419 lines
16 KiB
C++
419 lines
16 KiB
C++
#ifndef IVL_netmisc_H
|
|
#define IVL_netmisc_H
|
|
/*
|
|
* Copyright (c) 1999-2019 Stephen Williams (steve@icarus.com)
|
|
*
|
|
* This source code is free software; you can redistribute it
|
|
* and/or modify it in source code form under the terms of the GNU
|
|
* General Public License as published by the Free Software
|
|
* Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
# include "netlist.h"
|
|
|
|
class netsarray_t;
|
|
|
|
/*
|
|
* Search for a symbol using the "start" scope as the starting
|
|
* point. If the path includes a scope part, then locate the
|
|
* scope first.
|
|
*
|
|
* The return value is the scope where the symbol was found.
|
|
* If the symbol was not found, return 0. The output arguments
|
|
* get 0 except for the pointer to the object that represents
|
|
* the located symbol.
|
|
*
|
|
* The ex1 and ex2 output arguments are extended results. If the
|
|
* symbol is a parameter (par!=0) then ex1 is the msb expression and
|
|
* ex2 is the lsb expression for the range. If there is no range, then
|
|
* these values are set to 0.
|
|
*/
|
|
extern NetScope* symbol_search(const LineInfo*li,
|
|
Design*des,
|
|
NetScope*start,
|
|
pform_name_t path,
|
|
NetNet*&net, /* net/reg */
|
|
const NetExpr*&par,/* parameter/expr */
|
|
NetEvent*&eve, /* named event */
|
|
ivl_type_t&par_type);
|
|
|
|
inline NetScope* symbol_search(const LineInfo*li,
|
|
Design*des,
|
|
NetScope*start,
|
|
const pform_name_t&path,
|
|
NetNet*&net, /* net/reg */
|
|
const NetExpr*&par,/* parameter/expr */
|
|
NetEvent*&eve /* named event */)
|
|
{
|
|
ivl_type_t par_type;
|
|
return symbol_search(li, des, start, path, net, par, eve, par_type);
|
|
}
|
|
|
|
/*
|
|
* This function transforms an expression by either zero or sign extending
|
|
* the high bits until the expression has the desired width. This may mean
|
|
* not transforming the expression at all, if it is already wide enough.
|
|
* The extension method and the returned expression type is determined by
|
|
* signed_flag.
|
|
*/
|
|
extern NetExpr*pad_to_width(NetExpr*expr, unsigned wid, bool signed_flag,
|
|
const LineInfo&info);
|
|
/*
|
|
* This version determines the extension method from the base expression type.
|
|
*/
|
|
inline NetExpr*pad_to_width(NetExpr*expr, unsigned wid, const LineInfo&info)
|
|
{
|
|
return pad_to_width(expr, wid, expr->has_sign(), info);
|
|
}
|
|
|
|
/*
|
|
* This function transforms an expression by either zero or sign extending
|
|
* or discarding the high bits until the expression has the desired width.
|
|
* This may mean not transforming the expression at all, if it is already
|
|
* the correct width. The extension method (if needed) and the returned
|
|
* expression type is determined by signed_flag.
|
|
*/
|
|
extern NetExpr*cast_to_width(NetExpr*expr, unsigned wid, bool signed_flag,
|
|
const LineInfo&info);
|
|
|
|
extern NetNet*pad_to_width(Design*des, NetNet*n, unsigned w,
|
|
const LineInfo&info);
|
|
|
|
extern NetNet*pad_to_width_signed(Design*des, NetNet*n, unsigned w,
|
|
const LineInfo&info);
|
|
|
|
/*
|
|
* Generate the nodes necessary to cast an expression (a net) to a
|
|
* real value.
|
|
*/
|
|
extern NetNet*cast_to_int4(Design*des, NetScope*scope, NetNet*src, unsigned wid);
|
|
extern NetNet*cast_to_int2(Design*des, NetScope*scope, NetNet*src, unsigned wid);
|
|
extern NetNet*cast_to_real(Design*des, NetScope*scope, NetNet*src);
|
|
|
|
extern NetExpr*cast_to_int4(NetExpr*expr, unsigned width);
|
|
extern NetExpr*cast_to_int2(NetExpr*expr, unsigned width);
|
|
extern NetExpr*cast_to_real(NetExpr*expr);
|
|
|
|
/*
|
|
* Take the input expression and return a variation that assures that
|
|
* the expression is 1-bit wide and logical. This reflects the needs
|
|
* of conditions i.e. for "if" statements or logical operators.
|
|
*/
|
|
extern NetExpr*condition_reduce(NetExpr*expr);
|
|
|
|
/*
|
|
* This function transforms an expression by cropping the high bits
|
|
* off with a part select. The result has the width w passed in. This
|
|
* function does not pad, use pad_to_width if padding is desired.
|
|
*/
|
|
extern NetNet*crop_to_width(Design*des, NetNet*n, unsigned w);
|
|
|
|
extern bool calculate_part(const LineInfo*li, Design*des, NetScope*scope,
|
|
const index_component_t&index,
|
|
long&off, unsigned long&wid);
|
|
|
|
/*
|
|
* These functions generate an equation to normalize an expression using
|
|
* the provided vector/array information.
|
|
*/
|
|
extern NetExpr*normalize_variable_base(NetExpr *base, long msb, long lsb,
|
|
unsigned long wid, bool is_up,
|
|
long slice_off =0);
|
|
extern NetExpr*normalize_variable_base(NetExpr *base,
|
|
const list<netrange_t>&dims,
|
|
unsigned long wid, bool is_up);
|
|
|
|
/*
|
|
* Calculate a canonicalizing expression for a bit select, when the
|
|
* base expression is the last index of an otherwise complete bit
|
|
* select. For example:
|
|
* reg [3:0][7:0] foo;
|
|
* ... foo[1][x] ...
|
|
* base is (x) and the generated expression will be (x+8).
|
|
*/
|
|
extern NetExpr*normalize_variable_bit_base(const list<long>&indices, NetExpr *base,
|
|
const NetNet*reg);
|
|
|
|
/*
|
|
* This is similar to normalize_variable_bit_base, but the tail index
|
|
* it a base and width, instead of a bit. This is used for handling
|
|
* indexed part selects:
|
|
* reg [3:0][7:0] foo;
|
|
* ... foo[1][x +: 2]
|
|
* base is (x), wid input is (2), and is_up is (true). The output
|
|
* expression is (x+8).
|
|
*/
|
|
extern NetExpr *normalize_variable_part_base(const list<long>&indices, NetExpr*base,
|
|
const NetNet*reg,
|
|
unsigned long wid, bool is_up);
|
|
/*
|
|
* Calculate a canonicalizing expression for a slice select. The
|
|
* indices array is less than needed to fully address a bit, so the
|
|
* result is a slice of the packed array. The return value is an
|
|
* expression that gets to the base of the slice, and (lwid) becomes
|
|
* the width of the slice, in bits. For example:
|
|
* reg [4:1][7:0] foo
|
|
* ...foo[x]...
|
|
* base is (x) and the generated expression will be (x*8 - 8), with
|
|
* lwid set to (8).
|
|
*/
|
|
extern NetExpr*normalize_variable_slice_base(const list<long>&indices, NetExpr *base,
|
|
const NetNet*reg, unsigned long&lwid);
|
|
|
|
/*
|
|
* The as_indices() manipulator is a convenient way to emit a list of
|
|
* index values in the form [<>][<>]....
|
|
*/
|
|
template <class TYPE> struct __IndicesManip {
|
|
explicit inline __IndicesManip(const std::list<TYPE>&v) : val(v) { }
|
|
const std::list<TYPE>&val;
|
|
};
|
|
template <class TYPE> inline __IndicesManip<TYPE> as_indices(const std::list<TYPE>&indices)
|
|
{ return __IndicesManip<TYPE>(indices); }
|
|
|
|
extern ostream& operator << (ostream&o, __IndicesManip<long>);
|
|
extern ostream& operator << (ostream&o, __IndicesManip<NetExpr*>);
|
|
|
|
/*
|
|
* Given a list of index expressions, generate elaborated expressions
|
|
* and constant values, if possible.
|
|
*/
|
|
struct indices_flags {
|
|
bool invalid; // at least one index failed elaboration
|
|
bool variable; // at least one index is a dynamic value
|
|
bool undefined; // at least one index is an undefined value
|
|
};
|
|
extern void indices_to_expressions(Design*des, NetScope*scope,
|
|
// loc is for error messages.
|
|
const LineInfo*loc,
|
|
// src is the index list, and count is
|
|
// the number of items in the list to use.
|
|
const list<index_component_t>&src, unsigned count,
|
|
// True if the expression MUST be constant.
|
|
bool need_const,
|
|
// These are the outputs.
|
|
indices_flags&flags,
|
|
list<NetExpr*>&indices,list<long>&indices_const);
|
|
|
|
extern NetExpr*normalize_variable_unpacked(const NetNet*net, list<long>&indices);
|
|
extern NetExpr*normalize_variable_unpacked(const netsarray_t*net, list<long>&indices);
|
|
|
|
extern NetExpr*normalize_variable_unpacked(const NetNet*net, list<NetExpr*>&indices);
|
|
extern NetExpr*normalize_variable_unpacked(const LineInfo&loc, const netsarray_t*net, list<NetExpr*>&indices);
|
|
|
|
extern NetExpr*make_canonical_index(Design*des, NetScope*scope,
|
|
// loc for error messages
|
|
const LineInfo*loc,
|
|
// src is the index list
|
|
const std::list<index_component_t>&src,
|
|
// This is the reference type
|
|
const netsarray_t*stype,
|
|
// True if the expression MUST be constant.
|
|
bool need_const);
|
|
|
|
/*
|
|
* This function takes as input a NetNet signal and adds a constant
|
|
* value to it. If the val is 0, then simply return sig. Otherwise,
|
|
* return a new NetNet value that is the output of an addition.
|
|
*
|
|
* Not currently used.
|
|
*/
|
|
#if 0
|
|
extern NetNet*add_to_net(Design*des, NetNet*sig, long val);
|
|
#endif
|
|
extern NetNet*sub_net_from(Design*des, NetScope*scope, long val, NetNet*sig);
|
|
|
|
/*
|
|
* Make a NetEConst object that contains only X bits.
|
|
*/
|
|
extern NetEConst*make_const_x(unsigned long wid);
|
|
extern NetEConst*make_const_0(unsigned long wid);
|
|
extern NetEConst*make_const_val(unsigned long val);
|
|
extern NetEConst*make_const_val_s(long val);
|
|
|
|
/*
|
|
* Make A const net
|
|
*/
|
|
extern NetNet* make_const_x(Design*des, NetScope*scope, unsigned long wid);
|
|
extern NetNet* make_const_z(Design*des, NetScope*scope, unsigned long wid);
|
|
|
|
/*
|
|
* In some cases the lval is accessible as a pointer to the head of
|
|
* a list of NetAssign_ objects. This function returns the width of
|
|
* the l-value represented by this list.
|
|
*/
|
|
extern unsigned count_lval_width(const class NetAssign_*first);
|
|
|
|
/*
|
|
* This function elaborates an expression, and tries to evaluate it
|
|
* right away. If the expression can be evaluated, this returns a
|
|
* constant expression. If it cannot be evaluated, it returns whatever
|
|
* it can. If the expression cannot be elaborated, return 0.
|
|
*
|
|
* The context_width is the width of the context where the expression is
|
|
* being elaborated, or -1 if the expression is self-determined, or -2
|
|
* if the expression is lossless self-determined (this last option is
|
|
* treated as standard self-determined if the gn_strict_expr_width flag
|
|
* is set).
|
|
*
|
|
* cast_type allows the expression to be cast to a different type
|
|
* (before it is evaluated). If cast to a vector type, the vector
|
|
* width will be set to the context_width. The default value of
|
|
* IVL_VT_NO_TYPE causes the expression to retain its self-determined
|
|
* type.
|
|
*/
|
|
class PExpr;
|
|
|
|
extern NetExpr* elab_and_eval(Design*des, NetScope*scope,
|
|
PExpr*pe, int context_width,
|
|
bool need_const =false,
|
|
bool annotatable =false,
|
|
ivl_variable_type_t cast_type =IVL_VT_NO_TYPE,
|
|
bool force_unsigned =false);
|
|
|
|
extern NetExpr* elab_and_eval_lossless(Design*des, NetScope*scope,
|
|
PExpr*pe, int context_width,
|
|
bool need_const =false,
|
|
bool annotatable =false,
|
|
ivl_variable_type_t cast_type =IVL_VT_NO_TYPE);
|
|
|
|
/*
|
|
* This form of elab_and_eval uses the ivl_type_t to carry type
|
|
* information instead of the piecemeal form. We should transition to
|
|
* this form as we reasonably can.
|
|
*/
|
|
extern NetExpr* elab_and_eval(Design*des, NetScope*scope,
|
|
PExpr*expr, ivl_type_t lv_net_type,
|
|
bool need_const);
|
|
|
|
/*
|
|
* This function is a variant of elab_and_eval that elaborates and
|
|
* evaluates the arguments of a system task.
|
|
*/
|
|
extern NetExpr* elab_sys_task_arg(Design*des, NetScope*scope,
|
|
perm_string name, unsigned arg_idx,
|
|
PExpr*pe, bool need_const =false);
|
|
/*
|
|
* This function elaborates an expression as if it is for the r-value
|
|
* of an assignment, The lv_type and lv_width are the type and width
|
|
* of the l-value, and the expr is the expression to elaborate. The
|
|
* result is the NetExpr elaborated and evaluated. (See elab_expr.cc)
|
|
*
|
|
* I would rather that all calls to elaborate_rval_expr use the
|
|
* lv_net_type argument to express the l-value type, but, for now,
|
|
* that it not possible. Those cases will be indicated by the
|
|
* lv_net_type being set to nil.
|
|
*/
|
|
extern NetExpr* elaborate_rval_expr(Design*des, NetScope*scope,
|
|
ivl_type_t lv_net_type,
|
|
ivl_variable_type_t lv_type,
|
|
unsigned lv_width, PExpr*expr,
|
|
bool need_const =false,
|
|
bool force_unsigned =false);
|
|
|
|
extern bool evaluate_range(Design*des, NetScope*scope, const LineInfo*li,
|
|
const pform_range_t&range,
|
|
long&index_l, long&index_r);
|
|
|
|
extern bool evaluate_ranges(Design*des, NetScope*scope, const LineInfo*li,
|
|
std::vector<netrange_t>&llist,
|
|
const std::list<pform_range_t>&rlist);
|
|
/*
|
|
* This procedure evaluates an expression and if the evaluation is
|
|
* successful the original expression is replaced with the new one.
|
|
*/
|
|
void eval_expr(NetExpr*&expr, int context_width =-1);
|
|
|
|
/*
|
|
* Get the long integer value for the passed in expression, if
|
|
* possible. If it is not possible (the expression is not evaluated
|
|
* down to a constant) then return false and leave value unchanged.
|
|
*/
|
|
bool eval_as_long(long&value, const NetExpr*expr);
|
|
bool eval_as_double(double&value, NetExpr*expr);
|
|
|
|
/*
|
|
* Evaluate an entire scope path in the context of the given scope.
|
|
*/
|
|
extern std::list<hname_t> eval_scope_path(Design*des, NetScope*scope,
|
|
const pform_name_t&path);
|
|
extern hname_t eval_path_component(Design*des, NetScope*scope,
|
|
const name_component_t&comp,
|
|
bool&error_flag);
|
|
|
|
/*
|
|
* If this scope is contained within a class scope (i.e. a method of a
|
|
* class) then return the class definition that contains it.
|
|
*/
|
|
extern const netclass_t*find_class_containing_scope(const LineInfo&loc,const NetScope*scope);
|
|
extern NetScope* find_method_containing_scope(const LineInfo&log, NetScope*scope);
|
|
|
|
/*
|
|
* Return true if the data type is a type that is normally available
|
|
* in vector for. IVL_VT_BOOL and IVL_VT_LOGIC are vectorable,
|
|
* IVL_VT_REAL is not.
|
|
*/
|
|
extern bool type_is_vectorable(ivl_variable_type_t type);
|
|
|
|
/*
|
|
* Return a human readable version of the operator.
|
|
*/
|
|
const char *human_readable_op(const char op, bool unary = false);
|
|
|
|
/*
|
|
* Is the expression a constant value and if so what is its logical
|
|
* value.
|
|
*
|
|
* C_NON - the expression is not a constant value.
|
|
* C_0 - the expression is constant and it has a false value.
|
|
* C_1 - the expression is constant and it has a true value.
|
|
* C_X - the expression is constant and it has an 'bX value.
|
|
*/
|
|
enum const_bool { C_NON, C_0, C_1, C_X };
|
|
const_bool const_logical(const NetExpr*expr);
|
|
|
|
/*
|
|
* When scaling a real value to a time we need to do some standard
|
|
* processing.
|
|
*/
|
|
extern uint64_t get_scaled_time_from_real(Design*des,
|
|
NetScope*scope,
|
|
NetECReal*val);
|
|
|
|
extern void collapse_partselect_pv_to_concat(Design*des, NetNet*sig);
|
|
|
|
extern bool evaluate_index_prefix(Design*des, NetScope*scope,
|
|
list<long>&prefix_indices,
|
|
const list<index_component_t>&indices);
|
|
|
|
extern NetExpr*collapse_array_indices(Design*des, NetScope*scope, NetNet*net,
|
|
const std::list<index_component_t>&indices);
|
|
|
|
extern NetExpr*collapse_array_exprs(Design*des, NetScope*scope,
|
|
const LineInfo*loc, NetNet*net,
|
|
const list<index_component_t>&indices);
|
|
|
|
extern void assign_unpacked_with_bufz(Design*des, NetScope*scope,
|
|
const LineInfo*loc,
|
|
NetNet*lval, NetNet*rval);
|
|
|
|
extern NetPartSelect* detect_partselect_lval(Link&pin);
|
|
|
|
/*
|
|
* Print a warning if we find a mixture of default and explicit timescale
|
|
* based delays in the design, since this is likely an error.
|
|
*/
|
|
extern void check_for_inconsistent_delays(NetScope*scope);
|
|
|
|
#endif /* IVL_netmisc_H */
|