1105 lines
36 KiB
C++
1105 lines
36 KiB
C++
#ifndef IVL_expression_H
|
|
#define IVL_expression_H
|
|
/*
|
|
* Copyright (c) 2011-2018 Stephen Williams (steve@icarus.com)
|
|
* Copyright CERN 2015 / Stephen Williams (steve@icarus.com),
|
|
* Copyright CERN 2016
|
|
* @author Maciej Suminski (maciej.suminski@cern.ch)
|
|
*
|
|
* This source code is free software; you can redistribute it
|
|
* and/or modify it in source code form under the terms of the GNU
|
|
* General Public License as published by the Free Software
|
|
* Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
# include "StringHeap.h"
|
|
# include "LineInfo.h"
|
|
# include "entity.h"
|
|
# include <inttypes.h>
|
|
# include <list>
|
|
# include <memory>
|
|
# include <vector>
|
|
# include <cassert>
|
|
|
|
class ExpRange;
|
|
class ScopeBase;
|
|
class SubprogramHeader;
|
|
class VType;
|
|
class VTypeArray;
|
|
class VTypePrimitive;
|
|
class ExpName;
|
|
|
|
#if __cplusplus < 201103L
|
|
#define unique_ptr auto_ptr
|
|
#endif
|
|
|
|
/*
|
|
* Helper class to recursively traverse an expression tree
|
|
* (i.e. complex expressions).
|
|
*/
|
|
struct ExprVisitor {
|
|
ExprVisitor() : level_(0) {}
|
|
virtual ~ExprVisitor() {}
|
|
virtual void operator() (Expression*s) = 0;
|
|
|
|
// Methods to manage recursion depth. Every Expression::visit() method
|
|
// should call down() in the beginning and up() in the end.
|
|
inline void down() { ++level_; }
|
|
inline void up() { --level_; assert(level_ >= 0); }
|
|
|
|
protected:
|
|
int level() const { return level_; }
|
|
|
|
private:
|
|
int level_;
|
|
};
|
|
|
|
/*
|
|
* The Expression class represents parsed expressions from the parsed
|
|
* VHDL input. The Expression class is a virtual class that holds more
|
|
* specific derived expression types.
|
|
*/
|
|
class Expression : public LineInfo {
|
|
|
|
public:
|
|
Expression();
|
|
virtual ~Expression() =0;
|
|
|
|
// Returns a deep copy of the expression.
|
|
virtual Expression*clone() const =0;
|
|
|
|
// This virtual method handles the special case of elaborating
|
|
// an expression that is the l-value of a sequential variable
|
|
// assignment. This generates an error for most cases, but
|
|
// expressions that are valid l-values return 0 and set any
|
|
// flags needed to indicate their status as writable variables.
|
|
virtual int elaborate_lval(Entity*ent, ScopeBase*scope,
|
|
bool is_sequ);
|
|
|
|
// This virtual method probes the expression to get the most
|
|
// constrained type for the expression. For a given instance,
|
|
// this may be called before the elaborate_expr method.
|
|
virtual const VType*probe_type(Entity*ent, ScopeBase*scope) const;
|
|
|
|
// The fit_type virtual method is used by the ExpConcat class
|
|
// to probe the type of operands. The atype argument is the
|
|
// type of the ExpConcat expression itself. This expression
|
|
// returns its type as interpreted in this context. Really,
|
|
// this is mostly about helping aggregate expressions within
|
|
// concatenations to figure out their type.
|
|
virtual const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const;
|
|
|
|
// This virtual method elaborates an expression. The ltype is
|
|
// the type of the lvalue expression, if known, and can be
|
|
// used to calculate the type for the expression being
|
|
// elaborated.
|
|
virtual int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
|
|
|
|
// Return the type that this expression would be if it were an
|
|
// l-value. This should only be called after elaborate_lval is
|
|
// called and only if elaborate_lval succeeded.
|
|
inline const VType*peek_type(void) const { return type_; }
|
|
|
|
// This virtual method writes a VHDL-accurate representation
|
|
// of this expression to the designated stream. This is used
|
|
// for writing parsed types to library files.
|
|
virtual void write_to_stream(std::ostream&fd) const =0;
|
|
|
|
// The emit virtual method is called by architecture emit to
|
|
// output the generated code for the expression. The derived
|
|
// class fills in the details of what exactly happened.
|
|
virtual int emit(ostream&out, Entity*ent, ScopeBase*scope) const =0;
|
|
|
|
// The emit_package virtual message is similar, but is called
|
|
// in a package context and to emit SV packages.
|
|
virtual int emit_package(std::ostream&out) const;
|
|
|
|
// The evaluate virtual method tries to evaluate expressions
|
|
// to constant literal values. Return true and set the val
|
|
// argument if the evaluation works, or return false if it
|
|
// cannot be done.
|
|
virtual bool evaluate(Entity*, ScopeBase*, int64_t&) const { return false; }
|
|
bool evaluate(ScopeBase*scope, int64_t&val) const { return evaluate(NULL, scope, val); }
|
|
|
|
// The symbolic compare returns true if the two expressions
|
|
// are equal without actually calculating the value.
|
|
virtual bool symbolic_compare(const Expression*that) const;
|
|
|
|
// This method returns true if the drawn Verilog for this
|
|
// expression is a primary. A containing expression can use
|
|
// this method to know if it needs to wrap parentheses. This
|
|
// is somewhat optional, so it is better to return false if
|
|
// not certain. The default implementation does return false.
|
|
virtual bool is_primary(void) const;
|
|
|
|
// Debug dump of the expression.
|
|
virtual void dump(ostream&out, int indent = 0) const =0;
|
|
virtual ostream& dump_inline(ostream&out) const;
|
|
|
|
// Recursively visits a tree of expressions (useful for complex expressions).
|
|
virtual void visit(ExprVisitor& func) { func.down(); func(this); func.up(); }
|
|
|
|
protected:
|
|
// This function is called by the derived class during
|
|
// elaboration to set the type of the current expression that
|
|
// elaboration assigns to this expression.
|
|
void set_type(const VType*);
|
|
|
|
private:
|
|
const VType*type_;
|
|
|
|
private: // Not implemented
|
|
Expression(const Expression&);
|
|
Expression& operator = (const Expression&);
|
|
};
|
|
|
|
/*
|
|
* Checks before cloning if the other expression actually exists (!=NULL).
|
|
*/
|
|
static inline Expression*safe_clone(const Expression*other) {
|
|
return (other ? other->clone() : NULL);
|
|
}
|
|
|
|
static inline void FILE_NAME(Expression*tgt, const LineInfo*src)
|
|
{
|
|
tgt->set_line(*src);
|
|
}
|
|
|
|
static inline ostream& operator <<(ostream&out, const Expression&exp)
|
|
{
|
|
return exp.dump_inline(out);
|
|
}
|
|
|
|
class ExpUnary : public Expression {
|
|
|
|
public:
|
|
explicit ExpUnary(Expression*op1);
|
|
virtual ~ExpUnary() =0;
|
|
|
|
inline const Expression*peek_operand() const { return operand1_; }
|
|
|
|
const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const;
|
|
const VType*probe_type(Entity*ent, ScopeBase*scope) const;
|
|
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
|
|
void visit(ExprVisitor& func);
|
|
|
|
protected:
|
|
inline void write_to_stream_operand1(std::ostream&fd) const
|
|
{ operand1_->write_to_stream(fd); }
|
|
|
|
int emit_operand1(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
void dump_operand1(ostream&out, int indent = 0) const;
|
|
|
|
private:
|
|
Expression*operand1_;
|
|
};
|
|
|
|
/*
|
|
* This is an abstract class that collects some of the common features
|
|
* of binary operators.
|
|
*/
|
|
class ExpBinary : public Expression {
|
|
|
|
public:
|
|
ExpBinary(Expression*op1, Expression*op2);
|
|
virtual ~ExpBinary() =0;
|
|
|
|
inline const Expression* peek_operand1(void) const { return operand1_; }
|
|
inline const Expression* peek_operand2(void) const { return operand2_; }
|
|
|
|
const VType*probe_type(Entity*ent, ScopeBase*scope) const;
|
|
void visit(ExprVisitor& func);
|
|
|
|
protected:
|
|
|
|
int elaborate_exprs(Entity*, ScopeBase*, const VType*);
|
|
int emit_operand1(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
int emit_operand2(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
|
|
bool eval_operand1(Entity*ent, ScopeBase*scope, int64_t&val) const;
|
|
bool eval_operand2(Entity*ent, ScopeBase*scope, int64_t&val) const;
|
|
|
|
inline void write_to_stream_operand1(std::ostream&out) const
|
|
{ operand1_->write_to_stream(out); }
|
|
inline void write_to_stream_operand2(std::ostream&out) const
|
|
{ operand2_->write_to_stream(out); }
|
|
|
|
void dump_operands(ostream&out, int indent = 0) const;
|
|
|
|
private:
|
|
virtual const VType*resolve_operand_types_(const VType*t1, const VType*t2) const;
|
|
|
|
private:
|
|
Expression*operand1_;
|
|
Expression*operand2_;
|
|
};
|
|
|
|
class ExpAggregate : public Expression {
|
|
|
|
public:
|
|
// A "choice" is only part of an element. It is the thing that
|
|
// is used to identify an element of the aggregate. It can
|
|
// represent the index (or range) of an array, or the name of
|
|
// a record member.
|
|
class choice_t {
|
|
public:
|
|
// Create an "others" choice
|
|
choice_t();
|
|
// Create a simple_expression choice
|
|
explicit choice_t(Expression*exp);
|
|
// Create a named choice
|
|
explicit choice_t(perm_string name);
|
|
// discreate_range choice
|
|
explicit choice_t(ExpRange*ran);
|
|
|
|
choice_t(const choice_t&other);
|
|
|
|
~choice_t();
|
|
|
|
// true if this represents an "others" choice
|
|
bool others() const;
|
|
// Return expression if this represents a simple_expression.
|
|
Expression*simple_expression(bool detach_flag =true);
|
|
// Return ExpRange if this represents a range_expression
|
|
ExpRange*range_expressions(void);
|
|
|
|
void write_to_stream(std::ostream&fd);
|
|
void dump(ostream&out, int indent) const;
|
|
|
|
private:
|
|
std::unique_ptr<Expression>expr_;
|
|
std::unique_ptr<ExpRange> range_;
|
|
private: // not implemented
|
|
choice_t& operator= (const choice_t&);
|
|
};
|
|
|
|
struct choice_element {
|
|
choice_element() : choice(), expr() {}
|
|
|
|
choice_element(const choice_element&other) {
|
|
choice = other.choice ? new choice_t(*other.choice) : NULL;
|
|
expr = safe_clone(other.expr);
|
|
}
|
|
|
|
choice_t*choice;
|
|
Expression*expr;
|
|
bool alias_flag;
|
|
};
|
|
|
|
// Elements are the syntactic items in an aggregate
|
|
// expression. Each element expressions a bunch of fields
|
|
// (choices) and binds them to a single expression
|
|
class element_t {
|
|
public:
|
|
explicit element_t(std::list<choice_t*>*fields, Expression*val);
|
|
element_t(const element_t&other);
|
|
~element_t();
|
|
|
|
size_t count_choices() const { return fields_.size(); }
|
|
void map_choices(choice_element*dst);
|
|
|
|
inline Expression* extract_expression() { return val_; }
|
|
void write_to_stream(std::ostream&fd) const;
|
|
|
|
void dump(ostream&out, int indent) const;
|
|
|
|
private:
|
|
std::vector<choice_t*>fields_;
|
|
Expression*val_;
|
|
private: // not implemented
|
|
element_t& operator = (const element_t&);
|
|
};
|
|
|
|
public:
|
|
explicit ExpAggregate(std::list<element_t*>*el);
|
|
~ExpAggregate();
|
|
|
|
Expression*clone() const;
|
|
|
|
const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const;
|
|
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
|
|
void write_to_stream(std::ostream&fd) const;
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
void visit(ExprVisitor& func);
|
|
|
|
private:
|
|
int elaborate_expr_array_(Entity*ent, ScopeBase*scope, const VTypeArray*ltype);
|
|
int elaborate_expr_record_(Entity*ent, ScopeBase*scope, const VTypeRecord*ltype);
|
|
int emit_array_(ostream&out, Entity*ent, ScopeBase*scope, const VTypeArray*ltype) const;
|
|
int emit_record_(ostream&out, Entity*ent, ScopeBase*scope, const VTypeRecord*ltype) const;
|
|
|
|
private:
|
|
// This is the elements as directly parsed.
|
|
std::vector<element_t*> elements_;
|
|
|
|
// These are the elements after elaboration. This form is
|
|
// easier to check and emit.
|
|
std::vector<choice_element> aggregate_;
|
|
};
|
|
|
|
class ExpArithmetic : public ExpBinary {
|
|
|
|
public:
|
|
enum fun_t { PLUS, MINUS, MULT, DIV, MOD, REM, POW, xCONCAT };
|
|
|
|
public:
|
|
ExpArithmetic(ExpArithmetic::fun_t op, Expression*op1, Expression*op2);
|
|
~ExpArithmetic();
|
|
|
|
Expression*clone() const {
|
|
return new ExpArithmetic(fun_, peek_operand1()->clone(), peek_operand2()->clone());
|
|
}
|
|
|
|
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
|
|
void write_to_stream(std::ostream&fd) const;
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
virtual bool evaluate(Entity*ent, ScopeBase*scope, int64_t&val) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
|
|
private:
|
|
const VType* resolve_operand_types_(const VType*t1, const VType*t2) const;
|
|
|
|
private:
|
|
fun_t fun_;
|
|
};
|
|
|
|
class ExpAttribute : public Expression {
|
|
|
|
public:
|
|
ExpAttribute(perm_string name,std::list<Expression*>*args);
|
|
virtual ~ExpAttribute();
|
|
|
|
inline perm_string peek_attribute() const { return name_; }
|
|
|
|
// Constants for the standard attributes
|
|
static const perm_string LEFT;
|
|
static const perm_string RIGHT;
|
|
|
|
protected:
|
|
std::list<Expression*>*clone_args() const;
|
|
int elaborate_args(Entity*ent, ScopeBase*scope, const VType*ltype);
|
|
void visit_args(ExprVisitor& func);
|
|
|
|
bool evaluate_type_attr(const VType*type, Entity*ent, ScopeBase*scope, int64_t&val) const;
|
|
bool test_array_type(const VType*type) const;
|
|
|
|
perm_string name_;
|
|
std::list<Expression*>*args_;
|
|
};
|
|
|
|
class ExpObjAttribute : public ExpAttribute {
|
|
public:
|
|
ExpObjAttribute(ExpName*base, perm_string name, std::list<Expression*>*args);
|
|
~ExpObjAttribute();
|
|
|
|
Expression*clone() const;
|
|
|
|
inline const ExpName* peek_base() const { return base_; }
|
|
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
const VType*probe_type(Entity*ent, ScopeBase*scope) const;
|
|
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
|
|
void write_to_stream(std::ostream&fd) const;
|
|
// Some attributes can be evaluated at compile time
|
|
bool evaluate(Entity*ent, ScopeBase*scope, int64_t&val) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
void visit(ExprVisitor& func);
|
|
|
|
private:
|
|
ExpName*base_;
|
|
};
|
|
|
|
class ExpTypeAttribute : public ExpAttribute {
|
|
public:
|
|
ExpTypeAttribute(const VType*base, perm_string name, std::list<Expression*>*args);
|
|
// no destructor - VType objects (base_) are shared between many expressions
|
|
|
|
Expression*clone() const;
|
|
|
|
inline const VType* peek_base() const { return base_; }
|
|
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
const VType*probe_type(Entity*ent, ScopeBase*scope) const;
|
|
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
|
|
void write_to_stream(std::ostream&fd) const;
|
|
// Some attributes can be evaluated at compile time
|
|
bool evaluate(ScopeBase*scope, int64_t&val) const;
|
|
bool evaluate(Entity*ent, ScopeBase*scope, int64_t&val) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
void visit(ExprVisitor& func);
|
|
|
|
private:
|
|
const VType*base_;
|
|
};
|
|
|
|
class ExpBitstring : public Expression {
|
|
|
|
public:
|
|
explicit ExpBitstring(const char*);
|
|
ExpBitstring(const ExpBitstring&other) : Expression() { value_ = other.value_; }
|
|
~ExpBitstring();
|
|
|
|
Expression*clone() const { return new ExpBitstring(*this); }
|
|
|
|
const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const;
|
|
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
|
|
void write_to_stream(std::ostream&fd) const;
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
|
|
private:
|
|
std::vector<char>value_;
|
|
};
|
|
|
|
|
|
class ExpCharacter : public Expression {
|
|
|
|
public:
|
|
explicit ExpCharacter(char val);
|
|
ExpCharacter(const ExpCharacter&other) : Expression() { value_ = other.value_; }
|
|
~ExpCharacter();
|
|
|
|
Expression*clone() const { return new ExpCharacter(*this); }
|
|
|
|
const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const;
|
|
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
|
|
void write_to_stream(std::ostream&fd) const;
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
bool is_primary(void) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
|
|
char value() const { return value_; }
|
|
|
|
private:
|
|
int emit_primitive_bit_(ostream&out, Entity*ent, ScopeBase*scope,
|
|
const VTypePrimitive*etype) const;
|
|
|
|
private:
|
|
char value_;
|
|
};
|
|
|
|
class ExpConcat : public Expression {
|
|
|
|
public:
|
|
ExpConcat(Expression*op1, Expression*op2);
|
|
~ExpConcat();
|
|
|
|
Expression*clone() const {
|
|
return new ExpConcat(operand1_->clone(), operand2_->clone());
|
|
}
|
|
|
|
const VType*probe_type(Entity*ent, ScopeBase*scope) const;
|
|
const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const;
|
|
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
|
|
void write_to_stream(std::ostream&fd) const;
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
bool is_primary(void) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
void visit(ExprVisitor& func);
|
|
|
|
private:
|
|
int elaborate_expr_array_(Entity*ent, ScopeBase*scope, const VTypeArray*ltype);
|
|
|
|
private:
|
|
Expression*operand1_;
|
|
Expression*operand2_;
|
|
};
|
|
|
|
/*
|
|
* The conditional expression represents the VHDL when-else
|
|
* expressions. Note that by the VHDL syntax rules, these cannot show
|
|
* up other than at the root of an expression.
|
|
*/
|
|
class ExpConditional : public Expression {
|
|
|
|
public:
|
|
class case_t : public LineInfo {
|
|
public:
|
|
case_t(Expression*cond, std::list<Expression*>*tru);
|
|
case_t(const case_t&other);
|
|
~case_t();
|
|
|
|
inline Expression*condition() const { return cond_; }
|
|
inline void set_condition(Expression*cond) { cond_ = cond; }
|
|
inline const std::list<Expression*>& true_clause() const { return true_clause_; }
|
|
|
|
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*lt);
|
|
int emit_option(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
int emit_default(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
std::list<Expression*>& extract_true_clause() { return true_clause_; }
|
|
void visit(ExprVisitor& func);
|
|
|
|
private:
|
|
Expression*cond_;
|
|
std::list<Expression*> true_clause_;
|
|
};
|
|
|
|
public:
|
|
ExpConditional(Expression*cond, std::list<Expression*>*tru,
|
|
std::list<case_t*>*options);
|
|
virtual ~ExpConditional();
|
|
|
|
virtual Expression*clone() const;
|
|
|
|
const VType*probe_type(Entity*ent, ScopeBase*scope) const;
|
|
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
|
|
void write_to_stream(std::ostream&fd) const;
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
void visit(ExprVisitor& func);
|
|
|
|
protected:
|
|
std::list<case_t*> options_;
|
|
};
|
|
|
|
/*
|
|
* Expression to handle selected assignments (with .. select target <= value when ..)
|
|
*/
|
|
class ExpSelected : public ExpConditional {
|
|
public:
|
|
ExpSelected(Expression*selector, std::list<case_t*>*options);
|
|
~ExpSelected();
|
|
|
|
Expression*clone() const;
|
|
|
|
private:
|
|
Expression*selector_;
|
|
};
|
|
|
|
/*
|
|
* This is a special expression type that represents posedge/negedge
|
|
* expressions in sensitivity lists.
|
|
*/
|
|
class ExpEdge : public ExpUnary {
|
|
|
|
public:
|
|
enum fun_t { NEGEDGE, ANYEDGE, POSEDGE };
|
|
|
|
public:
|
|
explicit ExpEdge(ExpEdge::fun_t ty, Expression*op);
|
|
~ExpEdge();
|
|
|
|
Expression*clone() const { return new ExpEdge(fun_, peek_operand()->clone()); }
|
|
|
|
inline fun_t edge_fun() const { return fun_; }
|
|
|
|
void write_to_stream(std::ostream&fd) const;
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
|
|
private:
|
|
fun_t fun_;
|
|
};
|
|
|
|
class ExpFunc : public Expression {
|
|
|
|
public:
|
|
explicit ExpFunc(perm_string nn);
|
|
ExpFunc(perm_string nn, std::list<Expression*>*args);
|
|
~ExpFunc();
|
|
|
|
Expression*clone() const;
|
|
|
|
const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const;
|
|
inline perm_string func_name() const { return name_; }
|
|
inline size_t func_args() const { return argv_.size(); }
|
|
inline const Expression*func_arg(size_t idx) const { return argv_[idx]; }
|
|
const VType*func_ret_type() const;
|
|
|
|
public: // Base methods
|
|
const VType*probe_type(Entity*ent, ScopeBase*scope) const;
|
|
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
|
|
void write_to_stream(std::ostream&fd) const;
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
void visit(ExprVisitor& func); // NOTE: does not handle expressions in subprogram body
|
|
|
|
// Returns a subprogram header that matches the function call
|
|
SubprogramHeader*match_signature(Entity*ent, ScopeBase*scope) const;
|
|
|
|
private:
|
|
perm_string name_;
|
|
std::vector<Expression*> argv_;
|
|
mutable SubprogramHeader*def_;
|
|
};
|
|
|
|
class ExpInteger : public Expression {
|
|
|
|
public:
|
|
explicit ExpInteger(int64_t val);
|
|
ExpInteger(const ExpInteger&other) : Expression(), value_(other.value_) {}
|
|
~ExpInteger();
|
|
|
|
Expression*clone() const { return new ExpInteger(*this); }
|
|
|
|
const VType*probe_type(Entity*ent, ScopeBase*scope) const;
|
|
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
|
|
void write_to_stream(std::ostream&fd) const;
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
int emit_package(std::ostream&out) const;
|
|
bool is_primary(void) const { return true; }
|
|
bool evaluate(Entity*ent, ScopeBase*scope, int64_t&val) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
virtual ostream& dump_inline(ostream&out) const;
|
|
|
|
private:
|
|
int64_t value_;
|
|
};
|
|
|
|
class ExpReal : public Expression {
|
|
|
|
public:
|
|
explicit ExpReal(double val);
|
|
ExpReal(const ExpReal&other) : Expression(), value_(other.value_) {}
|
|
~ExpReal();
|
|
|
|
Expression*clone() const { return new ExpReal(*this); }
|
|
|
|
const VType*probe_type(Entity*ent, ScopeBase*scope) const;
|
|
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
|
|
void write_to_stream(std::ostream&fd) const;
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
int emit_package(std::ostream&out) const;
|
|
bool is_primary(void) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
virtual ostream& dump_inline(ostream&out) const;
|
|
|
|
private:
|
|
double value_;
|
|
};
|
|
|
|
class ExpLogical : public ExpBinary {
|
|
|
|
public:
|
|
enum fun_t { AND, OR, NAND, NOR, XOR, XNOR };
|
|
|
|
public:
|
|
ExpLogical(ExpLogical::fun_t ty, Expression*op1, Expression*op2);
|
|
~ExpLogical();
|
|
|
|
Expression*clone() const {
|
|
return new ExpLogical(fun_, peek_operand1()->clone(), peek_operand2()->clone());
|
|
}
|
|
|
|
inline fun_t logic_fun() const { return fun_; }
|
|
|
|
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
|
|
void write_to_stream(std::ostream&fd) const;
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
|
|
private:
|
|
fun_t fun_;
|
|
};
|
|
|
|
/*
|
|
* The ExpName class represents an expression that is an identifier or
|
|
* other sort of name. The ExpNameALL is a special case of ExpName
|
|
* that represents the "all" keyword is contexts that can handle it.
|
|
*/
|
|
class ExpName : public Expression {
|
|
|
|
public:
|
|
explicit ExpName(perm_string nn);
|
|
ExpName(perm_string nn, std::list<Expression*>*indices);
|
|
ExpName(ExpName*prefix, perm_string nn, std::list<Expression*>*indices = NULL);
|
|
virtual ~ExpName();
|
|
|
|
public: // Base methods
|
|
Expression*clone() const;
|
|
int elaborate_lval(Entity*ent, ScopeBase*scope, bool);
|
|
int elaborate_rval(Entity*ent, ScopeBase*scope, const InterfacePort*);
|
|
const VType* probe_type(Entity*ent, ScopeBase*scope) const;
|
|
const VType* fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*host) const;
|
|
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
|
|
void write_to_stream(std::ostream&fd) const;
|
|
int emit_indices(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
bool is_primary(void) const;
|
|
bool evaluate(Entity*ent, ScopeBase*scope, int64_t&val) const;
|
|
bool symbolic_compare(const Expression*that) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
inline const char* name() const { return name_; }
|
|
inline const perm_string& peek_name() const { return name_; }
|
|
void add_index(std::list<Expression*>*idx);
|
|
void visit(ExprVisitor& func);
|
|
|
|
private:
|
|
class index_t {
|
|
public:
|
|
index_t(Expression*idx, Expression*size, Expression*offset = NULL) :
|
|
idx_(idx), size_(size), offset_(offset) {}
|
|
~index_t() {
|
|
delete idx_;
|
|
delete size_;
|
|
delete offset_;
|
|
}
|
|
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
|
|
private:
|
|
Expression*idx_;
|
|
Expression*size_;
|
|
Expression*offset_;
|
|
};
|
|
|
|
const VType* elaborate_adjust_type_with_range_(Entity*ent, ScopeBase*scope, const VType*type);
|
|
|
|
int elaborate_lval_(Entity*ent, ScopeBase*scope, bool, ExpName*suffix);
|
|
const VType* probe_prefix_type_(Entity*ent, ScopeBase*scope) const;
|
|
const VType* probe_prefixed_type_(Entity*ent, ScopeBase*scope) const;
|
|
|
|
int emit_as_prefix_(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
|
|
// There are some workarounds required for constant arrays/records, as
|
|
// they are currently emitted as flat localparams (without any type
|
|
// information). The following workarounds adjust the access indices
|
|
// to select appropriate parts of the localparam.
|
|
bool try_workarounds_(ostream&out, Entity*ent, ScopeBase*scope,
|
|
list<index_t*>&indices, int&data_size) const;
|
|
|
|
bool check_const_array_workaround_(const VTypeArray*arr, ScopeBase*scope,
|
|
list<index_t*>&indices, int&data_size) const;
|
|
|
|
bool check_const_record_workaround_(const VTypeRecord*rec, ScopeBase*scope,
|
|
list<index_t*>&indices, int&data_size) const;
|
|
|
|
int emit_workaround_(ostream&out, Entity*ent, ScopeBase*scope,
|
|
const list<index_t*>&indices, int field_size) const;
|
|
|
|
private:
|
|
Expression*index(unsigned int number) const;
|
|
|
|
std::unique_ptr<ExpName> prefix_;
|
|
perm_string name_;
|
|
std::list<Expression*>*indices_;
|
|
};
|
|
|
|
class ExpNameALL : public ExpName {
|
|
|
|
public:
|
|
ExpNameALL() : ExpName(empty_perm_string) { }
|
|
|
|
public:
|
|
const VType* probe_type(Entity*ent, ScopeBase*scope) const;
|
|
void dump(ostream&out, int indent =0) const;
|
|
};
|
|
|
|
class ExpRelation : public ExpBinary {
|
|
|
|
public:
|
|
enum fun_t { EQ, LT, GT, NEQ, LE, GE };
|
|
|
|
inline fun_t relation_fun(void) const { return fun_; }
|
|
|
|
public:
|
|
ExpRelation(ExpRelation::fun_t ty, Expression*op1, Expression*op2);
|
|
~ExpRelation();
|
|
|
|
Expression*clone() const {
|
|
return new ExpRelation(fun_, peek_operand1()->clone(), peek_operand2()->clone());
|
|
}
|
|
|
|
const VType* probe_type(Entity*ent, ScopeBase*scope) const;
|
|
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
|
|
void write_to_stream(std::ostream&fd) const;
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
|
|
private:
|
|
fun_t fun_;
|
|
};
|
|
|
|
/*
|
|
* Helper class to handle name expressions coming from another scope. As such,
|
|
* we get more information regarding their type, etc. from the associated scope.
|
|
*/
|
|
class ExpScopedName : public Expression {
|
|
public:
|
|
ExpScopedName(perm_string scope, ExpName*exp);
|
|
~ExpScopedName();
|
|
|
|
Expression*clone() const
|
|
{ return new ExpScopedName(scope_name_, static_cast<ExpName*>(name_->clone())); }
|
|
|
|
int elaborate_lval(Entity*ent, ScopeBase*scope, bool is_sequ)
|
|
{ return name_->elaborate_lval(ent, get_scope(scope), is_sequ); }
|
|
|
|
int elaborate_rval(Entity*ent, ScopeBase*scope, const InterfacePort*lval)
|
|
{ return name_->elaborate_rval(ent, get_scope(scope), lval); }
|
|
|
|
const VType* probe_type(Entity*ent, ScopeBase*scope) const
|
|
{ return name_->probe_type(ent, get_scope(scope)); }
|
|
|
|
const VType* fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*host) const
|
|
{ return name_->fit_type(ent, get_scope(scope), host); }
|
|
|
|
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype)
|
|
{ return name_->elaborate_expr(ent, get_scope(scope), ltype); }
|
|
|
|
void write_to_stream(std::ostream&fd) const
|
|
{ name_->write_to_stream(fd); }
|
|
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const {
|
|
out << scope_name_ << ".";
|
|
return name_->emit(out, ent, scope);
|
|
}
|
|
|
|
bool is_primary(void) const
|
|
{ return name_->is_primary(); }
|
|
|
|
bool evaluate(Entity*ent, ScopeBase*, int64_t&val) const
|
|
{ return name_->evaluate(ent, scope_, val); }
|
|
|
|
bool symbolic_compare(const Expression*that) const
|
|
{ return name_->symbolic_compare(that); }
|
|
|
|
void dump(ostream&out, int indent = 0) const;
|
|
|
|
void visit(ExprVisitor&func);
|
|
|
|
private:
|
|
// Functions that resolve the origin scope for the name expression
|
|
ScopeBase*get_scope(const ScopeBase*scope);
|
|
ScopeBase*get_scope(const ScopeBase*scope) const;
|
|
|
|
perm_string scope_name_;
|
|
ScopeBase*scope_;
|
|
ExpName*name_;
|
|
};
|
|
|
|
class ExpShift : public ExpBinary {
|
|
public:
|
|
enum shift_t { SRL, SLL, SRA, SLA, ROL, ROR };
|
|
|
|
public:
|
|
ExpShift(ExpShift::shift_t op, Expression*op1, Expression*op2);
|
|
|
|
Expression*clone() const {
|
|
return new ExpShift(shift_, peek_operand1()->clone(), peek_operand2()->clone());
|
|
}
|
|
|
|
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
|
|
void write_to_stream(std::ostream&fd) const;
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
bool evaluate(Entity*ent, ScopeBase*scope, int64_t&val) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
|
|
private:
|
|
shift_t shift_;
|
|
};
|
|
|
|
class ExpString : public Expression {
|
|
|
|
public:
|
|
explicit ExpString(const char*);
|
|
ExpString(const ExpString&other) : Expression(), value_(other.value_) {}
|
|
~ExpString();
|
|
|
|
Expression*clone() const { return new ExpString(*this); }
|
|
|
|
const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const;
|
|
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
|
|
void write_to_stream(std::ostream&fd) const;
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
bool is_primary(void) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
const std::string& get_value() const { return value_; }
|
|
|
|
// Converts quotation marks (") to its escaped
|
|
// counterpart in SystemVerilog (\")
|
|
static std::string escape_quot(const std::string& str);
|
|
|
|
private:
|
|
int emit_as_array_(ostream&out, Entity*ent, ScopeBase*scope, const VTypeArray*arr) const;
|
|
|
|
private:
|
|
std::string value_;
|
|
};
|
|
|
|
class ExpUAbs : public ExpUnary {
|
|
|
|
public:
|
|
explicit ExpUAbs(Expression*op1);
|
|
~ExpUAbs();
|
|
|
|
Expression*clone() const { return new ExpUAbs(peek_operand()->clone()); }
|
|
|
|
void write_to_stream(std::ostream&fd) const;
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
};
|
|
|
|
class ExpUNot : public ExpUnary {
|
|
|
|
public:
|
|
explicit ExpUNot(Expression*op1);
|
|
~ExpUNot();
|
|
|
|
Expression*clone() const { return new ExpUNot(peek_operand()->clone()); }
|
|
|
|
void write_to_stream(std::ostream&fd) const;
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
};
|
|
|
|
class ExpUMinus : public ExpUnary {
|
|
|
|
public:
|
|
explicit ExpUMinus(Expression*op1);
|
|
~ExpUMinus();
|
|
|
|
Expression*clone() const { return new ExpUMinus(peek_operand()->clone()); }
|
|
|
|
void write_to_stream(std::ostream&fd) const;
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
};
|
|
|
|
/*
|
|
* Class that wraps other expressions to cast them to other types.
|
|
*/
|
|
class ExpCast : public Expression {
|
|
|
|
public:
|
|
ExpCast(Expression*base, const VType*type);
|
|
~ExpCast();
|
|
|
|
Expression*clone() const { return new ExpCast(base_->clone(), type_->clone()); }
|
|
|
|
inline int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*) {
|
|
return base_->elaborate_expr(ent, scope, type_);
|
|
}
|
|
void write_to_stream(std::ostream&fd) const;
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
void visit(ExprVisitor& func);
|
|
|
|
private:
|
|
Expression*base_;
|
|
const VType*type_;
|
|
};
|
|
|
|
/*
|
|
* Class that handles 'new' statement. VHDL is not capable of dynamic memory
|
|
* allocation, but it is useful for emitting some cases.
|
|
*/
|
|
class ExpNew : public Expression {
|
|
|
|
public:
|
|
explicit ExpNew(Expression*size);
|
|
~ExpNew();
|
|
|
|
Expression*clone() const { return new ExpNew(size_->clone()); }
|
|
|
|
// There is no 'new' in VHDL - do not emit anything
|
|
void write_to_stream(std::ostream&) const {};
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
void visit(ExprVisitor& func);
|
|
|
|
private:
|
|
Expression*size_;
|
|
};
|
|
|
|
class ExpTime : public Expression {
|
|
public:
|
|
typedef enum { FS, PS, NS, US, MS, S } timeunit_t;
|
|
|
|
ExpTime(uint64_t amount, timeunit_t unit);
|
|
|
|
Expression*clone() const { return new ExpTime(amount_, unit_); }
|
|
|
|
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
|
|
void write_to_stream(std::ostream&) const;
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
//bool evaluate(Entity*ent, ScopeBase*scope, int64_t&val) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
|
|
private:
|
|
// Returns the time value expressed in femtoseconds
|
|
double to_fs() const;
|
|
uint64_t amount_;
|
|
timeunit_t unit_;
|
|
};
|
|
|
|
class ExpRange : public Expression {
|
|
public:
|
|
typedef enum { DOWNTO, TO, AUTO } range_dir_t;
|
|
|
|
// Regular range
|
|
ExpRange(Expression*left_idx, Expression*right_idx, range_dir_t dir);
|
|
// 'range/'reverse range attribute
|
|
ExpRange(ExpName*base, bool reverse_range);
|
|
~ExpRange();
|
|
|
|
Expression*clone() const;
|
|
|
|
// Returns the upper boundary
|
|
Expression*msb();
|
|
// Returns the lower boundary
|
|
Expression*lsb();
|
|
|
|
Expression*left();
|
|
Expression*right();
|
|
|
|
range_dir_t direction() const { return direction_; }
|
|
|
|
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
|
|
void write_to_stream(std::ostream&) const;
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
private:
|
|
// Regular range related fields
|
|
Expression*left_, *right_;
|
|
range_dir_t direction_;
|
|
|
|
// 'range/'reverse_range attribute related fields
|
|
// Flag to indicate it is a 'range/'reverse_range expression
|
|
bool range_expr_;
|
|
// Object name to which the attribute is applied
|
|
ExpName*range_base_;
|
|
// Flag to distinguish between 'range & 'reverse_range
|
|
bool range_reverse_;
|
|
};
|
|
|
|
// Helper class that wraps other expression to specify delay.
|
|
class ExpDelay : public Expression {
|
|
public:
|
|
ExpDelay(Expression*expr, Expression*delay);
|
|
~ExpDelay();
|
|
|
|
Expression*clone() const { return new ExpDelay(expr_->clone(), delay_->clone()); }
|
|
|
|
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
|
|
void write_to_stream(std::ostream&) const;
|
|
int emit(ostream&out, Entity*ent, ScopeBase*scope) const;
|
|
void dump(ostream&out, int indent = 0) const;
|
|
void visit(ExprVisitor& func);
|
|
|
|
const Expression*peek_expr() const { return expr_; }
|
|
const Expression*peek_delay() const { return delay_; }
|
|
|
|
private:
|
|
Expression*expr_;
|
|
Expression*delay_;
|
|
};
|
|
|
|
#if __cplusplus < 201103L
|
|
#undef unique_ptr
|
|
#endif
|
|
|
|
#endif /* IVL_expression_H */
|