iverilog/vhdlpp/expression.h

907 lines
30 KiB
C++

#ifndef IVL_expression_H
#define IVL_expression_H
/*
* Copyright (c) 2011-2014 Stephen Williams (steve@icarus.com)
* Copyright CERN 2015 / Stephen Williams (steve@icarus.com),
* @author Maciej Suminski (maciej.suminski@cern.ch)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "StringHeap.h"
# include "LineInfo.h"
# include "entity.h"
# include <inttypes.h>
# include <list>
# include <memory>
# include <vector>
class prange_t;
class Entity;
class ScopeBase;
class SubprogramHeader;
class VType;
class VTypeArray;
class VTypePrimitive;
class ExpName;
struct ExprVisitor {
virtual ~ExprVisitor() {};
virtual void operator() (Expression*s) = 0;
};
/*
* The Expression class represents parsed expressions from the parsed
* VHDL input. The Expression class is a virtual class that holds more
* specific derived expression types.
*/
class Expression : public LineInfo {
public:
Expression();
virtual ~Expression() =0;
// Returns a deep copy of the expression.
virtual Expression*clone() const =0;
// This virtual method handles the special case of elaborating
// an expression that is the l-value of a sequential variable
// assignment. This generates an error for most cases, but
// expressions that are valid l-values return 0 and set any
// flags needed to indicate their status as writable variables.
virtual int elaborate_lval(Entity*ent, ScopeBase*scope,
bool is_sequ);
// This virtual method probes the expression to get the most
// constrained type for the expression. For a given instance,
// this may be called before the elaborate_expr method.
virtual const VType*probe_type(Entity*ent, ScopeBase*scope) const;
// The fit_type virtual method is used by the ExpConcat class
// to probe the type of operands. The atype argument is the
// type of the ExpConcat expression itself. This expression
// returns its type as interpreted in this context. Really,
// this is mostly about helping aggregate expressions within
// concatenations to figure out their type.
virtual const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const;
// This virtual method elaborates an expression. The ltype is
// the type of the lvalue expression, if known, and can be
// used to calculate the type for the expression being
// elaborated.
virtual int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
// Return the type that this expression would be if it were an
// l-value. This should only be called after elaborate_lval is
// called and only if elaborate_lval succeeded.
inline const VType*peek_type(void) const { return type_; }
// This virtual method writes a VHDL-accurate representation
// of this expression to the designated stream. This is used
// for writing parsed types to library files.
virtual void write_to_stream(std::ostream&fd) const =0;
// The emit virtual method is called by architecture emit to
// output the generated code for the expression. The derived
// class fills in the details of what exactly happened.
virtual int emit(ostream&out, Entity*ent, ScopeBase*scope) =0;
// The emit_package virtual message is similar, but is called
// in a package context and to emit SV packages.
virtual int emit_package(std::ostream&out);
// The evaluate virtual method tries to evaluate expressions
// to constant literal values. Return true and set the val
// argument if the evaluation works, or return false if it
// cannot be done.
virtual bool evaluate(ScopeBase*scope, int64_t&val) const;
virtual bool evaluate(Entity*ent, ScopeBase*scope, int64_t&val) const;
// The symbolic compare returns true if the two expressions
// are equal without actually calculating the value.
virtual bool symbolic_compare(const Expression*that) const;
// This method returns true if the drawn Verilog for this
// expression is a primary. A containing expression can use
// this method to know if it needs to wrap parentheses. This
// is somewhat optional, so it is better to return false if
// not certain. The default implementation does return false.
virtual bool is_primary(void) const;
// Debug dump of the expression.
virtual void dump(ostream&out, int indent = 0) const =0;
virtual ostream& dump_inline(ostream&out) const;
// Recursively visits a tree of expressions (useful of complex expressions).
virtual void visit(ExprVisitor& func) { func(this); }
protected:
// This function is called by the derived class during
// elaboration to set the type of the current expression that
// elaboration assigns to this expression.
void set_type(const VType*);
private:
const VType*type_;
private: // Not implemented
Expression(const Expression&);
Expression& operator = (const Expression&);
};
/*
* Checks before cloning if the other expression actually exists (!=NULL).
*/
static inline Expression*safe_clone(const Expression*other) {
return (other ? other->clone() : NULL);
}
static inline void FILE_NAME(Expression*tgt, const LineInfo*src)
{
tgt->set_line(*src);
}
static inline ostream& operator <<(ostream&out, const Expression&exp)
{
return exp.dump_inline(out);
}
class ExpUnary : public Expression {
public:
explicit ExpUnary(Expression*op1);
virtual ~ExpUnary() =0;
inline const Expression*peek_operand() const { return operand1_; }
const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const;
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
void visit(ExprVisitor& func);
protected:
inline void write_to_stream_operand1(std::ostream&fd) const
{ operand1_->write_to_stream(fd); }
int emit_operand1(ostream&out, Entity*ent, ScopeBase*scope);
void dump_operand1(ostream&out, int indent = 0) const;
private:
Expression*operand1_;
};
/*
* This is an abstract class that collects some of the common features
* of binary operators.
*/
class ExpBinary : public Expression {
public:
ExpBinary(Expression*op1, Expression*op2);
virtual ~ExpBinary() =0;
inline const Expression* peek_operand1(void) const { return operand1_; }
inline const Expression* peek_operand2(void) const { return operand2_; }
const VType*probe_type(Entity*ent, ScopeBase*scope) const;
void visit(ExprVisitor& func);
protected:
int elaborate_exprs(Entity*, ScopeBase*, const VType*);
int emit_operand1(ostream&out, Entity*ent, ScopeBase*scope);
int emit_operand2(ostream&out, Entity*ent, ScopeBase*scope);
bool eval_operand1(ScopeBase*scope, int64_t&val) const;
bool eval_operand2(ScopeBase*scope, int64_t&val) const;
inline void write_to_stream_operand1(std::ostream&out) const
{ operand1_->write_to_stream(out); }
inline void write_to_stream_operand2(std::ostream&out) const
{ operand2_->write_to_stream(out); }
void dump_operands(ostream&out, int indent = 0) const;
private:
virtual const VType*resolve_operand_types_(const VType*t1, const VType*t2) const;
private:
Expression*operand1_;
Expression*operand2_;
};
class ExpAggregate : public Expression {
public:
// A "choice" is only part of an element. It is the thing that
// is used to identify an element of the aggregate. It can
// represent the index (or range) of an array, or the name of
// a record member.
class choice_t {
public:
// Create an "others" choice
choice_t();
// Create a simple_expression choice
explicit choice_t(Expression*exp);
// Create a named choice
explicit choice_t(perm_string name);
// discreate_range choice
explicit choice_t(prange_t*ran);
choice_t(const choice_t&other);
~choice_t();
// true if this represents an "others" choice
bool others() const;
// Return expression if this represents a simple_expression.
Expression*simple_expression(bool detach_flag =true);
// Return prange_t if this represents a range_expression
prange_t*range_expressions(void);
void write_to_stream(std::ostream&fd);
void dump(ostream&out, int indent) const;
private:
std::auto_ptr<Expression>expr_;
std::auto_ptr<prange_t> range_;
private: // not implemented
choice_t& operator= (const choice_t&);
};
struct choice_element {
choice_element() : choice(), expr() {}
choice_element(const choice_element&other) {
choice = other.choice ? new choice_t(*other.choice) : NULL;
expr = safe_clone(other.expr);
}
choice_t*choice;
Expression*expr;
bool alias_flag;
};
// Elements are the syntactic items in an aggregate
// expression. Each element expressions a bunch of fields
// (choices) and binds them to a single expression
class element_t {
public:
explicit element_t(std::list<choice_t*>*fields, Expression*val);
element_t(const element_t&other);
~element_t();
size_t count_choices() const { return fields_.size(); }
void map_choices(choice_element*dst);
inline Expression* extract_expression() { return val_; }
void write_to_stream(std::ostream&fd) const;
void dump(ostream&out, int indent) const;
private:
std::vector<choice_t*>fields_;
Expression*val_;
private: // not implemented
element_t& operator = (const element_t&);
};
public:
explicit ExpAggregate(std::list<element_t*>*el);
~ExpAggregate();
Expression*clone() const;
const VType*probe_type(Entity*ent, ScopeBase*scope) const;
const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const;
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
void write_to_stream(std::ostream&fd) const;
int emit(ostream&out, Entity*ent, ScopeBase*scope);
void dump(ostream&out, int indent = 0) const;
void visit(ExprVisitor& func);
private:
int elaborate_expr_array_(Entity*ent, ScopeBase*scope, const VTypeArray*ltype);
int elaborate_expr_record_(Entity*ent, ScopeBase*scope, const VTypeRecord*ltype);
int emit_array_(ostream&out, Entity*ent, ScopeBase*scope, const VTypeArray*ltype);
int emit_record_(ostream&out, Entity*ent, ScopeBase*scope, const VTypeRecord*ltype);
private:
// This is the elements as directly parsed.
std::vector<element_t*> elements_;
// These are the elements after elaboration. This form is
// easier to check and emit.
std::vector<choice_element> aggregate_;
};
class ExpArithmetic : public ExpBinary {
public:
enum fun_t { PLUS, MINUS, MULT, DIV, MOD, REM, POW, xCONCAT };
public:
ExpArithmetic(ExpArithmetic::fun_t op, Expression*op1, Expression*op2);
~ExpArithmetic();
Expression*clone() const {
return new ExpArithmetic(fun_, peek_operand1()->clone(), peek_operand2()->clone());
}
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
void write_to_stream(std::ostream&fd) const;
int emit(ostream&out, Entity*ent, ScopeBase*scope);
virtual bool evaluate(ScopeBase*scope, int64_t&val) const;
void dump(ostream&out, int indent = 0) const;
private:
const VType* resolve_operand_types_(const VType*t1, const VType*t2) const;
private:
fun_t fun_;
};
class ExpAttribute : public Expression {
public:
ExpAttribute(ExpName*base, perm_string name);
~ExpAttribute();
Expression*clone() const;
inline perm_string peek_attribute() const { return name_; }
inline const ExpName* peek_base() const { return base_; }
const VType*probe_type(Entity*ent, ScopeBase*scope) const;
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
void write_to_stream(std::ostream&fd) const;
int emit(ostream&out, Entity*ent, ScopeBase*scope);
// Some attributes can be evaluated at compile time
bool evaluate(ScopeBase*scope, int64_t&val) const;
bool evaluate(Entity*ent, ScopeBase*scope, int64_t&val) const;
void dump(ostream&out, int indent = 0) const;
void visit(ExprVisitor& func);
private:
ExpName*base_;
perm_string name_;
};
class ExpBitstring : public Expression {
public:
explicit ExpBitstring(const char*);
ExpBitstring(const ExpBitstring&other) : Expression() { value_ = other.value_; }
~ExpBitstring();
Expression*clone() const { return new ExpBitstring(*this); }
const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const;
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
void write_to_stream(std::ostream&fd) const;
int emit(ostream&out, Entity*ent, ScopeBase*scope);
void dump(ostream&out, int indent = 0) const;
private:
std::vector<char>value_;
};
class ExpCharacter : public Expression {
public:
explicit ExpCharacter(char val);
ExpCharacter(const ExpCharacter&other) : Expression() { value_ = other.value_; }
~ExpCharacter();
Expression*clone() const { return new ExpCharacter(*this); }
const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const;
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
void write_to_stream(std::ostream&fd) const;
int emit(ostream&out, Entity*ent, ScopeBase*scope);
bool is_primary(void) const;
void dump(ostream&out, int indent = 0) const;
char value() const { return value_; }
private:
int emit_primitive_bit_(ostream&out, Entity*ent, ScopeBase*scope,
const VTypePrimitive*etype);
private:
char value_;
};
class ExpConcat : public Expression {
public:
ExpConcat(Expression*op1, Expression*op2);
~ExpConcat();
Expression*clone() const {
return new ExpConcat(operand1_->clone(), operand2_->clone());
}
const VType*probe_type(Entity*ent, ScopeBase*scope) const;
const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const;
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
void write_to_stream(std::ostream&fd) const;
int emit(ostream&out, Entity*ent, ScopeBase*scope);
virtual bool evaluate(ScopeBase*scope, int64_t&val) const;
bool is_primary(void) const;
void dump(ostream&out, int indent = 0) const;
void visit(ExprVisitor& func);
private:
int elaborate_expr_array_(Entity*ent, ScopeBase*scope, const VTypeArray*ltype);
private:
Expression*operand1_;
Expression*operand2_;
};
/*
* The conditional expression represents the VHDL when-else
* expressions. Note that by the VHDL syntax rules, these cannot show
* up other than at the root of an expression.
*/
class ExpConditional : public Expression {
public:
class case_t : public LineInfo {
public:
case_t(Expression*cond, std::list<Expression*>*tru);
case_t(const case_t&other);
~case_t();
inline Expression*condition() { return cond_; }
inline void set_condition(Expression*cond) { cond_ = cond; }
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*lt);
int emit_option(ostream&out, Entity*ent, ScopeBase*scope);
int emit_default(ostream&out, Entity*ent, ScopeBase*scope);
void dump(ostream&out, int indent = 0) const;
std::list<Expression*>& extract_true_clause() { return true_clause_; }
void visit(ExprVisitor& func);
private:
Expression*cond_;
std::list<Expression*> true_clause_;
};
public:
ExpConditional(Expression*cond, std::list<Expression*>*tru,
std::list<case_t*>*options);
virtual ~ExpConditional();
virtual Expression*clone() const;
const VType*probe_type(Entity*ent, ScopeBase*scope) const;
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
void write_to_stream(std::ostream&fd) const;
int emit(ostream&out, Entity*ent, ScopeBase*scope);
void dump(ostream&out, int indent = 0) const;
void visit(ExprVisitor& func);
protected:
std::list<case_t*> options_;
};
/*
* Expression to handle selected assignments (with .. select target <= value when ..)
*/
class ExpSelected : public ExpConditional {
public:
ExpSelected(Expression*selector, std::list<case_t*>*options);
~ExpSelected();
Expression*clone() const;
private:
Expression*selector_;
};
/*
* This is a special expression type that represents posedge/negedge
* expressions in sensitivity lists.
*/
class ExpEdge : public ExpUnary {
public:
enum fun_t { NEGEDGE, ANYEDGE, POSEDGE };
public:
explicit ExpEdge(ExpEdge::fun_t ty, Expression*op);
~ExpEdge();
Expression*clone() const { return new ExpEdge(fun_, peek_operand()->clone()); }
inline fun_t edge_fun() const { return fun_; }
void write_to_stream(std::ostream&fd) const;
int emit(ostream&out, Entity*ent, ScopeBase*scope);
void dump(ostream&out, int indent = 0) const;
private:
fun_t fun_;
};
class ExpFunc : public Expression {
public:
explicit ExpFunc(perm_string nn);
ExpFunc(perm_string nn, std::list<Expression*>*args);
~ExpFunc();
Expression*clone() const;
const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const;
inline perm_string func_name() const { return name_; }
inline size_t func_args() const { return argv_.size(); }
inline const Expression*func_arg(size_t idx) const { return argv_[idx]; }
const VType*func_ret_type() const;
public: // Base methods
const VType*probe_type(Entity*ent, ScopeBase*scope) const;
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
void write_to_stream(std::ostream&fd) const;
int emit(ostream&out, Entity*ent, ScopeBase*scope);
void dump(ostream&out, int indent = 0) const;
void visit(ExprVisitor& func); // NOTE: does not handle expressions in subprogram
private:
perm_string name_;
std::vector<Expression*> argv_;
SubprogramHeader*def_;
};
class ExpInteger : public Expression {
public:
explicit ExpInteger(int64_t val);
ExpInteger(const ExpInteger&other) : Expression(), value_(other.value_) {}
~ExpInteger();
Expression*clone() const { return new ExpInteger(*this); }
const VType*probe_type(Entity*ent, ScopeBase*scope) const;
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
void write_to_stream(std::ostream&fd) const;
int emit(ostream&out, Entity*ent, ScopeBase*scope);
int emit_package(std::ostream&out);
bool is_primary(void) const { return true; }
bool evaluate(ScopeBase*scope, int64_t&val) const;
void dump(ostream&out, int indent = 0) const;
virtual ostream& dump_inline(ostream&out) const;
private:
int64_t value_;
};
class ExpReal : public Expression {
public:
explicit ExpReal(double val);
ExpReal(const ExpReal&other) : Expression(), value_(other.value_) {}
~ExpReal();
Expression*clone() const { return new ExpReal(*this); }
const VType*probe_type(Entity*ent, ScopeBase*scope) const;
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
void write_to_stream(std::ostream&fd) const;
int emit(ostream&out, Entity*ent, ScopeBase*scope);
int emit_package(std::ostream&out);
bool is_primary(void) const;
void dump(ostream&out, int indent = 0) const;
virtual ostream& dump_inline(ostream&out) const;
private:
double value_;
};
class ExpLogical : public ExpBinary {
public:
enum fun_t { AND, OR, NAND, NOR, XOR, XNOR };
public:
ExpLogical(ExpLogical::fun_t ty, Expression*op1, Expression*op2);
~ExpLogical();
Expression*clone() const {
return new ExpLogical(fun_, peek_operand1()->clone(), peek_operand2()->clone());
}
inline fun_t logic_fun() const { return fun_; }
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
void write_to_stream(std::ostream&fd) const;
int emit(ostream&out, Entity*ent, ScopeBase*scope);
void dump(ostream&out, int indent = 0) const;
private:
fun_t fun_;
};
/*
* The ExpName class represents an expression that is an identifier or
* other sort of name. The ExpNameALL is a special case of ExpName
* that represents the "all" keyword is contexts that can handle it.
*/
class ExpName : public Expression {
public:
explicit ExpName(perm_string nn);
ExpName(perm_string nn, std::list<Expression*>*indices);
ExpName(perm_string nn, Expression*msb, Expression*lsb);
ExpName(ExpName*prefix, perm_string nn);
ExpName(ExpName*prefix, perm_string nn, Expression*msb, Expression*lsb);
~ExpName();
public: // Base methods
Expression*clone() const {
return new ExpName(static_cast<ExpName*>(safe_clone(prefix_.get())),
name_, safe_clone(index_), safe_clone(lsb_));
}
int elaborate_lval(Entity*ent, ScopeBase*scope, bool);
int elaborate_rval(Entity*ent, ScopeBase*scope, const InterfacePort*);
const VType* probe_type(Entity*ent, ScopeBase*scope) const;
const VType* fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*host) const;
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
void write_to_stream(std::ostream&fd) const;
int emit(ostream&out, Entity*ent, ScopeBase*scope);
bool is_primary(void) const;
bool evaluate(ScopeBase*scope, int64_t&val) const;
bool evaluate(Entity*ent, ScopeBase*scope, int64_t&val) const;
bool symbolic_compare(const Expression*that) const;
void dump(ostream&out, int indent = 0) const;
inline const char* name() const { return name_; }
inline const perm_string& peek_name() const { return name_; }
void set_range(Expression*msb, Expression*lsb);
void visit(ExprVisitor& func);
private:
class index_t {
public:
index_t(Expression*idx, Expression*size, Expression*offset = NULL) :
idx_(idx), size_(size), offset_(offset) {}
~index_t() {
delete idx_;
delete size_;
delete offset_;
}
int emit(ostream&out, Entity*ent, ScopeBase*scope);
private:
Expression*idx_;
Expression*size_;
Expression*offset_;
};
const VType* elaborate_adjust_type_with_range_(Entity*ent, ScopeBase*scope, const VType*type);
int elaborate_lval_(Entity*ent, ScopeBase*scope, bool, ExpName*suffix);
const VType* probe_prefix_type_(Entity*ent, ScopeBase*scope) const;
const VType* probe_prefixed_type_(Entity*ent, ScopeBase*scope) const;
int emit_as_prefix_(ostream&out, Entity*ent, ScopeBase*scope);
// There are some workarounds required for constant arrays/records, as
// they are currently emitted as flat localparams (without any type
// information). The following workarounds adjust the access indices
// to select appropriate parts of the localparam.
bool try_workarounds_(ostream&out, Entity*ent, ScopeBase*scope,
list<index_t*>&indices, int&data_size);
bool check_const_array_workaround_(const VTypeArray*arr, ScopeBase*scope,
list<index_t*>&indices, int&data_size) const;
bool check_const_record_workaround_(const VTypeRecord*rec, ScopeBase*scope,
list<index_t*>&indices, int&data_size) const;
int emit_workaround_(ostream&out, Entity*ent, ScopeBase*scope,
const list<index_t*>&indices, int field_size);
private:
std::auto_ptr<ExpName> prefix_;
perm_string name_;
Expression*index_;
Expression*lsb_;
};
class ExpNameALL : public ExpName {
public:
ExpNameALL() : ExpName(perm_string()) { }
public:
int elaborate_lval(Entity*ent, ScopeBase*scope, bool);
const VType* probe_type(Entity*ent, ScopeBase*scope) const;
void dump(ostream&out, int indent =0) const;
};
class ExpRelation : public ExpBinary {
public:
enum fun_t { EQ, LT, GT, NEQ, LE, GE };
inline fun_t relation_fun(void) const { return fun_; }
public:
ExpRelation(ExpRelation::fun_t ty, Expression*op1, Expression*op2);
~ExpRelation();
Expression*clone() const {
return new ExpRelation(fun_, peek_operand1()->clone(), peek_operand2()->clone());
}
const VType* probe_type(Entity*ent, ScopeBase*scope) const;
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
void write_to_stream(std::ostream&fd) const;
int emit(ostream&out, Entity*ent, ScopeBase*scope);
void dump(ostream&out, int indent = 0) const;
private:
fun_t fun_;
};
class ExpShift : public ExpBinary {
public:
enum shift_t { SRL, SLL, SRA, SLA, ROL, ROR };
public:
ExpShift(ExpShift::shift_t op, Expression*op1, Expression*op2);
Expression*clone() const {
return new ExpShift(shift_, peek_operand1()->clone(), peek_operand2()->clone());
}
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
void write_to_stream(std::ostream&fd) const;
int emit(ostream&out, Entity*ent, ScopeBase*scope);
virtual bool evaluate(ScopeBase*scope, int64_t&val) const;
void dump(ostream&out, int indent = 0) const;
private:
shift_t shift_;
};
class ExpString : public Expression {
public:
explicit ExpString(const char*);
ExpString(const ExpString&other) : Expression(), value_(other.value_) {}
~ExpString();
Expression*clone() const { return new ExpString(*this); }
const VType*fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const;
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
void write_to_stream(std::ostream&fd) const;
int emit(ostream&out, Entity*ent, ScopeBase*scope);
bool is_primary(void) const;
void dump(ostream&out, int indent = 0) const;
const std::string& get_value() const { return value_; }
// Converts quotation marks (") to its escaped
// counterpart in SystemVerilog (\")
static std::string escape_quot(const std::string& str);
private:
int emit_as_array_(ostream&out, Entity*ent, ScopeBase*scope, const VTypeArray*arr);
private:
std::string value_;
};
class ExpUAbs : public ExpUnary {
public:
explicit ExpUAbs(Expression*op1);
~ExpUAbs();
Expression*clone() const { return new ExpUAbs(peek_operand()->clone()); }
void write_to_stream(std::ostream&fd) const;
int emit(ostream&out, Entity*ent, ScopeBase*scope);
void dump(ostream&out, int indent = 0) const;
};
class ExpUNot : public ExpUnary {
public:
explicit ExpUNot(Expression*op1);
~ExpUNot();
Expression*clone() const { return new ExpUNot(peek_operand()->clone()); }
void write_to_stream(std::ostream&fd) const;
int emit(ostream&out, Entity*ent, ScopeBase*scope);
void dump(ostream&out, int indent = 0) const;
};
/*
* Class that wraps other expressions to cast them to other types.
*/
class ExpCast : public Expression {
public:
ExpCast(Expression*base, const VType*type);
~ExpCast();
Expression*clone() const { return new ExpCast(base_->clone(), type_->clone()); }
inline int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*) {
return base_->elaborate_expr(ent, scope, type_);
}
void write_to_stream(std::ostream&fd) const;
int emit(ostream&out, Entity*ent, ScopeBase*scope);
void dump(ostream&out, int indent = 0) const;
void visit(ExprVisitor& func);
private:
Expression*base_;
const VType*type_;
};
/*
* Class that handles 'new' statement. VHDL is not capable of dynamic memory
* allocation, but it is useful for emitting some cases.
*/
class ExpNew : public Expression {
public:
explicit ExpNew(Expression*size);
~ExpNew();
Expression*clone() const { return new ExpNew(size_->clone()); }
// There is no 'new' in VHDL - do not emit anything
void write_to_stream(std::ostream&) const {};
int emit(ostream&out, Entity*ent, ScopeBase*scope);
void dump(ostream&out, int indent = 0) const;
void visit(ExprVisitor& func);
private:
Expression*size_;
};
class ExpTime : public Expression {
public:
typedef enum { FS, PS, NS, US, MS, S } timeunit_t;
ExpTime(uint64_t amount, timeunit_t unit);
Expression*clone() const { return new ExpTime(amount_, unit_); }
int elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype);
void write_to_stream(std::ostream&) const;
int emit(ostream&out, Entity*ent, ScopeBase*scope);
bool evaluate(ScopeBase*scope, int64_t&val) const;
bool evaluate(Entity*ent, ScopeBase*scope, int64_t&val) const;
void dump(ostream&out, int indent = 0) const;
private:
// Returns the time value expressed in femtoseconds
double to_fs() const;
uint64_t amount_;
timeunit_t unit_;
};
#endif /* IVL_expression_H */