670 lines
18 KiB
C++
670 lines
18 KiB
C++
/*
|
|
* Copyright (c) 1999-2000 Stephen Williams (steve@icarus.com)
|
|
*
|
|
* This source code is free software; you can redistribute it
|
|
* and/or modify it in source code form under the terms of the GNU
|
|
* General Public License as published by the Free Software
|
|
* Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
|
|
*/
|
|
#if !defined(WINNT) && !defined(macintosh)
|
|
#ident "$Id: elab_expr.cc,v 1.39 2001/06/30 21:28:35 steve Exp $"
|
|
#endif
|
|
|
|
|
|
# include "pform.h"
|
|
# include "netlist.h"
|
|
# include "netmisc.h"
|
|
# include "util.h"
|
|
|
|
NetExpr* PExpr::elaborate_expr(Design*des, NetScope*) const
|
|
{
|
|
cerr << get_line() << ": internal error: I do not know how to elaborate"
|
|
<< " expression. " << endl;
|
|
cerr << get_line() << ": : Expression is: " << *this
|
|
<< endl;
|
|
des->errors += 1;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Elaborate binary expressions. This involves elaborating the left
|
|
* and right sides, and creating one of a variety of different NetExpr
|
|
* types.
|
|
*/
|
|
NetEBinary* PEBinary::elaborate_expr(Design*des, NetScope*scope) const
|
|
{
|
|
NetExpr*lp = left_->elaborate_expr(des, scope);
|
|
NetExpr*rp = right_->elaborate_expr(des, scope);
|
|
if ((lp == 0) || (rp == 0)) {
|
|
delete lp;
|
|
delete rp;
|
|
return 0;
|
|
}
|
|
|
|
/* If either expression can be evaluated ahead of time, then
|
|
do so. This can prove helpful later. */
|
|
{ NetExpr*tmp;
|
|
tmp = lp->eval_tree();
|
|
if (tmp) {
|
|
delete lp;
|
|
lp = tmp;
|
|
}
|
|
tmp = rp->eval_tree();
|
|
if (tmp) {
|
|
delete rp;
|
|
rp = tmp;
|
|
}
|
|
}
|
|
|
|
NetEBinary*tmp = elaborate_expr_base_(des, lp, rp);
|
|
return tmp;
|
|
}
|
|
|
|
/*
|
|
* This is common elaboration of the operator. It presumes that the
|
|
* operands are elaborated as necessary, and all I need to do is make
|
|
* the correct NetEBinary object and connect the parameters.
|
|
*/
|
|
NetEBinary* PEBinary::elaborate_expr_base_(Design*des,
|
|
NetExpr*lp, NetExpr*rp) const
|
|
{
|
|
bool flag;
|
|
NetEBinary*tmp;
|
|
|
|
switch (op_) {
|
|
default:
|
|
tmp = new NetEBinary(op_, lp, rp);
|
|
tmp->set_line(*this);
|
|
break;
|
|
|
|
case 'a':
|
|
case 'o':
|
|
tmp = new NetEBLogic(op_, lp, rp);
|
|
tmp->set_line(*this);
|
|
break;
|
|
|
|
case '*':
|
|
tmp = new NetEBMult(op_, lp, rp);
|
|
tmp->set_line(*this);
|
|
break;
|
|
|
|
case '/':
|
|
case '%':
|
|
tmp = new NetEBDiv(op_, lp, rp);
|
|
tmp->set_line(*this);
|
|
break;
|
|
|
|
case 'l':
|
|
case 'r':
|
|
tmp = new NetEBShift(op_, lp, rp);
|
|
tmp->set_line(*this);
|
|
break;
|
|
|
|
case '^':
|
|
case '&':
|
|
case '|':
|
|
case 'O':
|
|
case 'X':
|
|
tmp = new NetEBBits(op_, lp, rp);
|
|
tmp->set_line(*this);
|
|
break;
|
|
|
|
case '+':
|
|
case '-':
|
|
tmp = new NetEBAdd(op_, lp, rp);
|
|
tmp->set_line(*this);
|
|
break;
|
|
|
|
case 'e': /* == */
|
|
case 'E': /* === */
|
|
case 'n': /* != */
|
|
case 'N': /* !== */
|
|
case 'L': /* <= */
|
|
case 'G': /* >= */
|
|
case '<':
|
|
case '>':
|
|
tmp = new NetEBComp(op_, lp, rp);
|
|
tmp->set_line(*this);
|
|
flag = tmp->set_width(1);
|
|
if (flag == false) {
|
|
cerr << get_line() << ": internal error: "
|
|
"expression bit width of comparison != 1." << endl;
|
|
des->errors += 1;
|
|
}
|
|
break;
|
|
}
|
|
|
|
return tmp;
|
|
}
|
|
|
|
/*
|
|
* Given a call to a system function, generate the proper expression
|
|
* nodes to represent the call in the netlist. Since we don't support
|
|
* size_tf functions, make assumptions about widths based on some
|
|
* known function names.
|
|
*/
|
|
NetExpr* PECallFunction::elaborate_sfunc_(Design*des, NetScope*scope) const
|
|
{
|
|
unsigned wid = 32;
|
|
|
|
if (name_ == "$time")
|
|
wid = 64;
|
|
|
|
|
|
/* How many parameters are there? The Verilog language allows
|
|
empty parameters in certain contexts, so the parser will
|
|
allow things like func(1,,3). It will also cause func() to
|
|
be interpreted as a single empty parameter.
|
|
|
|
Functions cannot really take empty parameters, but the
|
|
case ``func()'' is the same as no parmaters at all. So
|
|
catch that special case here. */
|
|
unsigned nparms = parms_.count();
|
|
if ((nparms == 1) && (parms_[0] == 0))
|
|
nparms = 0;
|
|
|
|
NetESFunc*fun = new NetESFunc(name_, wid, nparms);
|
|
|
|
/* Now run through the expected parameters. If we find that
|
|
there are missing parameters, print an error message.
|
|
|
|
While we're at it, try to evaluate the function parameter
|
|
expression as much as possible, and use the reduced
|
|
expression if one is created. */
|
|
|
|
unsigned missing_parms = 0;
|
|
for (unsigned idx = 0 ; idx < nparms ; idx += 1) {
|
|
PExpr*expr = parms_[idx];
|
|
if (expr) {
|
|
NetExpr*tmp1 = expr->elaborate_expr(des, scope);
|
|
if (NetExpr*tmp2 = tmp1->eval_tree()) {
|
|
delete tmp1;
|
|
fun->parm(idx, tmp2);
|
|
} else {
|
|
fun->parm(idx, tmp1);
|
|
}
|
|
|
|
} else {
|
|
missing_parms += 1;
|
|
fun->parm(idx, 0);
|
|
}
|
|
}
|
|
|
|
if (missing_parms > 0) {
|
|
cerr << get_line() << ": error: The function " << name_
|
|
<< " has been called with empty parameters." << endl;
|
|
cerr << get_line() << ": : Verilog doesn't allow "
|
|
<< "passing empty parameters to functions." << endl;
|
|
des->errors += 1;
|
|
}
|
|
|
|
return fun;
|
|
}
|
|
|
|
NetExpr* PECallFunction::elaborate_expr(Design*des, NetScope*scope) const
|
|
{
|
|
if (name_[0] == '$')
|
|
return elaborate_sfunc_(des, scope);
|
|
|
|
NetFuncDef*def = des->find_function(scope, name_);
|
|
if (def == 0) {
|
|
cerr << get_line() << ": error: No function " << name_ <<
|
|
" in this context (" << scope->name() << ")." << endl;
|
|
des->errors += 1;
|
|
return 0;
|
|
}
|
|
assert(def);
|
|
|
|
NetScope*dscope = des->find_scope(def->name());
|
|
assert(dscope);
|
|
|
|
/* How many parameters have I got? Normally the size of the
|
|
list is correct, but there is the special case of a list of
|
|
1 nil pointer. This is how the parser tells me of no
|
|
parameter. In other words, ``func()'' is 1 nil parameter. */
|
|
|
|
unsigned parms_count = parms_.count();
|
|
if ((parms_count == 1) && (parms_[0] == 0))
|
|
parms_count = 0;
|
|
|
|
if (dscope->type() != NetScope::FUNC) {
|
|
cerr << get_line() << ": error: Attempt to call scope "
|
|
<< dscope->name() << " as a function." << endl;
|
|
des->errors += 1;
|
|
return 0;
|
|
}
|
|
|
|
if ((parms_count+1) != dscope->func_def()->port_count()) {
|
|
cerr << get_line() << ": error: Function " << dscope->name()
|
|
<< " expects " << (dscope->func_def()->port_count()-1)
|
|
<< " parameters, you passed " << parms_count << "."
|
|
<< endl;
|
|
des->errors += 1;
|
|
return 0;
|
|
}
|
|
|
|
svector<NetExpr*> parms (parms_count);
|
|
|
|
/* Elaborate the input expressions for the function. This is
|
|
done in the scope of the function call, and not the scope
|
|
of the function being called. The scope of the called
|
|
function is elaborated when the definition is elaborated. */
|
|
|
|
unsigned missing_parms = 0;
|
|
for (unsigned idx = 0 ; idx < parms.count() ; idx += 1) {
|
|
PExpr*tmp = parms_[idx];
|
|
if (tmp) {
|
|
parms[idx] = tmp->elaborate_expr(des, scope);
|
|
|
|
} else {
|
|
missing_parms += 1;
|
|
parms[idx] = 0;
|
|
}
|
|
}
|
|
|
|
if (missing_parms > 0) {
|
|
cerr << get_line() << ": error: The function " << name_
|
|
<< " has been called with empty parameters." << endl;
|
|
cerr << get_line() << ": : Verilog doesn't allow "
|
|
<< "passing empty parameters to functions." << endl;
|
|
des->errors += 1;
|
|
}
|
|
|
|
|
|
/* Look for the return value signal for the called
|
|
function. This return value is a magic signal in the scope
|
|
of the function, that has the name of the function. The
|
|
function code assigns to this signal to return a value.
|
|
|
|
dscope, in this case, is the scope of the function, so the
|
|
return value is the name within that scope. */
|
|
|
|
string rname = name_;
|
|
NetNet*res = des->find_signal(dscope, parse_last_name(rname));
|
|
if (res == 0) {
|
|
cerr << get_line() << ": internal error: Unable to locate "
|
|
"function return value for " << name_ << " in " <<
|
|
def->name() << "." << endl;
|
|
des->errors += 1;
|
|
return 0;
|
|
}
|
|
|
|
assert(res);
|
|
NetESignal*eres = new NetESignal(res);
|
|
assert(eres);
|
|
NetEUFunc*func = new NetEUFunc(dscope, eres, parms);
|
|
return func;
|
|
}
|
|
|
|
|
|
NetExpr* PEConcat::elaborate_expr(Design*des, NetScope*scope) const
|
|
{
|
|
unsigned repeat = 1;
|
|
|
|
/* If there is a repeat expression, then evaluate the constant
|
|
value and set the repeat count. */
|
|
if (repeat_) {
|
|
NetExpr*tmp = elab_and_eval(des, scope, repeat_);
|
|
assert(tmp);
|
|
NetEConst*rep = dynamic_cast<NetEConst*>(tmp);
|
|
|
|
if (rep == 0) {
|
|
cerr << get_line() << ": error: "
|
|
"concatenation repeat expression cannot be evaluated."
|
|
<< endl;
|
|
cerr << get_line() << ": : The expression is: "
|
|
<< *tmp << endl;
|
|
des->errors += 1;
|
|
return 0;
|
|
}
|
|
|
|
repeat = rep->value().as_ulong();
|
|
}
|
|
|
|
/* Make the empty concat expression. */
|
|
NetEConcat*tmp = new NetEConcat(parms_.count(), repeat);
|
|
tmp->set_line(*this);
|
|
|
|
/* Elaborate all the parameters and attach them to the concat node. */
|
|
for (unsigned idx = 0 ; idx < parms_.count() ; idx += 1) {
|
|
assert(parms_[idx]);
|
|
NetExpr*ex = parms_[idx]->elaborate_expr(des, scope);
|
|
if (ex == 0) continue;
|
|
|
|
ex->set_line(*parms_[idx]);
|
|
|
|
if (! ex->has_width()) {
|
|
cerr << ex->get_line() << ": error: operand of "
|
|
<< "concatenation has indefinite width: "
|
|
<< *ex << endl;
|
|
des->errors += 1;
|
|
}
|
|
|
|
tmp->set(idx, ex);
|
|
}
|
|
|
|
return tmp;
|
|
}
|
|
|
|
NetExpr* PEFNumber::elaborate_expr(Design*des, NetScope*scope) const
|
|
{
|
|
long val = value_->as_long();
|
|
return new NetEConst(verinum(val));
|
|
}
|
|
|
|
NetExpr* PEIdent::elaborate_expr(Design*des, NetScope*scope) const
|
|
{
|
|
assert(text_[0] != '$');
|
|
|
|
//string name = path+"."+text_;
|
|
assert(scope);
|
|
|
|
// If the identifier name is a parameter name, then return
|
|
// a reference to the parameter expression.
|
|
if (const NetExpr*ex = des->find_parameter(scope, text_)) {
|
|
NetExpr*tmp;
|
|
if (dynamic_cast<const NetExpr*>(ex))
|
|
tmp = ex->dup_expr();
|
|
else
|
|
tmp = new NetEParam(des, scope, text_);
|
|
|
|
tmp->set_line(*this);
|
|
return tmp;
|
|
}
|
|
|
|
// If the identifier names a signal (a register or wire)
|
|
// then create a NetESignal node to handle it.
|
|
if (NetNet*net = des->find_signal(scope, text_)) {
|
|
|
|
// If this is a part select of a signal, then make a new
|
|
// temporary signal that is connected to just the
|
|
// selected bits. The lsb_ and msb_ expressions are from
|
|
// the foo[msb:lsb] expression in the original.
|
|
if (lsb_) {
|
|
assert(msb_);
|
|
verinum*lsn = lsb_->eval_const(des, scope->name());
|
|
verinum*msn = msb_->eval_const(des, scope->name());
|
|
if ((lsn == 0) || (msn == 0)) {
|
|
cerr << get_line() << ": error: "
|
|
"Part select expresions must be "
|
|
"constant expressions." << endl;
|
|
des->errors += 1;
|
|
return 0;
|
|
}
|
|
|
|
assert(lsn);
|
|
assert(msn);
|
|
|
|
/* The indices of part selects are signed
|
|
integers, so allow negative values. However,
|
|
the width that they represent is
|
|
unsigned. Remember that any order is possible,
|
|
i.e. [1:0], [-4,6], etc. */
|
|
|
|
long lsv = lsn->as_long();
|
|
long msv = msn->as_long();
|
|
unsigned long wid = 1 + ((msv>lsv)? (msv-lsv) : (lsv-msv));
|
|
if (wid > net->pin_count()) {
|
|
cerr << get_line() << ": error: part select ["
|
|
<< msv << ":" << lsv << "] out of range."
|
|
<< endl;
|
|
des->errors += 1;
|
|
delete lsn;
|
|
delete msn;
|
|
return 0;
|
|
}
|
|
assert(wid <= net->pin_count());
|
|
|
|
if (net->sb_to_idx(msv) < net->sb_to_idx(lsv)) {
|
|
cerr << get_line() << ": error: part select ["
|
|
<< msv << ":" << lsv << "] out of order."
|
|
<< endl;
|
|
des->errors += 1;
|
|
delete lsn;
|
|
delete msn;
|
|
return 0;
|
|
}
|
|
|
|
|
|
if (net->sb_to_idx(msv) >= net->pin_count()) {
|
|
cerr << get_line() << ": error: part select ["
|
|
<< msv << ":" << lsv << "] out of range."
|
|
<< endl;
|
|
des->errors += 1;
|
|
delete lsn;
|
|
delete msn;
|
|
return 0;
|
|
}
|
|
|
|
string tname = des->local_symbol(scope->name());
|
|
NetTmp*tsig = new NetTmp(scope, tname, wid);
|
|
|
|
// Connect the pins from the lsb up to the msb.
|
|
unsigned off = net->sb_to_idx(lsv);
|
|
for (unsigned idx = 0 ; idx < wid ; idx += 1)
|
|
connect(tsig->pin(idx), net->pin(idx+off));
|
|
|
|
NetESignal*tmp = new NetESignal(tsig);
|
|
tmp->set_line(*this);
|
|
|
|
return tmp;
|
|
}
|
|
|
|
// If the bit select is constant, then treat it similar
|
|
// to the part select, so that I save the effort of
|
|
// making a mux part in the netlist.
|
|
verinum*msn;
|
|
if (msb_ && (msn = msb_->eval_const(des, scope->name()))) {
|
|
assert(idx_ == 0);
|
|
unsigned long msv = msn->as_ulong();
|
|
unsigned idx = net->sb_to_idx(msv);
|
|
|
|
if (idx >= net->pin_count()) {
|
|
cerr << get_line() << ": internal error: "
|
|
<< "bit " << msv << " out of range of net "
|
|
<< net->name() << "[" << net->msb()
|
|
<< ":" << net->lsb() << "]." << endl;
|
|
return 0;
|
|
}
|
|
|
|
string tname = des->local_symbol(scope->name());
|
|
NetTmp*tsig = new NetTmp(scope, tname);
|
|
connect(tsig->pin(0), net->pin(idx));
|
|
NetESignal*tmp = new NetESignal(tsig);
|
|
tmp->set_line(*this);
|
|
|
|
return tmp;
|
|
}
|
|
|
|
NetESignal*node = new NetESignal(net);
|
|
assert(idx_ == 0);
|
|
|
|
// Non-constant bit select? punt and make a subsignal
|
|
// device to mux the bit in the net.
|
|
if (msb_) {
|
|
NetExpr*ex = msb_->elaborate_expr(des, scope);
|
|
NetESubSignal*ss = new NetESubSignal(node, ex);
|
|
ss->set_line(*this);
|
|
return ss;
|
|
}
|
|
|
|
// All else fails, return the signal itself as the
|
|
// expression.
|
|
assert(msb_ == 0);
|
|
return node;
|
|
}
|
|
|
|
// If the identifier names a memory, then this is a
|
|
// memory reference and I must generate a NetEMemory
|
|
// object to handle it.
|
|
if (NetMemory*mem = des->find_memory(scope, text_)) {
|
|
if (msb_ == 0) {
|
|
NetEMemory*node = new NetEMemory(mem);
|
|
node->set_line(*this);
|
|
return node;
|
|
}
|
|
assert(msb_ != 0);
|
|
if (lsb_) {
|
|
cerr << get_line() << ": error: part select of a memory: "
|
|
<< mem->name() << endl;
|
|
des->errors += 1;
|
|
return 0;
|
|
}
|
|
|
|
assert(lsb_ == 0);
|
|
assert(idx_ == 0);
|
|
NetExpr*i = msb_->elaborate_expr(des, scope);
|
|
if (msb_ && i == 0) {
|
|
cerr << get_line() << ": error: Unable to exaborate "
|
|
"index expression `" << *msb_ << "'" << endl;
|
|
des->errors += 1;
|
|
return 0;
|
|
}
|
|
|
|
NetEMemory*node = new NetEMemory(mem, i);
|
|
node->set_line(*this);
|
|
return node;
|
|
}
|
|
|
|
// Finally, if this is a scope name, then return that.
|
|
if (NetScope*nsc = des->find_scope(text_)) {
|
|
NetEScope*tmp = new NetEScope(nsc);
|
|
tmp->set_line(*this);
|
|
return tmp;
|
|
}
|
|
|
|
// I cannot interpret this identifier. Error message.
|
|
cerr << get_line() << ": error: Unable to bind wire/reg/memory "
|
|
"`" << text_ << "' in `" << scope->name() << "'" << endl;
|
|
des->errors += 1;
|
|
return 0;
|
|
}
|
|
|
|
NetEConst* PENumber::elaborate_expr(Design*des, NetScope*) const
|
|
{
|
|
assert(value_);
|
|
NetEConst*tmp = new NetEConst(*value_);
|
|
tmp->set_line(*this);
|
|
return tmp;
|
|
}
|
|
|
|
NetEConst* PEString::elaborate_expr(Design*des, NetScope*) const
|
|
{
|
|
NetEConst*tmp = new NetEConst(value());
|
|
tmp->set_line(*this);
|
|
return tmp;
|
|
}
|
|
|
|
/*
|
|
* Elaborate the Ternary operator. I know that the expressions were
|
|
* parsed so I can presume that they exist, and call elaboration
|
|
* methods. If any elaboration fails, then give up and return 0.
|
|
*/
|
|
NetETernary*PETernary::elaborate_expr(Design*des, NetScope*scope) const
|
|
{
|
|
assert(expr_);
|
|
assert(tru_);
|
|
assert(fal_);
|
|
|
|
NetExpr*con = expr_->elaborate_expr(des, scope);
|
|
if (con == 0)
|
|
return 0;
|
|
|
|
NetExpr*tru = tru_->elaborate_expr(des, scope);
|
|
if (tru == 0) {
|
|
delete con;
|
|
return 0;
|
|
}
|
|
|
|
NetExpr*fal = fal_->elaborate_expr(des, scope);
|
|
if (fal == 0) {
|
|
delete con;
|
|
delete tru;
|
|
return 0;
|
|
}
|
|
|
|
NetETernary*res = new NetETernary(con, tru, fal);
|
|
return res;
|
|
}
|
|
|
|
NetEUnary* PEUnary::elaborate_expr(Design*des, NetScope*scope) const
|
|
{
|
|
NetExpr*ip = expr_->elaborate_expr(des, scope);
|
|
if (ip == 0) return 0;
|
|
|
|
/* Should we evaluate expressions ahead of time,
|
|
* just like in PEBinary::elaborate_expr() ?
|
|
*/
|
|
|
|
NetEUnary*tmp;
|
|
switch (op_) {
|
|
default:
|
|
tmp = new NetEUnary(op_, ip);
|
|
tmp->set_line(*this);
|
|
break;
|
|
case '!': // Logical NOT
|
|
case '&': // Reduction AND
|
|
case '|': // Reduction OR
|
|
case '^': // Reduction XOR
|
|
case 'A': // Reduction NAND (~&)
|
|
case 'N': // Reduction NOR (~|)
|
|
case 'X': // Reduction NXOR (~^)
|
|
tmp = new NetEUReduce(op_, ip);
|
|
tmp->set_line(*this);
|
|
break;
|
|
case '~':
|
|
tmp = new NetEUBits(op_, ip);
|
|
tmp->set_line(*this);
|
|
break;
|
|
}
|
|
return tmp;
|
|
}
|
|
|
|
/*
|
|
* $Log: elab_expr.cc,v $
|
|
* Revision 1.39 2001/06/30 21:28:35 steve
|
|
* Detect parameter mismatches.
|
|
*
|
|
* Revision 1.38 2001/06/23 19:53:03 steve
|
|
* Look up functor return register with tail of name.
|
|
*
|
|
* Revision 1.37 2001/04/06 02:28:02 steve
|
|
* Generate vvp code for functions with ports.
|
|
*
|
|
* Revision 1.36 2001/02/10 20:29:39 steve
|
|
* In the context of range declarations, use elab_and_eval instead
|
|
* of the less robust eval_const methods.
|
|
*
|
|
* Revision 1.35 2001/02/09 05:44:23 steve
|
|
* support evaluation of constant < in expressions.
|
|
*
|
|
* Revision 1.34 2001/01/14 23:04:55 steve
|
|
* Generalize the evaluation of floating point delays, and
|
|
* get it working with delay assignment statements.
|
|
*
|
|
* Allow parameters to be referenced by hierarchical name.
|
|
*
|
|
* Revision 1.33 2001/01/13 22:20:08 steve
|
|
* Parse parameters within nested scopes.
|
|
*
|
|
* Revision 1.32 2001/01/02 04:21:13 steve
|
|
* Support a bunch of unary operators in parameter expressions.
|
|
*
|
|
* Revision 1.31 2000/12/10 22:01:35 steve
|
|
* Support decimal constants in behavioral delays.
|
|
*
|
|
* Revision 1.30 2000/11/29 05:24:00 steve
|
|
* synthesis for unary reduction ! and N operators.
|
|
*/
|
|
|