iverilog/net_scope.cc

388 lines
8.1 KiB
C++

/*
* Copyright (c) 2000 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CVS_IDENT
#ident "$Id: net_scope.cc,v 1.38 2007/06/02 03:42:13 steve Exp $"
#endif
# include "config.h"
# include "compiler.h"
# include "netlist.h"
# include <sstream>
/*
* The NetScope class keeps a scope tree organized. Each node of the
* scope tree points to its parent, its right sibling and its leftmost
* child. The root node has no parent or siblings. The node stores the
* name of the scope. The complete hierarchical name of the scope is
* formed by appending the path of scopes from the root to the scope
* in question.
*/
NetScope::NetScope(NetScope*up, const hname_t&n, NetScope::TYPE t)
: type_(t), up_(up), sib_(0), sub_(0)
{
signals_ = 0;
events_ = 0;
lcounter_ = 0;
if (up) {
time_unit_ = up->time_unit();
time_prec_ = up->time_precision();
sib_ = up_->sub_;
up_->sub_ = this;
} else {
time_unit_ = 0;
time_prec_ = 0;
assert(t == MODULE);
}
switch (t) {
case NetScope::TASK:
task_ = 0;
break;
case NetScope::FUNC:
func_ = 0;
break;
case NetScope::MODULE:
module_name_ = perm_string();
break;
default: /* BEGIN_END and FORK_JOIN, do nothing */
break;
}
name_ = n;
}
NetScope::~NetScope()
{
assert(sib_ == 0);
assert(sub_ == 0);
lcounter_ = 0;
/* name_ and module_name_ are perm-allocated. */
}
NetExpr* NetScope::set_parameter(perm_string key, NetExpr*expr,
NetExpr*msb, NetExpr*lsb, bool signed_flag)
{
param_expr_t&ref = parameters[key];
NetExpr* res = ref.expr;
ref.expr = expr;
ref.msb = msb;
ref.lsb = lsb;
ref.signed_flag = signed_flag;
return res;
}
/*
* Return false if this creates a new parameter.
*/
bool NetScope::replace_parameter(perm_string key, NetExpr*expr)
{
bool flag = true;
param_expr_t&ref = parameters[key];
NetExpr* res = ref.expr;
if (res) {
delete res;
} else {
flag = false;
ref.msb = 0;
ref.lsb = 0;
ref.signed_flag = false;
}
ref.expr = expr;
return flag;
}
NetExpr* NetScope::set_localparam(perm_string key, NetExpr*expr)
{
param_expr_t&ref = localparams[key];
NetExpr* res = ref.expr;
ref.expr = expr;
ref.msb = 0;
ref.lsb = 0;
ref.signed_flag = false;
return res;
}
/*
* NOTE: This method takes a const char* as a key to lookup a
* parameter, because we don't save that pointer. However, due to the
* way the map<> template works, we need to *cheat* and use the
* perm_string::literal method to fake the compiler into doing the
* compare without actually creating a perm_string.
*/
const NetExpr* NetScope::get_parameter(const char* key,
const NetExpr*&msb,
const NetExpr*&lsb) const
{
map<perm_string,param_expr_t>::const_iterator idx;
idx = parameters.find(perm_string::literal(key));
if (idx != parameters.end()) {
msb = (*idx).second.msb;
lsb = (*idx).second.lsb;
return (*idx).second.expr;
}
idx = localparams.find(perm_string::literal(key));
if (idx != localparams.end()) {
msb = (*idx).second.msb;
lsb = (*idx).second.lsb;
return (*idx).second.expr;
}
return 0;
}
NetScope::TYPE NetScope::type() const
{
return type_;
}
void NetScope::set_task_def(NetTaskDef*def)
{
assert( type_ == TASK );
assert( task_ == 0 );
task_ = def;
}
NetTaskDef* NetScope::task_def()
{
assert( type_ == TASK );
return task_;
}
const NetTaskDef* NetScope::task_def() const
{
assert( type_ == TASK );
return task_;
}
void NetScope::set_func_def(NetFuncDef*def)
{
assert( type_ == FUNC );
assert( func_ == 0 );
func_ = def;
}
NetFuncDef* NetScope::func_def()
{
assert( type_ == FUNC );
return func_;
}
bool NetScope::in_func()
{
return (type_ == FUNC) ? true : false;
}
const NetFuncDef* NetScope::func_def() const
{
assert( type_ == FUNC );
return func_;
}
void NetScope::set_module_name(perm_string n)
{
assert(type_ == MODULE);
module_name_ = n; /* NOTE: n mus have been permallocated. */
}
perm_string NetScope::module_name() const
{
assert(type_ == MODULE);
return module_name_;
}
void NetScope::time_unit(int val)
{
time_unit_ = val;
}
void NetScope::time_precision(int val)
{
time_prec_ = val;
}
int NetScope::time_unit() const
{
return time_unit_;
}
int NetScope::time_precision() const
{
return time_prec_;
}
void NetScope::default_nettype(NetNet::Type nt)
{
default_nettype_ = nt;
}
NetNet::Type NetScope::default_nettype() const
{
return default_nettype_;
}
perm_string NetScope::basename() const
{
return name_.peek_name();
}
void NetScope::add_event(NetEvent*ev)
{
assert(ev->scope_ == 0);
ev->scope_ = this;
ev->snext_ = events_;
events_ = ev;
}
void NetScope::rem_event(NetEvent*ev)
{
assert(ev->scope_ == this);
ev->scope_ = 0;
if (events_ == ev) {
events_ = ev->snext_;
} else {
NetEvent*cur = events_;
while (cur->snext_ != ev) {
assert(cur->snext_);
cur = cur->snext_;
}
cur->snext_ = ev->snext_;
}
ev->snext_ = 0;
}
NetEvent* NetScope::find_event(const char*name)
{
for (NetEvent*cur = events_; cur ; cur = cur->snext_)
if (strcmp(cur->name(), name) == 0)
return cur;
return 0;
}
void NetScope::add_signal(NetNet*net)
{
if (signals_ == 0) {
net->sig_next_ = net;
net->sig_prev_ = net;
} else {
net->sig_next_ = signals_->sig_next_;
net->sig_prev_ = signals_;
net->sig_next_->sig_prev_ = net;
net->sig_prev_->sig_next_ = net;
}
signals_ = net;
}
void NetScope::rem_signal(NetNet*net)
{
assert(net->scope() == this);
if (signals_ == net)
signals_ = net->sig_prev_;
if (signals_ == net) {
signals_ = 0;
} else {
net->sig_prev_->sig_next_ = net->sig_next_;
net->sig_next_->sig_prev_ = net->sig_prev_;
}
}
/*
* This method looks for a signal within the current scope. The name
* is assumed to be the base name of the signal, so no sub-scopes are
* searched.
*/
NetNet* NetScope::find_signal(const char*key)
{
if (signals_ == 0)
return 0;
NetNet*cur = signals_;
do {
if (cur->name() == key)
return cur;
cur = cur->sig_prev_;
} while (cur != signals_);
return 0;
}
/*
* This method locates a child scope by name. The name is the simple
* name of the child, no hierarchy is searched.
*/
NetScope* NetScope::child(const hname_t&name)
{
if (sub_ == 0) return 0;
NetScope*cur = sub_;
while (cur->name_ != name) {
if (cur->sib_ == 0) return 0;
cur = cur->sib_;
}
return cur;
}
const NetScope* NetScope::child(const hname_t&name) const
{
if (sub_ == 0) return 0;
NetScope*cur = sub_;
while (cur->name_ != name) {
if (cur->sib_ == 0) return 0;
cur = cur->sib_;
}
return cur;
}
NetScope* NetScope::parent()
{
return up_;
}
const NetScope* NetScope::parent() const
{
return up_;
}
perm_string NetScope::local_symbol()
{
ostringstream res;
res << "_s" << (lcounter_++);
return lex_strings.make(res.str());
}
#if 0
string NetScope::local_hsymbol()
{
return string(name()) + "." + string(local_symbol());
}
#endif