iverilog/vvp/dff.cc

202 lines
5.6 KiB
C++

/*
* Copyright (c) 2005-2016 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "compile.h"
# include "schedule.h"
# include "dff.h"
# include <climits>
# include <cstdio>
# include <cassert>
# include <cstdlib>
# include <iostream>
/* We need to ensure an initial output value is propagated. This is
achieved by setting asc_ to BIT4_Z to flag that we haven't yet
propagated an output value. This will also disable clocked output.
For flip-flops without an asynchronous set/clear, we schedule an
initial value of BIT4_0 to be sent to port 3. For flip-flops with
an asynchronous set/clear, we rely on the network propagating an
initial value to port 3. The first value received on port 3 will
either propagate the set/clear value (if the received value is
BIT4_1) or will propagate an initial value of 'bx. From then on
the flip-flop operates normally. */
vvp_dff::vvp_dff(unsigned width, bool negedge)
: clk_(BIT4_X), ena_(BIT4_X), asc_(BIT4_Z), d_(width, BIT4_X)
{
clk_active_ = negedge ? BIT4_0 : BIT4_1;
}
vvp_dff::~vvp_dff()
{
}
vvp_dff_aclr::vvp_dff_aclr(unsigned width, bool negedge)
: vvp_dff(width, negedge)
{
}
vvp_dff_aset::vvp_dff_aset(unsigned width, bool negedge)
: vvp_dff(width, negedge)
{
}
vvp_dff_asc::vvp_dff_asc(unsigned width, bool negedge, char*asc_value)
: vvp_dff(width, negedge)
{
asc_value_ = c4string_to_vector4(asc_value);
}
void vvp_dff::recv_vec4(vvp_net_ptr_t port, const vvp_vector4_t&bit,
vvp_context_t)
{
vvp_bit4_t tmp;
switch (port.port()) {
case 0: // D
d_ = bit;
break;
case 1: // CLK
assert(bit.size() == 1);
if (asc_ != BIT4_0)
break;
if (ena_ != BIT4_1)
break;
tmp = clk_;
clk_ = bit.value(0);
if (clk_ == clk_active_ && tmp != clk_active_)
schedule_propagate_vector(port.ptr(), 0, d_);
break;
case 2: // CE
assert(bit.size() == 1);
ena_ = bit.value(0);
break;
case 3: // asynch SET/CLR
assert(bit.size() == 1);
tmp = asc_;
asc_ = bit.value(0);
if (asc_ == BIT4_1 && tmp != BIT4_1)
recv_async(port);
else if (tmp == BIT4_Z)
port.ptr()->send_vec4(vvp_vector4_t(d_.size(), BIT4_X), 0);
break;
}
}
void vvp_dff::recv_vec4_pv(vvp_net_ptr_t ptr, const vvp_vector4_t&bit,
unsigned base, unsigned vwid, vvp_context_t ctx)
{
recv_vec4_pv_(ptr, bit, base, vwid, ctx);
}
/*
* The recv_async functions respond to the asynchronous
* set/clear input by propagating the desired output.
*
* NOTE: Don't touch the d_ value, because that tracks the D input,
* which may be needed when the device is clocked afterwards.
*/
void vvp_dff::recv_async(vvp_net_ptr_t)
{
// The base dff does not have an asynchronous set/clr input.
assert(0);
}
void vvp_dff_aclr::recv_async(vvp_net_ptr_t port)
{
schedule_propagate_vector(port.ptr(), 0, vvp_vector4_t(d_.size(), BIT4_0));
}
void vvp_dff_aset::recv_async(vvp_net_ptr_t port)
{
schedule_propagate_vector(port.ptr(), 0, vvp_vector4_t(d_.size(), BIT4_1));
}
void vvp_dff_asc::recv_async(vvp_net_ptr_t port)
{
schedule_propagate_vector(port.ptr(), 0, asc_value_);
}
void compile_dff(char*label, unsigned width, bool negedge,
struct symb_s arg_d,
struct symb_s arg_c,
struct symb_s arg_e)
{
vvp_net_t*ptr = new vvp_net_t;
vvp_dff*fun = new vvp_dff(width, negedge);
ptr->fun = fun;
define_functor_symbol(label, ptr);
free(label);
input_connect(ptr, 0, arg_d.text);
input_connect(ptr, 1, arg_c.text);
input_connect(ptr, 2, arg_e.text);
vvp_vector4_t init_val = vvp_vector4_t(1, BIT4_0);
schedule_init_vector(vvp_net_ptr_t(ptr,3), init_val);
}
void compile_dff_aclr(char*label, unsigned width, bool negedge,
struct symb_s arg_d,
struct symb_s arg_c,
struct symb_s arg_e,
struct symb_s arg_a)
{
vvp_net_t*ptr = new vvp_net_t;
vvp_dff*fun = new vvp_dff_aclr(width, negedge);
ptr->fun = fun;
define_functor_symbol(label, ptr);
free(label);
input_connect(ptr, 0, arg_d.text);
input_connect(ptr, 1, arg_c.text);
input_connect(ptr, 2, arg_e.text);
input_connect(ptr, 3, arg_a.text);
}
void compile_dff_aset(char*label, unsigned width, bool negedge,
struct symb_s arg_d,
struct symb_s arg_c,
struct symb_s arg_e,
struct symb_s arg_a,
char*asc_value)
{
vvp_net_t*ptr = new vvp_net_t;
vvp_dff*fun;
if (asc_value) {
assert(c4string_test(asc_value));
fun = new vvp_dff_asc(width, negedge, asc_value);
free(asc_value);
} else {
fun = new vvp_dff_aset(width, negedge);
}
ptr->fun = fun;
define_functor_symbol(label, ptr);
free(label);
input_connect(ptr, 0, arg_d.text);
input_connect(ptr, 1, arg_c.text);
input_connect(ptr, 2, arg_e.text);
input_connect(ptr, 3, arg_a.text);
}