1594 lines
37 KiB
C++
1594 lines
37 KiB
C++
/*
|
|
* Copyright (c) 1999-2003 Stephen Williams (steve@icarus.com)
|
|
*
|
|
* This source code is free software; you can redistribute it
|
|
* and/or modify it in source code form under the terms of the GNU
|
|
* General Public License as published by the Free Software
|
|
* Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
|
|
*/
|
|
#ifdef HAVE_CVS_IDENT
|
|
#ident "$Id: eval_tree.cc,v 1.61 2004/09/10 23:51:42 steve Exp $"
|
|
#endif
|
|
|
|
# include "config.h"
|
|
# include "compiler.h"
|
|
|
|
# include <iostream>
|
|
|
|
# include "netlist.h"
|
|
|
|
NetExpr* NetExpr::eval_tree()
|
|
{
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Some of the derived classes can be evaluated by the compiler, this
|
|
* method provides the common aid of evaluating the parameter
|
|
* expressions.
|
|
*/
|
|
void NetEBinary::eval_sub_tree_()
|
|
{
|
|
NetExpr*tmp = left_->eval_tree();
|
|
if (tmp) {
|
|
delete left_;
|
|
left_ = tmp;
|
|
}
|
|
tmp = right_->eval_tree();
|
|
if (tmp){
|
|
delete right_;
|
|
right_ = tmp;
|
|
}
|
|
}
|
|
|
|
NetEConst* NetEBAdd::eval_tree()
|
|
{
|
|
eval_sub_tree_();
|
|
NetEConst*lc = dynamic_cast<NetEConst*>(left_);
|
|
if (lc == 0) return 0;
|
|
NetEConst*rc = dynamic_cast<NetEConst*>(right_);
|
|
if (rc == 0) return 0;
|
|
|
|
verinum lval = lc->value();
|
|
verinum rval = rc->value();
|
|
|
|
verinum val;
|
|
switch (op_) {
|
|
case '+':
|
|
val = lval + rval;
|
|
break;
|
|
case '-':
|
|
val = lval - rval;
|
|
break;
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
return new NetEConst(val);
|
|
}
|
|
|
|
NetEConst* NetEBBits::eval_tree()
|
|
{
|
|
eval_sub_tree_();
|
|
|
|
NetEConst*lc = dynamic_cast<NetEConst*>(left_);
|
|
NetEConst*rc = dynamic_cast<NetEConst*>(right_);
|
|
|
|
/* Notice the special case where one of the operands is 0 and
|
|
this is a bitwise &. If this happens, then the result is
|
|
known to be 0. */
|
|
if ((op() == '&') && lc && (lc->value() == verinum(0))) {
|
|
verinum res (verinum::V0, expr_width());
|
|
return new NetEConst(res);
|
|
}
|
|
|
|
if ((op() == '&') && rc && (rc->value() == verinum(0))) {
|
|
verinum res (verinum::V0, expr_width());
|
|
return new NetEConst(res);
|
|
}
|
|
|
|
if (lc == 0) return 0;
|
|
if (rc == 0) return 0;
|
|
|
|
verinum lval = lc->value();
|
|
verinum rval = rc->value();
|
|
|
|
unsigned lwid = lc->expr_width();
|
|
if (lwid == 0) lwid = lval.len();
|
|
|
|
unsigned rwid = rc->expr_width();
|
|
if (rwid == 0) rwid = rval.len();
|
|
|
|
unsigned wid = expr_width();
|
|
if (wid == 0)
|
|
wid = (rwid > lwid)? rwid : lwid;
|
|
|
|
verinum res (verinum::V0, wid);
|
|
|
|
if (lwid > wid)
|
|
lwid = wid;
|
|
if (rwid > wid)
|
|
rwid = wid;
|
|
|
|
switch (op()) {
|
|
|
|
case '|': {
|
|
unsigned cnt = lwid;
|
|
if (cnt > wid) cnt = wid;
|
|
if (cnt > rwid) cnt = rwid;
|
|
for (unsigned idx = 0 ; idx < cnt ; idx += 1)
|
|
res.set(idx, lval.get(idx) | rval.get(idx));
|
|
|
|
if (lwid < rwid)
|
|
for (unsigned idx = lwid ; idx < rwid ; idx += 1)
|
|
res.set(idx, rval.get(idx));
|
|
|
|
if (rwid < lwid)
|
|
for (unsigned idx = rwid ; idx < lwid ; idx += 1)
|
|
res.set(idx, lval.get(idx));
|
|
|
|
break;
|
|
}
|
|
|
|
case '&': {
|
|
unsigned cnt = lwid;
|
|
if (cnt > wid) cnt = wid;
|
|
if (cnt > rwid) cnt = rwid;
|
|
for (unsigned idx = 0 ; idx < cnt ; idx += 1)
|
|
res.set(idx, lval.get(idx) & rval.get(idx));
|
|
|
|
break;
|
|
}
|
|
|
|
case '^': {
|
|
unsigned cnt = lwid;
|
|
if (cnt > wid) cnt = wid;
|
|
if (cnt > rwid) cnt = rwid;
|
|
for (unsigned idx = 0 ; idx < cnt ; idx += 1)
|
|
res.set(idx, lval.get(idx) ^ rval.get(idx));
|
|
|
|
if (lwid < rwid)
|
|
for (unsigned idx = lwid ; idx < rwid ; idx += 1)
|
|
res.set(idx, rval.get(idx));
|
|
|
|
if (rwid < lwid)
|
|
for (unsigned idx = rwid ; idx < lwid ; idx += 1)
|
|
res.set(idx, lval.get(idx));
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
return new NetEConst(res);
|
|
}
|
|
|
|
NetEConst* NetEBComp::eval_eqeq_()
|
|
{
|
|
NetEConst*l = dynamic_cast<NetEConst*>(left_);
|
|
if (l == 0) return 0;
|
|
NetEConst*r = dynamic_cast<NetEConst*>(right_);
|
|
if (r == 0) return 0;
|
|
|
|
const verinum&lv = l->value();
|
|
const verinum&rv = r->value();
|
|
|
|
unsigned s_len = lv.len();
|
|
if (rv.len() < s_len) s_len = rv.len();
|
|
|
|
verinum result(verinum::V1, 1);
|
|
for (unsigned idx = 0 ; idx < s_len; idx += 1) {
|
|
if (lv[idx] != rv[idx])
|
|
result = verinum::V0;
|
|
}
|
|
|
|
// If one operand was wider than the other, check that the
|
|
// remaining bits are all zero
|
|
if (lv.len() > s_len) {
|
|
for (unsigned idx = s_len; idx < lv.len(); idx += 1) {
|
|
if (lv[idx] != 0)
|
|
result = verinum::V0;
|
|
}
|
|
}
|
|
if (rv.len() > s_len) {
|
|
for (unsigned idx = s_len; idx < rv.len(); idx += 1) {
|
|
if (rv[idx] != 0)
|
|
result = verinum::V0;
|
|
}
|
|
}
|
|
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
|
|
NetEConst* NetEBComp::eval_less_()
|
|
{
|
|
NetEConst*r = dynamic_cast<NetEConst*>(right_);
|
|
if (r == 0) return 0;
|
|
|
|
verinum rv = r->value();
|
|
if (! rv.is_defined()) {
|
|
verinum result(verinum::Vx, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
/* Detect the case where the right side is greater that or
|
|
equal to the largest value the left side can possibly
|
|
have. */
|
|
assert(left_->expr_width() > 0);
|
|
verinum lv (verinum::V1, left_->expr_width());
|
|
if (lv < rv) {
|
|
verinum result(verinum::V1, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
/* Now go on to the normal test of the values. */
|
|
NetEConst*l = dynamic_cast<NetEConst*>(left_);
|
|
if (l == 0) return 0;
|
|
lv = l->value();
|
|
if (! lv.is_defined()) {
|
|
verinum result(verinum::Vx, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
if (lv.has_sign() && rv.has_sign()) {
|
|
if (lv.as_long() < rv.as_long()) {
|
|
verinum result(verinum::V1, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
} else {
|
|
if (lv.as_ulong() < rv.as_ulong()) {
|
|
verinum result(verinum::V1, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
}
|
|
|
|
verinum result(verinum::V0, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
NetEConst* NetEBComp::eval_leeq_real_()
|
|
{
|
|
NetEConst*vtmp;
|
|
NetECReal*rtmp;
|
|
double lv, rv;
|
|
|
|
switch (left_->expr_type()) {
|
|
case ET_REAL:
|
|
rtmp = dynamic_cast<NetECReal*> (left_);
|
|
if (rtmp == 0)
|
|
return 0;
|
|
|
|
lv = rtmp->value().as_double();
|
|
break;
|
|
|
|
case ET_VECTOR:
|
|
vtmp = dynamic_cast<NetEConst*> (left_);
|
|
if (vtmp == 0)
|
|
return 0;
|
|
|
|
lv = vtmp->value().as_long();
|
|
break;
|
|
|
|
default:
|
|
assert(0);
|
|
}
|
|
|
|
|
|
switch (right_->expr_type()) {
|
|
case ET_REAL:
|
|
rtmp = dynamic_cast<NetECReal*> (right_);
|
|
if (rtmp == 0)
|
|
return 0;
|
|
|
|
rv = rtmp->value().as_double();
|
|
break;
|
|
|
|
case ET_VECTOR:
|
|
vtmp = dynamic_cast<NetEConst*> (right_);
|
|
if (vtmp == 0)
|
|
return 0;
|
|
|
|
rv = vtmp->value().as_long();
|
|
break;
|
|
|
|
default:
|
|
assert(0);
|
|
}
|
|
|
|
verinum result((lv <= rv)? verinum::V1 : verinum::V0, 1);
|
|
vtmp = new NetEConst(result);
|
|
vtmp->set_line(*this);
|
|
|
|
return vtmp;
|
|
}
|
|
|
|
NetEConst* NetEBComp::eval_leeq_()
|
|
{
|
|
if (right_->expr_type() == ET_REAL)
|
|
return eval_leeq_real_();
|
|
if (left_->expr_type() == ET_REAL)
|
|
return eval_leeq_real_();
|
|
|
|
NetEConst*r = dynamic_cast<NetEConst*>(right_);
|
|
if (r == 0) return 0;
|
|
|
|
verinum rv = r->value();
|
|
if (! rv.is_defined()) {
|
|
verinum result(verinum::Vx, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
if (left_->expr_width() == 0) {
|
|
cerr << get_line() << ": internal error: Something wrong "
|
|
<< "with the left side width of <= ?" << endl;
|
|
cerr << get_line() << ": : " << *this << endl;
|
|
}
|
|
|
|
/* Detect the case where the right side is greater that or
|
|
equal to the largest value the left side can possibly
|
|
have. */
|
|
assert(left_->expr_width() > 0);
|
|
verinum lv (verinum::V1, left_->expr_width());
|
|
if (lv <= rv) {
|
|
verinum result(verinum::V1, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
/* Now go on to the normal test of the values. */
|
|
NetEConst*l = dynamic_cast<NetEConst*>(left_);
|
|
if (l == 0) return 0;
|
|
lv = l->value();
|
|
if (! lv.is_defined()) {
|
|
verinum result(verinum::Vx, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
if (lv.has_sign() && rv.has_sign()) {
|
|
if (lv.as_long() <= rv.as_long()) {
|
|
verinum result(verinum::V1, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
} else {
|
|
if (lv.as_ulong() <= rv.as_ulong()) {
|
|
verinum result(verinum::V1, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
}
|
|
|
|
verinum result(verinum::V0, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
NetEConst* NetEBComp::eval_gt_()
|
|
{
|
|
if ((left_->expr_type() == NetExpr::ET_REAL)
|
|
&& (right_->expr_type() == NetExpr::ET_REAL)) {
|
|
|
|
NetECReal*tmpl = dynamic_cast<NetECReal*>(left_);
|
|
if (tmpl == 0)
|
|
return 0;
|
|
|
|
NetECReal*tmpr = dynamic_cast<NetECReal*>(right_);
|
|
if (tmpr == 0)
|
|
return 0;
|
|
|
|
double ll = tmpl->value().as_double();
|
|
double rr = tmpr->value().as_double();
|
|
|
|
verinum result ((ll > rr)? verinum::V1 : verinum::V0, 1, true);
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
NetEConst*l = dynamic_cast<NetEConst*>(left_);
|
|
if (l == 0) return 0;
|
|
|
|
verinum lv = l->value();
|
|
if (! lv.is_defined()) {
|
|
verinum result(verinum::Vx, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
/* Check for the special case where we know, simply by the
|
|
limited width of the right expression, that it cannot
|
|
possibly be false. */
|
|
if (right_->expr_width() > 0) {
|
|
verinum rv (verinum::V1, right_->expr_width());
|
|
if (lv > rv) {
|
|
verinum result(verinum::V1, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
}
|
|
|
|
/* Compare with a real value. Do it as double precision. */
|
|
if (right_->expr_type() == NetExpr::ET_REAL) {
|
|
NetECReal*tmp = dynamic_cast<NetECReal*>(right_);
|
|
if (tmp == 0)
|
|
return 0;
|
|
|
|
double rr = tmp->value().as_double();
|
|
double ll = lv.has_sign()? lv.as_long() : lv.as_ulong();
|
|
|
|
verinum result ((ll > rr)? verinum::V1 : verinum::V0, 1, true);
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
/* Now go on to the normal test of the values. */
|
|
NetEConst*r = dynamic_cast<NetEConst*>(right_);
|
|
if (r == 0) return 0;
|
|
verinum rv = r->value();
|
|
if (! rv.is_defined()) {
|
|
verinum result(verinum::Vx, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
if (lv.has_sign() && rv.has_sign() && (lv.as_long() > rv.as_long())) {
|
|
verinum result(verinum::V1, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
if (lv.as_ulong() > rv.as_ulong()) {
|
|
verinum result(verinum::V1, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
verinum result(verinum::V0, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
NetEConst* NetEBComp::eval_gteq_()
|
|
{
|
|
if ((left_->expr_type() == NetExpr::ET_REAL)
|
|
&& (right_->expr_type() == NetExpr::ET_REAL)) {
|
|
|
|
NetECReal*tmpl = dynamic_cast<NetECReal*>(left_);
|
|
if (tmpl == 0)
|
|
return 0;
|
|
|
|
NetECReal*tmpr = dynamic_cast<NetECReal*>(right_);
|
|
if (tmpr == 0)
|
|
return 0;
|
|
|
|
double ll = tmpl->value().as_double();
|
|
double rr = tmpr->value().as_double();
|
|
|
|
verinum result ((ll >= rr)? verinum::V1 : verinum::V0, 1, true);
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
NetEConst*l = dynamic_cast<NetEConst*>(left_);
|
|
if (l == 0) return 0;
|
|
|
|
verinum lv = l->value();
|
|
if (! lv.is_defined()) {
|
|
verinum result(verinum::Vx, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
/* Detect the case where the left side is greater than the
|
|
largest value the right side can possibly have. */
|
|
if (right_->expr_type() == NetExpr::ET_VECTOR) {
|
|
assert(right_->expr_width() > 0);
|
|
verinum rv (verinum::V1, right_->expr_width());
|
|
if (lv >= rv) {
|
|
verinum result(verinum::V1, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
}
|
|
|
|
/* Compare with a real value. Do it as double precision. */
|
|
if (right_->expr_type() == NetExpr::ET_REAL) {
|
|
NetECReal*tmp = dynamic_cast<NetECReal*>(right_);
|
|
if (tmp == 0)
|
|
return 0;
|
|
|
|
double rr = tmp->value().as_double();
|
|
double ll = lv.has_sign()? lv.as_long() : lv.as_ulong();
|
|
|
|
verinum result ((ll >= rr)? verinum::V1 : verinum::V0, 1, true);
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
/* Now go on to the normal test of the values. */
|
|
NetEConst*r = dynamic_cast<NetEConst*>(right_);
|
|
if (r == 0) return 0;
|
|
verinum rv = r->value();
|
|
if (! rv.is_defined()) {
|
|
verinum result(verinum::Vx, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
if (lv.has_sign() && rv.has_sign() && (lv.as_long() >= rv.as_long())) {
|
|
verinum result(verinum::V1, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
if (lv.as_ulong() >= rv.as_ulong()) {
|
|
verinum result(verinum::V1, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
verinum result(verinum::V0, 1);
|
|
return new NetEConst(result);
|
|
}
|
|
|
|
NetEConst* NetEBComp::eval_neeq_()
|
|
{
|
|
NetEConst*l = dynamic_cast<NetEConst*>(left_);
|
|
if (l == 0) return 0;
|
|
NetEConst*r = dynamic_cast<NetEConst*>(right_);
|
|
if (r == 0) return 0;
|
|
|
|
const verinum&lv = l->value();
|
|
const verinum&rv = r->value();
|
|
|
|
verinum::V res = verinum::V0;
|
|
unsigned top = lv.len();
|
|
if (rv.len() < top)
|
|
top = rv.len();
|
|
|
|
for (unsigned idx = 0 ; idx < top ; idx += 1) {
|
|
|
|
switch (lv.get(idx)) {
|
|
|
|
case verinum::Vx:
|
|
case verinum::Vz:
|
|
res = verinum::Vx;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
switch (rv.get(idx)) {
|
|
|
|
case verinum::Vx:
|
|
case verinum::Vz:
|
|
res = verinum::Vx;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
if (res == verinum::Vx)
|
|
break;
|
|
|
|
if (rv.get(idx) != lv.get(idx))
|
|
res = verinum::V1;
|
|
}
|
|
|
|
if (res != verinum::Vx) {
|
|
for (unsigned idx = top ; idx < lv.len() ; idx += 1)
|
|
switch (lv.get(idx)) {
|
|
|
|
case verinum::Vx:
|
|
case verinum::Vz:
|
|
res = verinum::Vx;
|
|
break;
|
|
|
|
case verinum::V1:
|
|
if (res != verinum::Vx)
|
|
res = verinum::V1;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
for (unsigned idx = top ; idx < rv.len() ; idx += 1)
|
|
switch (rv.get(idx)) {
|
|
|
|
case verinum::Vx:
|
|
case verinum::Vz:
|
|
res = verinum::Vx;
|
|
break;
|
|
|
|
case verinum::V1:
|
|
if (res != verinum::Vx)
|
|
res = verinum::V1;
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
return new NetEConst(verinum(res));
|
|
}
|
|
|
|
NetEConst* NetEBComp::eval_eqeqeq_()
|
|
{
|
|
NetEConst*l = dynamic_cast<NetEConst*>(left_);
|
|
if (l == 0) return 0;
|
|
NetEConst*r = dynamic_cast<NetEConst*>(right_);
|
|
if (r == 0) return 0;
|
|
|
|
const verinum&lv = l->value();
|
|
const verinum&rv = r->value();
|
|
|
|
verinum::V res = verinum::V1;
|
|
|
|
unsigned cnt = lv.len();
|
|
if (cnt > rv.len())
|
|
cnt = rv.len();
|
|
|
|
for (unsigned idx = 0 ; idx < cnt ; idx += 1)
|
|
if (lv.get(idx) != rv.get(idx))
|
|
res = verinum::V0;
|
|
|
|
for (unsigned idx = cnt ; idx < lv.len() ; idx += 1)
|
|
if (lv.get(idx) != verinum::V0)
|
|
res = verinum::V0;
|
|
|
|
for (unsigned idx = cnt ; idx < rv.len() ; idx += 1)
|
|
if (rv.get(idx) != verinum::V0)
|
|
res = verinum::V0;
|
|
|
|
return new NetEConst(verinum(res, 1));
|
|
}
|
|
|
|
NetEConst* NetEBComp::eval_neeqeq_()
|
|
{
|
|
NetEConst*tmp = eval_eqeqeq_();
|
|
if (tmp == 0)
|
|
return 0;
|
|
|
|
NetEConst*res;
|
|
|
|
if (tmp->value().get(0) == verinum::V0)
|
|
res = new NetEConst(verinum(verinum::V1,1));
|
|
else
|
|
res = new NetEConst(verinum(verinum::V0,1));
|
|
|
|
delete tmp;
|
|
return res;
|
|
}
|
|
|
|
NetEConst* NetEBComp::eval_tree()
|
|
{
|
|
eval_sub_tree_();
|
|
|
|
switch (op_) {
|
|
case 'E': // Case equality (===)
|
|
return eval_eqeqeq_();
|
|
|
|
case 'e': // Equality (==)
|
|
return eval_eqeq_();
|
|
|
|
case 'G': // >=
|
|
return eval_gteq_();
|
|
|
|
case 'L': // <=
|
|
return eval_leeq_();
|
|
|
|
case 'N': // Case inequality (!==)
|
|
return eval_neeqeq_();
|
|
|
|
case 'n': // not-equal (!=)
|
|
return eval_neeq_();
|
|
|
|
case '<': // Less than
|
|
return eval_less_();
|
|
|
|
case '>': // Greater then
|
|
return eval_gt_();
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* The NetEBDiv operator includes the / and % operators. First evaluate
|
|
* the sub-expressions, then perform the required operation.
|
|
*/
|
|
NetExpr* NetEBDiv::eval_tree()
|
|
{
|
|
eval_sub_tree_();
|
|
|
|
if (expr_type() == NetExpr::ET_REAL) {
|
|
NetECReal*lc = dynamic_cast<NetECReal*>(left_);
|
|
if (lc == 0) return 0;
|
|
|
|
verireal lval = lc->value();
|
|
|
|
if (NetECReal*rc = dynamic_cast<NetECReal*>(right_)) {
|
|
NetECReal*tmp = 0;
|
|
verireal rval = rc->value();
|
|
|
|
switch (op_) {
|
|
case '/':
|
|
tmp = new NetECReal(lval / rval);
|
|
break;
|
|
|
|
case '%':
|
|
tmp = new NetECReal(lval % rval);
|
|
}
|
|
|
|
assert(tmp);
|
|
tmp->set_line(*this);
|
|
return tmp;
|
|
|
|
} else if (NetEConst*rc = dynamic_cast<NetEConst*>(right_)) {
|
|
|
|
NetECReal*tmp = 0;
|
|
verinum rval = rc->value();
|
|
|
|
switch (op_) {
|
|
case '/':
|
|
tmp = new NetECReal(lval / rval);
|
|
break;
|
|
|
|
case '%':
|
|
tmp = new NetECReal(lval % rval);
|
|
}
|
|
|
|
assert(tmp);
|
|
tmp->set_line(*this);
|
|
return tmp;
|
|
|
|
}
|
|
|
|
|
|
} else {
|
|
assert(expr_type() == NetExpr::ET_VECTOR);
|
|
NetEConst*lc = dynamic_cast<NetEConst*>(left_);
|
|
if (lc == 0) return 0;
|
|
NetEConst*rc = dynamic_cast<NetEConst*>(right_);
|
|
if (rc == 0) return 0;
|
|
|
|
verinum lval = lc->value();
|
|
verinum rval = rc->value();
|
|
|
|
switch (op_) {
|
|
case '/':
|
|
return new NetEConst(lval / rval);
|
|
|
|
case '%':
|
|
return new NetEConst(lval % rval);
|
|
}
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
NetEConst* NetEBLogic::eval_tree()
|
|
{
|
|
eval_sub_tree_();
|
|
NetEConst*lc = dynamic_cast<NetEConst*>(left_);
|
|
if (lc == 0) return 0;
|
|
NetEConst*rc = dynamic_cast<NetEConst*>(right_);
|
|
if (rc == 0) return 0;
|
|
|
|
verinum::V lv = verinum::V0;
|
|
verinum::V rv = verinum::V0;
|
|
|
|
verinum v = lc->value();
|
|
for (unsigned idx = 0 ; idx < v.len() ; idx += 1)
|
|
if (v.get(idx) == verinum::V1)
|
|
lv = verinum::V1;
|
|
|
|
if (lv == verinum::V0)
|
|
for (unsigned idx = 0 ; idx < v.len() ; idx += 1)
|
|
if (v.get(idx) != verinum::V0)
|
|
lv = verinum::Vx;
|
|
|
|
v = rc->value();
|
|
for (unsigned idx = 0 ; idx < v.len() ; idx += 1)
|
|
if (v.get(idx) == verinum::V1)
|
|
rv = verinum::V1;
|
|
|
|
if (rv == verinum::V0)
|
|
for (unsigned idx = 0 ; idx < v.len() ; idx += 1)
|
|
if (v.get(idx) != verinum::V0)
|
|
rv = verinum::Vx;
|
|
|
|
verinum::V res;
|
|
switch (op_) {
|
|
case 'a': { // Logical AND (&&)
|
|
if ((lv == verinum::V0) || (rv == verinum::V0))
|
|
res = verinum::V0;
|
|
|
|
else if ((lv == verinum::V1) && (rv == verinum::V1))
|
|
res = verinum::V1;
|
|
|
|
else
|
|
res = verinum::Vx;
|
|
|
|
break;
|
|
}
|
|
|
|
case 'o': { // Logical OR (||)
|
|
if ((lv == verinum::V1) || (rv == verinum::V1))
|
|
res = verinum::V1;
|
|
|
|
else if ((lv == verinum::V0) && (rv == verinum::V0))
|
|
res = verinum::V0;
|
|
|
|
else
|
|
res = verinum::Vx;
|
|
|
|
break;
|
|
}
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
return new NetEConst(verinum(res, 1));
|
|
}
|
|
|
|
NetExpr* NetEBMult::eval_tree_real_()
|
|
{
|
|
verireal lval;
|
|
verireal rval;
|
|
|
|
switch (left_->expr_type()) {
|
|
case ET_REAL: {
|
|
NetECReal*lc = dynamic_cast<NetECReal*> (left_);
|
|
if (lc == 0) return 0;
|
|
lval = lc->value();
|
|
break;
|
|
}
|
|
|
|
case ET_VECTOR: {
|
|
NetEConst*lc = dynamic_cast<NetEConst*>(left_);
|
|
if (lc == 0) return 0;
|
|
verinum tmp = lc->value();
|
|
lval = verireal(tmp.as_long());
|
|
break;
|
|
}
|
|
|
|
default:
|
|
assert(0);
|
|
}
|
|
|
|
switch (right_->expr_type()) {
|
|
case ET_REAL: {
|
|
NetECReal*rc = dynamic_cast<NetECReal*> (right_);
|
|
if (rc == 0) return 0;
|
|
rval = rc->value();
|
|
break;
|
|
}
|
|
|
|
case ET_VECTOR: {
|
|
NetEConst*rc = dynamic_cast<NetEConst*>(right_);
|
|
if (rc == 0) return 0;
|
|
verinum tmp = rc->value();
|
|
rval = verireal(tmp.as_long());
|
|
break;
|
|
}
|
|
|
|
default:
|
|
assert(0);
|
|
}
|
|
|
|
|
|
NetECReal*res = new NetECReal(lval * rval);
|
|
res->set_line(*this);
|
|
return res;
|
|
}
|
|
|
|
NetExpr* NetEBMult::eval_tree()
|
|
{
|
|
eval_sub_tree_();
|
|
|
|
if (expr_type() == ET_REAL)
|
|
return eval_tree_real_();
|
|
|
|
assert(expr_type() == ET_VECTOR);
|
|
|
|
NetEConst*lc = dynamic_cast<NetEConst*>(left_);
|
|
if (lc == 0) return 0;
|
|
NetEConst*rc = dynamic_cast<NetEConst*>(right_);
|
|
if (rc == 0) return 0;
|
|
|
|
verinum lval = lc->value();
|
|
verinum rval = rc->value();
|
|
|
|
return new NetEConst(lval * rval);
|
|
}
|
|
|
|
/*
|
|
* Evaluate the shift operator if possible. For this to work, both
|
|
* operands must be constant.
|
|
*/
|
|
NetEConst* NetEBShift::eval_tree()
|
|
{
|
|
eval_sub_tree_();
|
|
NetEConst*re = dynamic_cast<NetEConst*>(right_);
|
|
if (re == 0)
|
|
return 0;
|
|
|
|
NetEConst*le = dynamic_cast<NetEConst*>(left_);
|
|
if (le == 0)
|
|
return 0;
|
|
|
|
NetEConst*res;
|
|
|
|
verinum rv = re->value();
|
|
verinum lv = le->value();
|
|
|
|
/* Make an early estimate of the expression width. */
|
|
unsigned wid = expr_width();
|
|
|
|
if (rv.is_defined()) {
|
|
|
|
unsigned shift = rv.as_ulong();
|
|
|
|
if ((wid == 0) || ! lv.has_len()) {
|
|
/* If the caller doesn't care what the width is,
|
|
then calcuate a width from the trimmed left
|
|
expression, plus the shift. This avoids
|
|
data loss. */
|
|
lv = trim_vnum(lv);
|
|
wid = lv.len();
|
|
if (op() == 'l')
|
|
wid = lv.len() + shift;
|
|
}
|
|
|
|
assert(wid);
|
|
verinum nv (verinum::V0, wid, lv.has_len());
|
|
|
|
if (op() == 'r') {
|
|
unsigned cnt = wid;
|
|
if (cnt > nv.len())
|
|
cnt = nv.len();
|
|
if (shift >= lv.len())
|
|
cnt = 0;
|
|
else if (cnt > (lv.len()-shift))
|
|
cnt = (lv.len()-shift);
|
|
for (unsigned idx = 0 ; idx < cnt ; idx += 1)
|
|
nv.set(idx, lv[idx+shift]);
|
|
|
|
} else {
|
|
unsigned cnt = wid;
|
|
if (cnt > lv.len())
|
|
cnt = lv.len();
|
|
if (shift >= nv.len())
|
|
cnt = 0;
|
|
else if (cnt > (nv.len()-shift))
|
|
cnt = nv.len() - shift;
|
|
|
|
for (unsigned idx = 0 ; idx < cnt ; idx += 1)
|
|
nv.set(idx+shift, lv[idx]);
|
|
}
|
|
|
|
res = new NetEConst(nv);
|
|
|
|
} else {
|
|
if (wid == 0)
|
|
wid = left_->expr_width();
|
|
|
|
verinum nv (verinum::Vx, wid);
|
|
res = new NetEConst(nv);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
NetEConst* NetEConcat::eval_tree()
|
|
{
|
|
unsigned repeat_val = repeat();
|
|
unsigned local_errors = 0;
|
|
|
|
unsigned gap = 0;
|
|
for (unsigned idx = 0 ; idx < parms_.count() ; idx += 1) {
|
|
|
|
// Parameter not here? This is an error, but presumably
|
|
// already caught and we are here just to catch more.
|
|
if (parms_[idx] == 0)
|
|
continue;
|
|
|
|
|
|
// If this parameter is already a constant, all is well
|
|
// so go on.
|
|
if (dynamic_cast<NetEConst*>(parms_[idx])) {
|
|
gap += parms_[idx]->expr_width();
|
|
continue;
|
|
}
|
|
|
|
// Finally, try to evaluate the parameter expression
|
|
// that is here. If I succeed, reset the parameter to
|
|
// the evaluated value.
|
|
assert(parms_[idx]);
|
|
NetExpr*expr = parms_[idx]->eval_tree();
|
|
if (expr) {
|
|
delete parms_[idx];
|
|
parms_[idx] = expr;
|
|
|
|
if (! expr->has_width()) {
|
|
cerr << get_line() << ": error: concatenation "
|
|
<< "operand has indefinite width: "
|
|
<< *parms_[idx] << endl;
|
|
local_errors += 1;
|
|
} else if (expr->expr_width() == 0) {
|
|
cerr << expr->get_line() << ": internal error: "
|
|
<< "Operand of concatenation has no width: "
|
|
<< *expr << endl;
|
|
local_errors += 1;
|
|
}
|
|
|
|
gap += expr->expr_width();
|
|
}
|
|
|
|
}
|
|
|
|
if (local_errors > 0)
|
|
return 0;
|
|
|
|
// Handle the special case that the repeat expression is
|
|
// zero. In this case, just return a 0 value with the expected
|
|
// width.
|
|
if (repeat_val == 0) {
|
|
verinum val (verinum::V0, expr_width());
|
|
NetEConst*res = new NetEConst(val);
|
|
res->set_width(val.len());
|
|
return res;
|
|
}
|
|
|
|
// At this point, the "gap" is the width of a single repeat of
|
|
// the concatenation. The total width of the result is the gap
|
|
// times the repeat count.
|
|
verinum val (verinum::Vx, repeat_val * gap);
|
|
|
|
// build up the result from least significant to most.
|
|
|
|
unsigned cur = 0;
|
|
bool is_string_flag = true;
|
|
for (unsigned idx = parms_.count() ; idx > 0 ; idx -= 1) {
|
|
NetEConst*expr = dynamic_cast<NetEConst*>(parms_[idx-1]);
|
|
if (expr == 0)
|
|
return 0;
|
|
|
|
verinum tmp = expr->value();
|
|
for (unsigned bit = 0; bit < tmp.len(); bit += 1, cur += 1)
|
|
for (unsigned rep = 0 ; rep < repeat_val ; rep += 1)
|
|
val.set(rep*gap+cur, tmp[bit]);
|
|
|
|
is_string_flag = is_string_flag && tmp.is_string();
|
|
}
|
|
|
|
/* If all the values were strings, then re-stringify this
|
|
constant. This might be useful information in the code
|
|
generator or other optimizer steps. */
|
|
if (is_string_flag) {
|
|
val = verinum(val.as_string());
|
|
}
|
|
|
|
NetEConst*res = new NetEConst(val);
|
|
res->set_width(val.len());
|
|
return res;
|
|
}
|
|
|
|
/*
|
|
* There are limits to our ability to evaluate a memory reference
|
|
* expression, because the content of a memory is never
|
|
* constant. However, the index expression may be precalculated, and
|
|
* there are certain index values that do give us constant results.
|
|
*/
|
|
NetExpr* NetEMemory::eval_tree()
|
|
{
|
|
/* Attempt to evaluate the index expression to a constant, if
|
|
it is not already. */
|
|
if (idx_ && !dynamic_cast<NetEConst*>(idx_)) {
|
|
NetExpr* tmp = idx_->eval_tree();
|
|
if (tmp) {
|
|
delete idx_;
|
|
idx_ = tmp;
|
|
}
|
|
}
|
|
|
|
NetEConst*itmp = dynamic_cast<NetEConst*>(idx_);
|
|
if (itmp == 0)
|
|
return 0;
|
|
|
|
verinum ival = itmp->value();
|
|
|
|
/* If the index expression has any x or z bits, then we know
|
|
already that the expression result is a constant x. */
|
|
if (! ival.is_defined()) {
|
|
verinum xres (verinum::Vx, mem_->width(), false);
|
|
NetEConst*res = new NetEConst(xres);
|
|
return res;
|
|
}
|
|
|
|
/* If the index expression is outside the range of the memory,
|
|
then the result is a constant x. */
|
|
unsigned norm_idx = mem_->index_to_address(ival.as_long());
|
|
if (norm_idx >= mem_->count()) {
|
|
verinum xres (verinum::Vx, mem_->width(), false);
|
|
NetEConst*res = new NetEConst(xres);
|
|
return res;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
NetExpr* NetEParam::eval_tree()
|
|
{
|
|
if (des_ == 0)
|
|
return 0;
|
|
|
|
assert(scope_);
|
|
const NetExpr*expr = scope_->get_parameter(name_);
|
|
if (expr == 0) {
|
|
cerr << get_line() << ": internal error: Unable to match "
|
|
<< "parameter " << name_ << " in scope "
|
|
<< scope_->name() << endl;
|
|
return 0;
|
|
}
|
|
|
|
assert(expr);
|
|
|
|
NetExpr*nexpr = expr->dup_expr();
|
|
assert(nexpr);
|
|
|
|
// If the parameter that I refer to is already evaluated, then
|
|
// return the constant value.
|
|
if (NetEConst*tmp = dynamic_cast<NetEConst*>(nexpr)) {
|
|
verinum val = tmp->value();
|
|
NetEConstParam*ptmp = new NetEConstParam(scope_, name_, val);
|
|
ptmp->set_line(*this);
|
|
delete nexpr;
|
|
return ptmp;
|
|
}
|
|
|
|
if (NetECReal*tmp = dynamic_cast<NetECReal*>(nexpr)) {
|
|
verireal val = tmp->value();
|
|
NetECRealParam*ptmp = new NetECRealParam(scope_, name_, val);
|
|
ptmp->set_line(*this);
|
|
delete nexpr;
|
|
return ptmp;
|
|
}
|
|
|
|
// Try to evaluate the expression. If I cannot, then the
|
|
// expression is not a constant expression and I fail here.
|
|
NetExpr*res = nexpr->eval_tree();
|
|
if (res == 0) {
|
|
cerr << get_line() << ": internal error: Unable to evaluate "
|
|
<< "parameter " << name_ << " expression: "
|
|
<< *nexpr << endl;
|
|
delete nexpr;
|
|
return 0;
|
|
}
|
|
|
|
// The result can be saved as the value of the parameter for
|
|
// future reference, and return a copy to the caller.
|
|
scope_->replace_parameter(name_, res);
|
|
|
|
/* Return as a result a NetEConstParam or NetECRealParam
|
|
object, depending on the type of the expression. */
|
|
|
|
switch (res->expr_type()) {
|
|
|
|
case NetExpr::ET_VECTOR:
|
|
{ NetEConst*tmp = dynamic_cast<NetEConst*>(res);
|
|
if (tmp == 0) {
|
|
cerr << get_line() << ": internal error: parameter "
|
|
<< name_ << " evaluates to incomprehensible "
|
|
<< *res << "." << endl;
|
|
return 0;
|
|
}
|
|
|
|
assert(tmp);
|
|
|
|
verinum val = tmp->value();
|
|
NetEConstParam*ptmp = new NetEConstParam(scope_, name_, val);
|
|
|
|
return ptmp;
|
|
}
|
|
|
|
case NetExpr::ET_REAL:
|
|
{ NetECReal*tmp = dynamic_cast<NetECReal*>(res);
|
|
if (tmp == 0) {
|
|
cerr << get_line() << ": internal error: parameter "
|
|
<< name_ << " evaluates to incomprehensible "
|
|
<< *res << "." << endl;
|
|
return 0;
|
|
}
|
|
|
|
assert(tmp);
|
|
|
|
verireal val = tmp->value();
|
|
NetECRealParam*ptmp = new NetECRealParam(scope_, name_, val);
|
|
|
|
return ptmp;
|
|
}
|
|
|
|
default:
|
|
assert(0);
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
NetEConst* NetESelect::eval_tree()
|
|
{
|
|
NetEConst*expr = dynamic_cast<NetEConst*>(expr_);
|
|
if (expr == 0) {
|
|
NetExpr*tmp = expr_->eval_tree();
|
|
if (tmp != 0) {
|
|
delete expr_;
|
|
expr_ = tmp;
|
|
}
|
|
|
|
expr = dynamic_cast<NetEConst*>(expr_);
|
|
}
|
|
|
|
NetEConst*base = dynamic_cast<NetEConst*>(base_);
|
|
if (base == 0) {
|
|
NetExpr*tmp = base_->eval_tree();
|
|
if (tmp != 0) {
|
|
delete base_;
|
|
base_ = tmp;
|
|
}
|
|
|
|
base = dynamic_cast<NetEConst*>(base_);
|
|
}
|
|
|
|
if (expr == 0)
|
|
return 0;
|
|
if (base == 0)
|
|
return 0;
|
|
|
|
verinum eval = expr->value();
|
|
verinum oval (verinum::V0, expr_width(), true);
|
|
long bval = base->value().as_long();
|
|
|
|
for (unsigned long idx = 0 ; idx < expr_width() ; idx += 1) {
|
|
if ((bval >= 0) && ((unsigned long) bval < eval.len()))
|
|
oval.set(idx, eval.get(bval));
|
|
else
|
|
oval.set(idx, verinum::Vx);
|
|
|
|
bval += 1;
|
|
}
|
|
|
|
NetEConst*res = new NetEConst(oval);
|
|
return res;
|
|
}
|
|
|
|
|
|
/*
|
|
* A ternary expression evaluation is controlled by the condition
|
|
* expression. If the condition evaluates to true or false, then
|
|
* return the evaluated true or false expression. If the condition
|
|
* evaluates to x or z, then merge the constant bits of the true and
|
|
* false expressions.
|
|
*/
|
|
NetExpr* NetETernary::eval_tree()
|
|
{
|
|
NetExpr*tmp;
|
|
|
|
assert(cond_);
|
|
if (0 == dynamic_cast<NetEConst*>(cond_)) {
|
|
tmp = cond_->eval_tree();
|
|
if (tmp != 0) {
|
|
delete cond_;
|
|
cond_ = tmp;
|
|
}
|
|
}
|
|
|
|
assert(true_val_);
|
|
if (0 == dynamic_cast<NetEConst*>(true_val_)) {
|
|
tmp = true_val_->eval_tree();
|
|
if (tmp != 0) {
|
|
delete true_val_;
|
|
true_val_ = tmp;
|
|
}
|
|
}
|
|
|
|
assert(false_val_);
|
|
if (0 == dynamic_cast<NetEConst*>(false_val_)) {
|
|
tmp = false_val_->eval_tree();
|
|
if (tmp != 0) {
|
|
delete false_val_;
|
|
false_val_ = tmp;
|
|
}
|
|
}
|
|
|
|
|
|
NetEConst*c = dynamic_cast<NetEConst*>(cond_);
|
|
if (c == 0)
|
|
return 0;
|
|
|
|
/* Check the boolean value of the constant condition
|
|
expression. Note that the X case is handled explicitly, so
|
|
we must differentiate. */
|
|
|
|
verinum cond_value = c->value();
|
|
bool true_flag = false;
|
|
bool x_flag = false;
|
|
|
|
for (unsigned idx = 0 ; idx < cond_value.len() ; idx += 1) {
|
|
switch (cond_value.get(idx)) {
|
|
case verinum::V1:
|
|
true_flag = true;
|
|
break;
|
|
case verinum::V0:
|
|
break;
|
|
default:
|
|
x_flag = true;
|
|
}
|
|
}
|
|
|
|
|
|
/* If the condition is 1 or 0, return the true or false
|
|
expression. Try to evaluate the expression down as far as
|
|
we can. */
|
|
|
|
if (true_flag) {
|
|
if (debug_eval_tree) {
|
|
cerr << get_line() << ": debug: Evaluate ternary with "
|
|
<< "constant condition value: " << c->value() << endl;
|
|
cerr << get_line() << ": : Selecting true case: "
|
|
<< *true_val_ << endl;
|
|
}
|
|
return true_val_->dup_expr();
|
|
}
|
|
|
|
if (! x_flag) {
|
|
if (debug_eval_tree) {
|
|
cerr << get_line() << ": debug: Evaluate ternary with "
|
|
<< "constant condition value: " << c->value() << endl;
|
|
cerr << get_line() << ": : Selecting false case: "
|
|
<< *true_val_ << endl;
|
|
}
|
|
return false_val_->dup_expr();
|
|
}
|
|
|
|
/* Here we have a more complex case. We need to evaluate both
|
|
expressions down to constants then compare the values to
|
|
build up a constant result. */
|
|
|
|
NetEConst*t = dynamic_cast<NetEConst*>(true_val_);
|
|
if (t == 0)
|
|
return 0;
|
|
|
|
|
|
NetEConst*f = dynamic_cast<NetEConst*>(false_val_);
|
|
if (f == 0)
|
|
return 0;
|
|
|
|
|
|
unsigned tsize = t->expr_width();
|
|
unsigned fsize = f->expr_width();
|
|
/* Size of the result is the size of the widest operand. */
|
|
unsigned rsize = tsize > fsize? tsize : fsize;
|
|
|
|
verinum val (verinum::V0, rsize);
|
|
for (unsigned idx = 0 ; idx < rsize ; idx += 1) {
|
|
verinum::V tv = idx < tsize? t->value().get(idx) : verinum::V0;
|
|
verinum::V fv = idx < rsize? f->value().get(idx) : verinum::V0;
|
|
|
|
if (tv == fv)
|
|
val.set(idx, tv);
|
|
else
|
|
val.set(idx, verinum::Vx);
|
|
}
|
|
|
|
if (debug_eval_tree) {
|
|
cerr << get_line() << ": debug: Evaluate ternary with "
|
|
<< "constant condition value: " << c->value() << endl;
|
|
cerr << get_line() << ": : Blending cases to get "
|
|
<< val << endl;
|
|
}
|
|
|
|
NetEConst*rc = new NetEConst(val);
|
|
rc->set_line(*this);
|
|
return rc;
|
|
}
|
|
|
|
void NetEUnary::eval_expr_()
|
|
{
|
|
assert(expr_);
|
|
if (dynamic_cast<NetEConst*>(expr_))
|
|
return;
|
|
|
|
NetExpr*oper = expr_->eval_tree();
|
|
if (oper == 0)
|
|
return;
|
|
|
|
delete expr_;
|
|
expr_ = oper;
|
|
}
|
|
|
|
NetEConst* NetEUnary::eval_tree()
|
|
{
|
|
eval_expr_();
|
|
NetEConst*rval = dynamic_cast<NetEConst*>(expr_);
|
|
if (rval == 0)
|
|
return 0;
|
|
|
|
verinum val = rval->value();
|
|
|
|
switch (op_) {
|
|
|
|
case '+':
|
|
/* Unary + is a no-op. */
|
|
return new NetEConst(val);
|
|
|
|
case '-': {
|
|
if (val.is_defined()) {
|
|
|
|
verinum tmp (verinum::V0, val.len());
|
|
tmp.has_sign(val.has_sign());
|
|
val = tmp - val;
|
|
|
|
} else {
|
|
for (unsigned idx = 0 ; idx < val.len() ; idx += 1)
|
|
val.set(idx, verinum::Vx);
|
|
}
|
|
|
|
return new NetEConst(val);
|
|
}
|
|
|
|
case '~': {
|
|
/* Bitwise not is even simpler then logical
|
|
not. Just invert all the bits of the operand and
|
|
make the new value with the same dimensions. */
|
|
for (unsigned idx = 0 ; idx < val.len() ; idx += 1)
|
|
switch (val.get(idx)) {
|
|
case verinum::V0:
|
|
val.set(idx, verinum::V1);
|
|
break;
|
|
case verinum::V1:
|
|
val.set(idx, verinum::V0);
|
|
break;
|
|
default:
|
|
val.set(idx, verinum::Vx);
|
|
}
|
|
|
|
return new NetEConst(val);
|
|
}
|
|
|
|
case '!':
|
|
assert(0);
|
|
default:
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
|
|
NetEConst* NetEUBits::eval_tree()
|
|
{
|
|
return NetEUnary::eval_tree();
|
|
}
|
|
|
|
NetEConst* NetEUReduce::eval_tree()
|
|
{
|
|
eval_expr_();
|
|
NetEConst*rval = dynamic_cast<NetEConst*>(expr_);
|
|
if (rval == 0)
|
|
return 0;
|
|
|
|
verinum val = rval->value();
|
|
verinum::V res;
|
|
|
|
switch (op_) {
|
|
|
|
case '!': {
|
|
/* Evaluate the unary logical not by first scanning
|
|
the operand value for V1 and Vx bits. If we find
|
|
any V1 bits we know that the value is TRUE, so
|
|
the result of ! is V0. If there are no V1 bits
|
|
but there are some Vx/Vz bits, the result is
|
|
unknown. Otherwise, the result is V1. */
|
|
unsigned v1 = 0, vx = 0;
|
|
for (unsigned idx = 0 ; idx < val.len() ; idx += 1) {
|
|
switch (val.get(idx)) {
|
|
case verinum::V0:
|
|
break;
|
|
case verinum::V1:
|
|
v1 += 1;
|
|
break;
|
|
default:
|
|
vx += 1;
|
|
break;
|
|
}
|
|
}
|
|
|
|
res = v1? verinum::V0 : (vx? verinum::Vx : verinum::V1);
|
|
break;
|
|
}
|
|
|
|
case '&': {
|
|
res = verinum::V1;
|
|
for (unsigned idx = 0 ; idx < val.len() ; idx += 1)
|
|
res = res & val.get(idx);
|
|
break;
|
|
}
|
|
|
|
case '|': {
|
|
res = verinum::V0;
|
|
for (unsigned idx = 0 ; idx < val.len() ; idx += 1)
|
|
res = res | val.get(idx);
|
|
break;
|
|
}
|
|
|
|
case '^': {
|
|
/* Reduction XOR. */
|
|
unsigned ones = 0, unknown = 0;
|
|
for (unsigned idx = 0 ; idx < val.len() ; idx += 1)
|
|
switch (val.get(idx)) {
|
|
case verinum::V0:
|
|
break;
|
|
case verinum::V1:
|
|
ones += 1;
|
|
break;
|
|
default:
|
|
unknown += 1;
|
|
break;
|
|
}
|
|
|
|
if (unknown)
|
|
return new NetEConst(verinum(verinum::Vx,1,true));
|
|
if (ones%2)
|
|
return new NetEConst(verinum(verinum::V1,1,true));
|
|
return new NetEConst(verinum(verinum::V0,1,true));
|
|
}
|
|
|
|
default:
|
|
return 0;
|
|
}
|
|
|
|
return new NetEConst(verinum(res, 1));
|
|
}
|
|
|
|
|
|
/*
|
|
* $Log: eval_tree.cc,v $
|
|
* Revision 1.61 2004/09/10 23:51:42 steve
|
|
* Fix the evaluation of constant ternary expressions.
|
|
*
|
|
* Revision 1.60 2004/02/20 06:22:56 steve
|
|
* parameter keys are per_strings.
|
|
*
|
|
* Revision 1.59 2003/10/31 02:47:11 steve
|
|
* NetEUReduce has its own dup_expr method.
|
|
*
|
|
* Revision 1.58 2003/10/26 04:54:56 steve
|
|
* Support constant evaluation of binary ^ operator.
|
|
*
|
|
* Revision 1.57 2003/09/04 01:52:50 steve
|
|
* Evaluate real parameter expressions that contain real parameters.
|
|
*
|
|
* Revision 1.56 2003/08/01 02:12:30 steve
|
|
* Fix || with true case on the right.
|
|
*
|
|
* Revision 1.55 2003/06/24 01:38:02 steve
|
|
* Various warnings fixed.
|
|
*
|
|
* Revision 1.54 2003/06/05 04:28:24 steve
|
|
* Evaluate <= with real operands.
|
|
*
|
|
* Revision 1.53 2003/06/04 01:26:17 steve
|
|
* internal error for <= expression errors.
|
|
*
|
|
* Revision 1.52 2003/05/30 02:55:32 steve
|
|
* Support parameters in real expressions and
|
|
* as real expressions, and fix multiply and
|
|
* divide with real results.
|
|
*
|
|
* Revision 1.51 2003/04/15 05:06:56 steve
|
|
* Handle real constants evaluation > and >=.
|
|
*
|
|
* Revision 1.50 2003/04/14 03:40:21 steve
|
|
* Make some effort to preserve bits while
|
|
* operating on constant values.
|
|
*/
|
|
|