iverilog/t-dll-proc.cc

778 lines
21 KiB
C++

/*
* Copyright (c) 2000 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.will need a Picture Elements Binary Software
* License.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#if !defined(WINNT) && !defined(macintosh)
#ident "$Id: t-dll-proc.cc,v 1.29 2001/05/08 23:59:33 steve Exp $"
#endif
# include "target.h"
# include "ivl_target.h"
# include "compiler.h"
# include "t-dll.h"
# include <malloc.h>
bool dll_target::process(const NetProcTop*net)
{
ivl_process_t obj = (struct ivl_process_s*)
calloc(1, sizeof(struct ivl_process_s));
switch (net->type()) {
case NetProcTop::KINITIAL:
obj->type_ = IVL_PR_INITIAL;
break;
case NetProcTop::KALWAYS:
obj->type_ = IVL_PR_ALWAYS;
break;
default:
assert(0);
}
/* Save the scope of the process. */
obj->scope_ = lookup_scope_(net->scope());
/* This little bit causes the process to be completely
generated so that it can be passed to the DLL. The
stmt_cur_ member us used to hold a pointer to the current
statement in progress, and the emit_proc() method fills in
that object.
We know a few things about the current statement: we are
not in the middle of one, and when we are done, we have our
statement back. The asserts check these conditions. */
assert(stmt_cur_ == 0);
stmt_cur_ = (struct ivl_statement_s*)calloc(1, sizeof*stmt_cur_);
assert(stmt_cur_);
net->statement()->emit_proc(this);
assert(stmt_cur_);
obj->stmt_ = stmt_cur_;
stmt_cur_ = 0;
/* Save the process in the design. */
obj->next_ = des_.threads_;
des_.threads_ = obj;
return true;
}
void dll_target::task_def(const NetScope*net)
{
ivl_scope_t scope = lookup_scope_(net);
const NetTaskDef*def = net->task_def();
assert(stmt_cur_ == 0);
stmt_cur_ = (struct ivl_statement_s*)calloc(1, sizeof*stmt_cur_);
assert(stmt_cur_);
def->proc()->emit_proc(this);
assert(stmt_cur_);
scope->def = stmt_cur_;
stmt_cur_ = 0;
}
void dll_target::func_def(const NetScope*net)
{
ivl_scope_t scope = lookup_scope_(net);
const NetFuncDef*def = net->func_def();
assert(stmt_cur_ == 0);
stmt_cur_ = (struct ivl_statement_s*)calloc(1, sizeof*stmt_cur_);
assert(stmt_cur_);
def->proc()->emit_proc(this);
assert(stmt_cur_);
scope->def = stmt_cur_;
stmt_cur_ = 0;
scope->ports = def->port_count();
if (scope->ports > 0) {
scope->port = new char*[scope->ports];
for (unsigned idx = 0 ; idx < scope->ports ; idx += 1)
scope->port[idx] = strdup(def->port(idx)->name());
}
}
/*
*/
void dll_target::proc_assign(const NetAssign*net)
{
unsigned cnt;
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
stmt_cur_->type_ = IVL_ST_ASSIGN;
stmt_cur_->u_.assign_.lvals_ = cnt = net->l_val_count();
stmt_cur_->u_.assign_.lval_ = new struct ivl_lval_s[cnt];
stmt_cur_->u_.assign_.delay = 0;
for (unsigned idx = 0 ; idx < cnt ; idx += 1) {
struct ivl_lval_s*cur = stmt_cur_->u_.assign_.lval_ + idx;
const NetAssign_*asn = net->l_val(idx);
cur->width_ = asn->pin_count();
cur->type_ = IVL_LVAL_REG;
if (cur->width_ > 1) {
cur->n.pins_ = new ivl_nexus_t[cur->width_];
for (unsigned pp = 0 ; pp < cur->width_ ; pp += 1) {
const Nexus*nex = asn->pin(pp).nexus();
assert(nex->t_cookie());
cur->n.pins_[pp] = (ivl_nexus_t)nex->t_cookie();
}
} else {
const Nexus*nex = asn->pin(0).nexus();
assert(nex->t_cookie());
cur->n.pin_ = (ivl_nexus_t)nex->t_cookie();
}
cur->idx = 0;
if (asn->bmux()) {
assert(expr_ == 0);
asn->bmux()->expr_scan(this);
cur->type_ = IVL_LVAL_MUX;
cur->idx = expr_;
expr_ = 0;
}
}
assert(expr_ == 0);
net->rval()->expr_scan(this);
stmt_cur_->u_.assign_.rval_ = expr_;
expr_ = 0;
}
void dll_target::proc_assign_nb(const NetAssignNB*net)
{
unsigned cnt = net->l_val_count();
unsigned long delay_val = net->l_val(0)->rise_time();
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
stmt_cur_->type_ = IVL_ST_ASSIGN_NB;
stmt_cur_->u_.assign_.lvals_ = cnt;
stmt_cur_->u_.assign_.lval_ = new struct ivl_lval_s[cnt];
stmt_cur_->u_.assign_.delay = 0;
for (unsigned idx = 0 ; idx < cnt ; idx += 1) {
struct ivl_lval_s*cur = stmt_cur_->u_.assign_.lval_ + idx;
const NetAssign_*asn = net->l_val(idx);
assert(asn->rise_time() == delay_val);
cur->type_ = IVL_LVAL_REG;
cur->width_ = asn->pin_count();
if (cur->width_ > 1) {
cur->n.pins_ = new ivl_nexus_t[cur->width_];
for (unsigned pp = 0 ; pp < cur->width_ ; pp += 1) {
const Nexus*nex = asn->pin(pp).nexus();
assert(nex->t_cookie());
cur->n.pins_[pp] = (ivl_nexus_t)nex->t_cookie();
}
} else {
const Nexus*nex = asn->pin(0).nexus();
assert(nex->t_cookie());
cur->n.pin_ = (ivl_nexus_t)nex->t_cookie();
}
cur->idx = 0;
if (asn->bmux()) {
assert(expr_ == 0);
asn->bmux()->expr_scan(this);
cur->type_ = IVL_LVAL_MUX;
cur->idx = expr_;
expr_ = 0;
}
}
assert(expr_ == 0);
net->rval()->expr_scan(this);
stmt_cur_->u_.assign_.rval_ = expr_;
expr_ = 0;
if (delay_val > 0) {
ivl_expr_t de = new struct ivl_expr_s;
de->type_ = IVL_EX_ULONG;
de->width_ = 8 * sizeof(unsigned long);
de->signed_ = 0;
de->u_.ulong_.value = delay_val;
stmt_cur_->u_.assign_.delay = de;
}
}
void dll_target::proc_assign_mem(const NetAssignMem*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
stmt_cur_->type_ = IVL_ST_ASSIGN;
stmt_cur_->u_.assign_.lvals_ = 1;
stmt_cur_->u_.assign_.lval_ = new struct ivl_lval_s[1];
stmt_cur_->u_.assign_.delay = 0;
struct ivl_lval_s*cur = stmt_cur_->u_.assign_.lval_;
cur->type_ = IVL_LVAL_MEM;
cur->n.mem_ = lookup_memory_(net->memory());
assert(cur->n.mem_);
cur->width_ = ivl_memory_width(cur->n.mem_);
assert(expr_ == 0);
net->index()->expr_scan(this);
cur->type_ = IVL_LVAL_MEM;
cur->idx = expr_;
expr_ = 0;
net->rval()->expr_scan(this);
stmt_cur_->u_.assign_.rval_ = expr_;
expr_ = 0;
}
void dll_target::proc_assign_mem_nb(const NetAssignMemNB*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
stmt_cur_->type_ = IVL_ST_ASSIGN_NB;
stmt_cur_->u_.assign_.lvals_ = 1;
stmt_cur_->u_.assign_.lval_ = new struct ivl_lval_s[1];
stmt_cur_->u_.assign_.delay = 0;
struct ivl_lval_s*cur = stmt_cur_->u_.assign_.lval_;
cur->type_ = IVL_LVAL_MEM;
cur->n.mem_ = lookup_memory_(net->memory());
cur->width_ = ivl_memory_width(cur->n.mem_);
assert(expr_ == 0);
net->index()->expr_scan(this);
cur->type_ = IVL_LVAL_MEM;
cur->idx = expr_;
expr_ = 0;
net->rval()->expr_scan(this);
stmt_cur_->u_.assign_.rval_ = expr_;
expr_ = 0;
unsigned long delay_val = 0;
if (delay_val > 0) {
ivl_expr_t de = new struct ivl_expr_s;
de->type_ = IVL_EX_ULONG;
de->width_ = 8 * sizeof(unsigned long);
de->signed_ = 0;
de->u_.ulong_.value = delay_val;
stmt_cur_->u_.assign_.delay = de;
}
}
bool dll_target::proc_block(const NetBlock*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
/* First, count the statements in the block. */
unsigned count = 0;
for (const NetProc*cur = net->proc_first()
; cur ; cur = net->proc_next(cur))
count += 1;
/* If the block has no statements, then turn it into a no-op */
if (count == 0) {
stmt_cur_->type_ = IVL_ST_NOOP;
return true;
}
/* If there is exactly one statement, there is no need for the
block wrapper, generate the contained statement instead. */
if (count == 1) {
return net->proc_first()->emit_proc(this);
}
/* Handle the general case. The block has some statements in
it, so fill in the block fields of the existing statement,
and generate the contents for the statement array. */
stmt_cur_->type_ = (net->type() == NetBlock::SEQU)
? IVL_ST_BLOCK
: IVL_ST_FORK;
stmt_cur_->u_.block_.nstmt_ = count;
stmt_cur_->u_.block_.stmt_ = (struct ivl_statement_s*)
calloc(count, sizeof(struct ivl_statement_s));
struct ivl_statement_s*save_cur_ = stmt_cur_;
unsigned idx = 0;
bool flag = true;
for (const NetProc*cur = net->proc_first()
; cur ; cur = net->proc_next(cur), idx += 1) {
assert(idx < count);
stmt_cur_ = save_cur_->u_.block_.stmt_ + idx;
bool rc = cur->emit_proc(this);
flag = flag && rc;
}
assert(idx == count);
stmt_cur_ = save_cur_;
return flag;
}
void dll_target::proc_case(const NetCase*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
switch (net->type()) {
case NetCase::EQ:
stmt_cur_->type_ = IVL_ST_CASE;
break;
case NetCase::EQX:
stmt_cur_->type_ = IVL_ST_CASEX;
break;
case NetCase::EQZ:
stmt_cur_->type_ = IVL_ST_CASEZ;
break;
}
assert(stmt_cur_->type_ != IVL_ST_NONE);
assert(expr_ == 0);
assert(net->expr());
net->expr()->expr_scan(this);
stmt_cur_->u_.case_.cond = expr_;
expr_ = 0;
unsigned ncase = net->nitems();
stmt_cur_->u_.case_.ncase = ncase;
stmt_cur_->u_.case_.case_ex = new ivl_expr_t[ncase];
stmt_cur_->u_.case_.case_st = new struct ivl_statement_s[ncase];
ivl_statement_t save_cur = stmt_cur_;
for (unsigned idx = 0 ; idx < ncase ; idx += 1) {
const NetExpr*ex = net->expr(idx);
if (ex) {
ex->expr_scan(this);
save_cur->u_.case_.case_ex[idx] = expr_;
expr_ = 0;
} else {
save_cur->u_.case_.case_ex[idx] = 0;
}
stmt_cur_ = save_cur->u_.case_.case_st + idx;
if (net->stat(idx) == 0) {
stmt_cur_->type_ = IVL_ST_NOOP;
} else {
net->stat(idx)->emit_proc(this);
}
}
stmt_cur_ = save_cur;
}
void dll_target::proc_condit(const NetCondit*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
stmt_cur_->type_ = IVL_ST_CONDIT;
stmt_cur_->u_.condit_.stmt_ = (struct ivl_statement_s*)
calloc(2, sizeof(struct ivl_statement_s));
assert(expr_ == 0);
net->expr()->expr_scan(this);
stmt_cur_->u_.condit_.cond_ = expr_;
expr_ = 0;
ivl_statement_t save_cur_ = stmt_cur_;
stmt_cur_ = save_cur_->u_.condit_.stmt_+0;
net->emit_recurse_if(this);
stmt_cur_ = save_cur_->u_.condit_.stmt_+1;
net->emit_recurse_else(this);
stmt_cur_ = save_cur_;
}
bool dll_target::proc_delay(const NetPDelay*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
ivl_statement_t tmp = (struct ivl_statement_s*)
calloc(1, sizeof(struct ivl_statement_s));
if (const NetExpr*expr = net->expr()) {
stmt_cur_->type_ = IVL_ST_DELAYX;
stmt_cur_->u_.delayx_.stmt_ = tmp;
} else {
stmt_cur_->type_ = IVL_ST_DELAY;
stmt_cur_->u_.delay_.stmt_ = tmp;
stmt_cur_->u_.delay_.delay_ = net->delay();
}
ivl_statement_t save_cur_ = stmt_cur_;
stmt_cur_ = tmp;
bool flag = net->emit_proc_recurse(this);
/* If the recurse doesn't turn this new item into something,
then either it failed or there is no statement
there. Either way, draw a no-op into the statement. */
if (stmt_cur_->type_ == IVL_ST_NONE) {
stmt_cur_->type_ = IVL_ST_NOOP;
}
stmt_cur_ = save_cur_;
return flag;
}
bool dll_target::proc_disable(const NetDisable*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
stmt_cur_->type_ = IVL_ST_DISABLE;
stmt_cur_->u_.disable_.scope = lookup_scope_(net->target());
return true;
}
void dll_target::proc_forever(const NetForever*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
stmt_cur_->type_ = IVL_ST_FOREVER;
ivl_statement_t tmp = (struct ivl_statement_s*)
calloc(1, sizeof(struct ivl_statement_s));
ivl_statement_t save_cur_ = stmt_cur_;
stmt_cur_ = tmp;
net->emit_recurse(this);
save_cur_->u_.forever_.stmt_ = stmt_cur_;
stmt_cur_ = save_cur_;
}
void dll_target::proc_repeat(const NetRepeat*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
stmt_cur_->type_ = IVL_ST_REPEAT;
assert(expr_ == 0);
net->expr()->expr_scan(this);
stmt_cur_->u_.while_.cond_ = expr_;
expr_ = 0;
ivl_statement_t tmp = (struct ivl_statement_s*)
calloc(1, sizeof(struct ivl_statement_s));
ivl_statement_t save_cur_ = stmt_cur_;
stmt_cur_ = tmp;
net->emit_recurse(this);
save_cur_->u_.while_.stmt_ = stmt_cur_;
stmt_cur_ = save_cur_;
}
void dll_target::proc_stask(const NetSTask*net)
{
unsigned nparms = net->nparms();
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
stmt_cur_->type_ = IVL_ST_STASK;
stmt_cur_->u_.stask_.name_ = strdup(net->name());
stmt_cur_->u_.stask_.nparm_= nparms;
stmt_cur_->u_.stask_.parms_= (ivl_expr_t*)
calloc(nparms, sizeof(ivl_expr_t));
for (unsigned idx = 0 ; idx < nparms ; idx += 1) {
if (net->parm(idx))
net->parm(idx)->expr_scan(this);
stmt_cur_->u_.stask_.parms_[idx] = expr_;
expr_ = 0;
}
}
bool dll_target::proc_trigger(const NetEvTrig*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
stmt_cur_->type_ = IVL_ST_TRIGGER;
/* Locate the event by name. Save the ivl_event_t in the
statement so that the generator can find it easily. */
const NetEvent*ev = net->event();
ivl_scope_t ev_scope = lookup_scope_(ev->scope());
for (unsigned idx = 0 ; idx < ev_scope->nevent_ ; idx += 1) {
const char*ename = ivl_event_basename(ev_scope->event_[idx]);
if (strcmp(ev->name(), ename) == 0) {
stmt_cur_->u_.wait_.event_ = ev_scope->event_[idx];
break;
}
}
return true;
}
void dll_target::proc_utask(const NetUTask*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
stmt_cur_->type_ = IVL_ST_UTASK;
stmt_cur_->u_.utask_.def = lookup_scope_(net->task());
}
bool dll_target::proc_wait(const NetEvWait*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
stmt_cur_->type_ = IVL_ST_WAIT;
stmt_cur_->u_.wait_.stmt_ = (struct ivl_statement_s*)
calloc(1, sizeof(struct ivl_statement_s));
if (net->nevents() != 1) {
cerr << "internal error: multiple events not supported." << endl;
return false;
}
/* Locate the event by name. Save the ivl_event_t in the
statement so that the generator can find it easily. */
const NetEvent*ev = net->event(0);
ivl_scope_t ev_scope = lookup_scope_(ev->scope());
for (unsigned idx = 0 ; idx < ev_scope->nevent_ ; idx += 1) {
const char*ename = ivl_event_basename(ev_scope->event_[idx]);
if (strcmp(ev->name(), ename) == 0) {
stmt_cur_->u_.wait_.event_ = ev_scope->event_[idx];
break;
}
}
/* If this is an event with a probe, then connect up the
pins. This wasn't done during the ::event method because
the signals weren't scanned yet. */
if (ev->nprobe() >= 1) {
const NetEvProbe*pr = ev->probe(0);
ivl_event_t evnt = stmt_cur_->u_.wait_.event_;
unsigned iany = 0;
unsigned ineg = evnt->nany;
unsigned ipos = ineg + evnt->nneg;
for (unsigned idx = 0 ; idx < ev->nprobe() ; idx += 1) {
const NetEvProbe*pr = ev->probe(idx);
unsigned base = 0;
switch (pr->edge()) {
case NetEvProbe::ANYEDGE:
base = iany;
iany += pr->pin_count();
break;
case NetEvProbe::NEGEDGE:
base = ineg;
ineg += pr->pin_count();
break;
case NetEvProbe::POSEDGE:
base = ipos;
ipos += pr->pin_count();
break;
}
for (unsigned bit = 0; bit < pr->pin_count(); bit += 1) {
ivl_nexus_t nex = (ivl_nexus_t)
pr->pin(bit).nexus()->t_cookie();
assert(nex);
evnt->pins[base+bit] = nex;
}
}
}
/* The ivl_statement_t for the wait statement is not complete
until we calculate the sub-statement. */
ivl_statement_t save_cur_ = stmt_cur_;
stmt_cur_ = stmt_cur_->u_.wait_.stmt_;
bool flag = net->emit_recurse(this);
if (flag && (stmt_cur_->type_ == IVL_ST_NONE))
stmt_cur_->type_ = IVL_ST_NOOP;
stmt_cur_ = save_cur_;
return flag;
}
void dll_target::proc_while(const NetWhile*net)
{
assert(stmt_cur_);
assert(stmt_cur_->type_ == IVL_ST_NONE);
stmt_cur_->type_ = IVL_ST_WHILE;
stmt_cur_->u_.while_.stmt_ = (struct ivl_statement_s*)
calloc(1, sizeof(struct ivl_statement_s));
assert(expr_ == 0);
net->expr()->expr_scan(this);
stmt_cur_->u_.while_.cond_ = expr_;
expr_ = 0;
/* Now generate the statement of the while loop. We know it is
a single statement, and we know that the
emit_proc_recurse() will call emit_proc() for it. */
ivl_statement_t save_cur_ = stmt_cur_;
stmt_cur_ = save_cur_->u_.while_.stmt_;
net->emit_proc_recurse(this);
stmt_cur_ = save_cur_;
}
/*
* $Log: t-dll-proc.cc,v $
* Revision 1.29 2001/05/08 23:59:33 steve
* Add ivl and vvp.tgt support for memories in
* expressions and l-values. (Stephan Boettcher)
*
* Revision 1.28 2001/04/15 03:19:44 steve
* Oops, excessive test assert neets to be removed.
*
* Revision 1.27 2001/04/15 03:14:31 steve
* Handle noop as case statements.
*
* Revision 1.26 2001/04/15 02:58:11 steve
* vvp support for <= with internal delay.
*
* Revision 1.25 2001/04/07 19:26:32 steve
* Add the disable statemnent.
*
* Revision 1.24 2001/04/06 02:28:02 steve
* Generate vvp code for functions with ports.
*
* Revision 1.23 2001/04/05 03:20:57 steve
* Generate vvp code for the repeat statement.
*
* Revision 1.22 2001/04/04 04:50:35 steve
* Support forever loops in the tgt-vvp target.
*
* Revision 1.21 2001/04/03 04:50:37 steve
* Support non-blocking assignments.
*
* Revision 1.20 2001/04/02 02:28:12 steve
* Generate code for task calls.
*
* Revision 1.19 2001/04/01 06:52:28 steve
* support the NetWhile statement.
*
* Revision 1.18 2001/04/01 01:48:21 steve
* Redesign event information to support arbitrary edge combining.
*
* Revision 1.17 2001/03/31 17:36:39 steve
* Generate vvp code for case statements.
*
* Revision 1.16 2001/03/30 23:24:02 steve
* Make empty event sub-expression a noop.
*
* Revision 1.15 2001/03/30 05:49:52 steve
* Generate code for fork/join statements.
*
* Revision 1.14 2001/03/29 03:47:38 steve
* Behavioral trigger statements.
*
* Revision 1.13 2001/03/28 06:07:39 steve
* Add the ivl_event_t to ivl_target, and use that to generate
* .event statements in vvp way ahead of the thread that uses it.
*
* Revision 1.12 2001/03/27 06:27:40 steve
* Generate code for simple @ statements.
*
* Revision 1.11 2001/03/20 01:44:14 steve
* Put processes in the proper scope.
*
* Revision 1.10 2000/10/18 20:04:39 steve
* Add ivl_lval_t and support for assignment l-values.
*
* Revision 1.9 2000/10/08 04:01:54 steve
* Back pointers in the nexus objects into the devices
* that point to it.
*
* Collect threads into a list in the design.
*
* Revision 1.8 2000/10/06 23:46:50 steve
* ivl_target updates, including more complete
* handling of ivl_nexus_t objects. Much reduced
* dependencies on pointers to netlist objects.
*
* Revision 1.7 2000/10/05 05:03:01 steve
* xor and constant devices.
*
* Revision 1.6 2000/09/30 02:18:15 steve
* ivl_expr_t support for binary operators,
* Create a proper ivl_scope_t object.
*
* Revision 1.5 2000/09/26 00:30:07 steve
* Add EX_NUMBER and ST_TRIGGER to dll-api.
*
* Revision 1.4 2000/09/23 05:15:07 steve
* Add enough tgt-verilog code to support hello world.
*
* Revision 1.3 2000/09/22 03:58:30 steve
* Access to the name of a system task call.
*
* Revision 1.2 2000/09/19 04:15:27 steve
* Introduce the means to get statement types.
*
* Revision 1.1 2000/09/18 01:24:32 steve
* Get the structure for ivl_statement_t worked out.
*
*/