal2, 0.0, 3)
a6_5 = l2n.antenna_check(rpoly, 0.3, rmetal2, 0.0, 5)
a6_9 = l2n.antenna_check(rpoly, 0.3, rmetal2, 0.0, 9)
# Note: flatten.merged performs some normalization
assert_equal((a6_3.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(600, 0)))).to_s, "")
assert_equal((a6_5.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(601, 0)))).to_s, "")
assert_equal((a6_9.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(602, 0)))).to_s, "")
b6_3 = l2n.antenna_check(rpoly, 1.0, 0.3, rmetal2, 2.0, 0.0, 6)
b6_5 = l2n.antenna_check(rpoly, 1.0, 0.3, rmetal2, 2.0, 0.0, 10)
b6_9 = l2n.antenna_check(rpoly, 1.0, 0.3, rmetal2, 2.0, 0.0, 18)
# Note: flatten.merged performs some normalization
assert_equal((b6_3.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(600, 0)))).to_s, "")
assert_equal((b6_5.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(601, 0)))).to_s, "")
assert_equal((b6_9.flatten ^ RBA::Region::new(ly_au.top_cell.begin_shapes_rec(ly_au.layer(602, 0)))).to_s, "")
end
def test_21_LogAPI
l2n = RBA::LayoutToNetlist::new
l2n.read(File.join($ut_testsrc, "testdata", "algo", "l2n_reader_au_6.l2n"))
le = l2n.each_log_entry.collect { |s| s.to_s }
assert_equal(le.size, 4)
assert_equal(le[0].to_s, "info")
assert_equal(le[1].to_s, "[cat description] In cell cell_name: info, shape: (1,1;2,2;3,1)")
assert_equal(le[2].to_s, "warning")
assert_equal(le[3].to_s, "error")
end
end
load("test_epilogue.rb")