202 lines
5.6 KiB
C++
202 lines
5.6 KiB
C++
/*
|
|
* Copyright (c) 2005-2016 Stephen Williams (steve@icarus.com)
|
|
*
|
|
* This source code is free software; you can redistribute it
|
|
* and/or modify it in source code form under the terms of the GNU
|
|
* General Public License as published by the Free Software
|
|
* Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
# include "compile.h"
|
|
# include "schedule.h"
|
|
# include "dff.h"
|
|
# include <climits>
|
|
# include <cstdio>
|
|
# include <cassert>
|
|
# include <cstdlib>
|
|
# include <iostream>
|
|
|
|
/* We need to ensure an initial output value is propagated. This is
|
|
achieved by setting asc_ to BIT4_Z to flag that we haven't yet
|
|
propagated an output value. This will also disable clocked output.
|
|
For flip-flops without an asynchronous set/clear, we schedule an
|
|
initial value of BIT4_0 to be sent to port 3. For flip-flops with
|
|
an asynchronous set/clear, we rely on the network propagating an
|
|
initial value to port 3. The first value received on port 3 will
|
|
either propagate the set/clear value (if the received value is
|
|
BIT4_1) or will propagate an initial value of 'bx. From then on
|
|
the flip-flop operates normally. */
|
|
|
|
vvp_dff::vvp_dff(unsigned width, bool negedge)
|
|
: clk_(BIT4_X), ena_(BIT4_X), asc_(BIT4_Z), d_(width, BIT4_X)
|
|
{
|
|
clk_active_ = negedge ? BIT4_0 : BIT4_1;
|
|
}
|
|
|
|
vvp_dff::~vvp_dff()
|
|
{
|
|
}
|
|
|
|
vvp_dff_aclr::vvp_dff_aclr(unsigned width, bool negedge)
|
|
: vvp_dff(width, negedge)
|
|
{
|
|
}
|
|
|
|
vvp_dff_aset::vvp_dff_aset(unsigned width, bool negedge)
|
|
: vvp_dff(width, negedge)
|
|
{
|
|
}
|
|
|
|
vvp_dff_asc::vvp_dff_asc(unsigned width, bool negedge, char*asc_value)
|
|
: vvp_dff(width, negedge)
|
|
{
|
|
asc_value_ = c4string_to_vector4(asc_value);
|
|
}
|
|
|
|
void vvp_dff::recv_vec4(vvp_net_ptr_t port, const vvp_vector4_t&bit,
|
|
vvp_context_t)
|
|
{
|
|
vvp_bit4_t tmp;
|
|
|
|
switch (port.port()) {
|
|
|
|
case 0: // D
|
|
d_ = bit;
|
|
break;
|
|
|
|
case 1: // CLK
|
|
assert(bit.size() == 1);
|
|
if (asc_ != BIT4_0)
|
|
break;
|
|
if (ena_ != BIT4_1)
|
|
break;
|
|
tmp = clk_;
|
|
clk_ = bit.value(0);
|
|
if (clk_ == clk_active_ && tmp != clk_active_)
|
|
schedule_propagate_vector(port.ptr(), 0, d_);
|
|
break;
|
|
|
|
case 2: // CE
|
|
assert(bit.size() == 1);
|
|
ena_ = bit.value(0);
|
|
break;
|
|
|
|
case 3: // asynch SET/CLR
|
|
assert(bit.size() == 1);
|
|
tmp = asc_;
|
|
asc_ = bit.value(0);
|
|
if (asc_ == BIT4_1 && tmp != BIT4_1)
|
|
recv_async(port);
|
|
else if (tmp == BIT4_Z)
|
|
port.ptr()->send_vec4(vvp_vector4_t(d_.size(), BIT4_X), 0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void vvp_dff::recv_vec4_pv(vvp_net_ptr_t ptr, const vvp_vector4_t&bit,
|
|
unsigned base, unsigned vwid, vvp_context_t ctx)
|
|
{
|
|
recv_vec4_pv_(ptr, bit, base, vwid, ctx);
|
|
}
|
|
|
|
/*
|
|
* The recv_async functions respond to the asynchronous
|
|
* set/clear input by propagating the desired output.
|
|
*
|
|
* NOTE: Don't touch the d_ value, because that tracks the D input,
|
|
* which may be needed when the device is clocked afterwards.
|
|
*/
|
|
void vvp_dff::recv_async(vvp_net_ptr_t)
|
|
{
|
|
// The base dff does not have an asynchronous set/clr input.
|
|
assert(0);
|
|
}
|
|
|
|
void vvp_dff_aclr::recv_async(vvp_net_ptr_t port)
|
|
{
|
|
schedule_propagate_vector(port.ptr(), 0, vvp_vector4_t(d_.size(), BIT4_0));
|
|
}
|
|
|
|
void vvp_dff_aset::recv_async(vvp_net_ptr_t port)
|
|
{
|
|
schedule_propagate_vector(port.ptr(), 0, vvp_vector4_t(d_.size(), BIT4_1));
|
|
}
|
|
|
|
void vvp_dff_asc::recv_async(vvp_net_ptr_t port)
|
|
{
|
|
schedule_propagate_vector(port.ptr(), 0, asc_value_);
|
|
}
|
|
|
|
void compile_dff(char*label, unsigned width, bool negedge,
|
|
struct symb_s arg_d,
|
|
struct symb_s arg_c,
|
|
struct symb_s arg_e)
|
|
{
|
|
vvp_net_t*ptr = new vvp_net_t;
|
|
vvp_dff*fun = new vvp_dff(width, negedge);
|
|
|
|
ptr->fun = fun;
|
|
define_functor_symbol(label, ptr);
|
|
free(label);
|
|
input_connect(ptr, 0, arg_d.text);
|
|
input_connect(ptr, 1, arg_c.text);
|
|
input_connect(ptr, 2, arg_e.text);
|
|
|
|
vvp_vector4_t init_val = vvp_vector4_t(1, BIT4_0);
|
|
schedule_init_vector(vvp_net_ptr_t(ptr,3), init_val);
|
|
}
|
|
|
|
void compile_dff_aclr(char*label, unsigned width, bool negedge,
|
|
struct symb_s arg_d,
|
|
struct symb_s arg_c,
|
|
struct symb_s arg_e,
|
|
struct symb_s arg_a)
|
|
{
|
|
vvp_net_t*ptr = new vvp_net_t;
|
|
vvp_dff*fun = new vvp_dff_aclr(width, negedge);
|
|
|
|
ptr->fun = fun;
|
|
define_functor_symbol(label, ptr);
|
|
free(label);
|
|
input_connect(ptr, 0, arg_d.text);
|
|
input_connect(ptr, 1, arg_c.text);
|
|
input_connect(ptr, 2, arg_e.text);
|
|
input_connect(ptr, 3, arg_a.text);
|
|
}
|
|
|
|
void compile_dff_aset(char*label, unsigned width, bool negedge,
|
|
struct symb_s arg_d,
|
|
struct symb_s arg_c,
|
|
struct symb_s arg_e,
|
|
struct symb_s arg_a,
|
|
char*asc_value)
|
|
{
|
|
vvp_net_t*ptr = new vvp_net_t;
|
|
vvp_dff*fun;
|
|
if (asc_value) {
|
|
assert(c4string_test(asc_value));
|
|
fun = new vvp_dff_asc(width, negedge, asc_value);
|
|
free(asc_value);
|
|
} else {
|
|
fun = new vvp_dff_aset(width, negedge);
|
|
}
|
|
|
|
ptr->fun = fun;
|
|
define_functor_symbol(label, ptr);
|
|
free(label);
|
|
input_connect(ptr, 0, arg_d.text);
|
|
input_connect(ptr, 1, arg_c.text);
|
|
input_connect(ptr, 2, arg_e.text);
|
|
input_connect(ptr, 3, arg_a.text);
|
|
}
|