iverilog/PGate.h

247 lines
7.9 KiB
C++

#ifndef __PGate_H
#define __PGate_H
/*
* Copyright (c) 1998-2004 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CVS_IDENT
#ident "$Id: PGate.h,v 1.32 2006/04/10 00:37:42 steve Exp $"
#endif
# include "svector.h"
# include "StringHeap.h"
# include "named.h"
# include "LineInfo.h"
# include "PDelays.h"
# include "netlist.h"
# include <map>
# include <string>
class PExpr;
class PUdp;
class Module;
/*
* A PGate represents a Verilog gate. The gate has a name and other
* properties, and a set of pins that connect to wires. It is known at
* the time a gate is constructed how many pins the gate has.
*
* This pins of a gate are connected to expressions. The elaboration
* step will need to convert expressions to a network of gates in
* order to elaborate expression inputs, but that can easily be done.
*
* The PGate base class also carries the strength0 and strength1
* strengths for those gates where the driver[s] can be described by a
* single strength pair. There is a strength of the 0 drive, and a
* strength of the 1 drive.
*/
class PGate : public LineInfo {
public:
enum strength_t { HIGHZ, WEAK, PULL, STRONG, SUPPLY };
explicit PGate(perm_string name, svector<PExpr*>*pins,
const svector<PExpr*>*del);
explicit PGate(perm_string name, svector<PExpr*>*pins,
PExpr*del);
explicit PGate(perm_string name, svector<PExpr*>*pins);
virtual ~PGate();
perm_string get_name() const { return name_; }
// This method evaluates the delays all the way to an
// integer. If the delay is non-constant, then set the times
// to 0, print an error message and mark an error to the
// design.
void eval_delays(Design*des, NetScope*scope,
unsigned long&rise_time,
unsigned long&fall_time,
unsigned long&decay_time) const;
// This evaluates the delays as far as possible, but returns
// an expression, and do not signal errors.
void eval_delays(Design*des, NetScope*scope,
NetExpr*&rise_time,
NetExpr*&fall_time,
NetExpr*&decay_time,
bool as_net_flag =false) const;
unsigned pin_count() const { return pins_? pins_->count() : 0; }
const PExpr*pin(unsigned idx) const { return (*pins_)[idx]; }
strength_t strength0() const;
strength_t strength1() const;
void strength0(strength_t);
void strength1(strength_t);
map<perm_string,PExpr*> attributes;
virtual void dump(ostream&out, unsigned ind =4) const;
virtual void elaborate(Design*des, NetScope*scope) const;
virtual void elaborate_scope(Design*des, NetScope*sc) const;
virtual bool elaborate_sig(Design*des, NetScope*scope) const;
protected:
const svector<PExpr*>& get_pins() const { return *pins_; }
void dump_pins(ostream&out) const;
void dump_delays(ostream&out) const;
private:
perm_string name_;
PDelays delay_;
svector<PExpr*>*pins_;
strength_t str0_, str1_;
private: // not implemented
PGate(const PGate&);
PGate& operator= (const PGate&);
};
/* A continuous assignment has a single output and a single input. The
input is passed directly to the output. This is different from a
BUF because elaboration may need to turn this into a vector of
gates. */
class PGAssign : public PGate {
public:
explicit PGAssign(svector<PExpr*>*pins);
explicit PGAssign(svector<PExpr*>*pins, svector<PExpr*>*dels);
~PGAssign();
void dump(ostream&out, unsigned ind =4) const;
virtual void elaborate(Design*des, NetScope*scope) const;
virtual bool elaborate_sig(Design*des, NetScope*scope) const;
private:
};
/*
* The Builtin class is specifically a gate with one of the builtin
* types. The parser recognizes these types during parse. These types
* have special properties that allow them to be treated specially.
*
* A PGBuiltin can be grouped into an array of devices. If this is
* done, the msb_ and lsb_ are set to the indices of the array
* range. Elaboration causes a gate to be created for each element of
* the array, and a name will be generated for each gate.
*/
class PGBuiltin : public PGate {
public:
enum Type { AND, NAND, OR, NOR, XOR, XNOR, BUF, BUFIF0, BUFIF1,
NOT, NOTIF0, NOTIF1, PULLDOWN, PULLUP, NMOS, RNMOS,
PMOS, RPMOS, CMOS, RCMOS, TRAN, RTRAN, TRANIF0,
TRANIF1, RTRANIF0, RTRANIF1 };
public:
explicit PGBuiltin(Type t, perm_string name,
svector<PExpr*>*pins,
svector<PExpr*>*del);
explicit PGBuiltin(Type t, perm_string name,
svector<PExpr*>*pins,
PExpr*del);
~PGBuiltin();
Type type() const { return type_; }
void set_range(PExpr*msb, PExpr*lsb);
virtual void dump(ostream&out, unsigned ind =4) const;
virtual void elaborate(Design*, NetScope*scope) const;
virtual bool elaborate_sig(Design*des, NetScope*scope) const;
private:
Type type_;
PExpr*msb_;
PExpr*lsb_;
};
/*
* This kind of gate is an instantiation of a module. The stored type
* is the name of a module definition somewhere in the pform. This
* type also handles UDP devices, because it is generally not known at
* parse time whether a name belongs to a module or a UDP.
*/
class PGModule : public PGate {
public:
// The name is the *instance* name of the gate.
// If the binding of ports is by position, this constructor
// builds everything all at once.
explicit PGModule(perm_string type, perm_string name,
svector<PExpr*>*pins);
// If the binding of ports is by name, this constructor takes
// the bindings and stores them for later elaboration.
explicit PGModule(perm_string type, perm_string name,
named<PExpr*>*pins, unsigned npins);
~PGModule();
// Parameter overrides can come as an ordered list, or a set
// of named expressions.
void set_parameters(svector<PExpr*>*o);
void set_parameters(named<PExpr*>*pa, unsigned npa);
// Modules can be instantiated in ranges. The parser uses this
// method to pass the range to the pform.
void set_range(PExpr*msb, PExpr*lsb);
virtual void dump(ostream&out, unsigned ind =4) const;
virtual void elaborate(Design*, NetScope*scope) const;
virtual void elaborate_scope(Design*des, NetScope*sc) const;
virtual bool elaborate_sig(Design*des, NetScope*scope) const;
// This returns the module name of this module. It is a
// permallocated string.
perm_string get_type();
private:
perm_string type_;
svector<PExpr*>*overrides_;
named<PExpr*>*pins_;
unsigned npins_;
// These members support parameter override by name
named<PExpr*>*parms_;
unsigned nparms_;
// Arrays of modules are give if these are set.
PExpr*msb_;
PExpr*lsb_;
void elaborate_mod_(Design*, Module*mod, NetScope*scope) const;
void elaborate_udp_(Design*, PUdp *udp, NetScope*scope) const;
void elaborate_scope_mod_(Design*des, Module*mod, NetScope*sc) const;
bool elaborate_sig_mod_(Design*des, NetScope*scope, Module*mod) const;
bool elaborate_sig_udp_(Design*des, NetScope*scope, PUdp*udp) const;
NetNet*resize_net_to_port_(Design*des, NetScope*scope,
NetNet*sig, unsigned port_wid,
NetNet::PortType dir) const;
};
#endif