iverilog/vvp/logic.cc

687 lines
15 KiB
C++

/*
* Copyright (c) 2001-2010 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
# include "logic.h"
# include "compile.h"
# include "bufif.h"
# include "npmos.h"
# include "schedule.h"
# include "delay.h"
# include "statistics.h"
# include <string.h>
# include <assert.h>
# include <stdlib.h>
#ifdef HAVE_MALLOC_H
# include <malloc.h>
#endif
vvp_fun_boolean_::vvp_fun_boolean_(unsigned wid)
{
net_ = 0;
for (unsigned idx = 0 ; idx < 4 ; idx += 1)
input_[idx] = vvp_vector4_t(wid, BIT4_Z);
}
vvp_fun_boolean_::~vvp_fun_boolean_()
{
}
void vvp_fun_boolean_::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit,
vvp_context_t)
{
unsigned port = ptr.port();
if (input_[port] .eeq( bit ))
return;
input_[port] = bit;
if (net_ == 0) {
net_ = ptr.ptr();
schedule_functor(this);
}
}
void vvp_fun_boolean_::recv_vec4_pv(vvp_net_ptr_t ptr, const vvp_vector4_t&bit,
unsigned base, unsigned wid, unsigned vwid,
vvp_context_t)
{
unsigned port = ptr.port();
assert(bit.size() == wid);
assert(base + wid <= vwid);
if (input_[port].subvalue(base, wid) .eeq( bit ))
return;
input_[port] .set_vec(base, bit);
if (net_ == 0) {
net_ = ptr.ptr();
schedule_functor(this);
}
}
vvp_fun_and::vvp_fun_and(unsigned wid, bool invert)
: vvp_fun_boolean_(wid), invert_(invert)
{
count_functors_logic += 1;
}
vvp_fun_and::~vvp_fun_and()
{
}
void vvp_fun_and::run_run()
{
vvp_net_t*ptr = net_;
net_ = 0;
vvp_vector4_t result (input_[0]);
for (unsigned idx = 0 ; idx < result.size() ; idx += 1) {
vvp_bit4_t bitbit = result.value(idx);
for (unsigned pdx = 1 ; pdx < 4 ; pdx += 1) {
if (input_[pdx].size() < idx) {
bitbit = BIT4_X;
break;
}
bitbit = bitbit & input_[pdx].value(idx);
}
if (invert_)
bitbit = ~bitbit;
result.set_bit(idx, bitbit);
}
ptr->send_vec4(result, 0);
}
vvp_fun_buf::vvp_fun_buf(unsigned wid)
: input_(wid, BIT4_Z)
{
net_ = 0;
count_functors_logic += 1;
}
vvp_fun_buf::~vvp_fun_buf()
{
}
/*
* The buf functor is very simple--change the z bits to x bits in the
* vector it passes, and propagate the result.
*/
void vvp_fun_buf::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit,
vvp_context_t)
{
if (ptr.port() != 0)
return;
if (input_ .eeq( bit ))
return;
input_ = bit;
if (net_ == 0) {
net_ = ptr.ptr();
schedule_functor(this);
}
}
void vvp_fun_buf::recv_vec4_pv(vvp_net_ptr_t ptr, const vvp_vector4_t&bit,
unsigned base, unsigned wid, unsigned vwid,
vvp_context_t)
{
if (ptr.port() != 0)
return;
assert(bit.size() == wid);
assert(base + wid <= vwid);
if (input_.subvalue(base, wid) .eeq( bit ))
return;
input_.set_vec(base, bit);
if (net_ == 0) {
net_ = ptr.ptr();
schedule_functor(this);
}
}
void vvp_fun_buf::run_run()
{
vvp_net_t*ptr = net_;
net_ = 0;
vvp_vector4_t tmp (input_);
tmp.change_z2x();
ptr->send_vec4(tmp, 0);
}
vvp_fun_bufz::vvp_fun_bufz()
{
count_functors_logic += 1;
}
vvp_fun_bufz::~vvp_fun_bufz()
{
}
/*
* The bufz is similar to the buf device, except that it does not
* bother translating z bits to x.
*/
void vvp_fun_bufz::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit,
vvp_context_t)
{
if (ptr.port() != 0)
return;
ptr.ptr()->send_vec4(bit, 0);
}
void vvp_fun_bufz::recv_vec4_pv(vvp_net_ptr_t ptr, const vvp_vector4_t&bit,
unsigned base, unsigned wid, unsigned vwid,
vvp_context_t)
{
if (ptr.port() != 0)
return;
ptr.ptr()->send_vec4_pv(bit, base, wid, vwid, 0);
}
void vvp_fun_bufz::recv_vec8(vvp_net_ptr_t ptr, const vvp_vector8_t&bit)
{
if (ptr.port() != 0)
return;
ptr.ptr()->send_vec8(bit);
}
void vvp_fun_bufz::recv_real(vvp_net_ptr_t ptr, double bit,
vvp_context_t)
{
if (ptr.port() != 0)
return;
ptr.ptr()->send_real(bit, 0);
}
vvp_fun_muxr::vvp_fun_muxr()
: a_(0.0), b_(0.0)
{
net_ = 0;
count_functors_logic += 1;
select_ = SEL_BOTH;
}
vvp_fun_muxr::~vvp_fun_muxr()
{
}
void vvp_fun_muxr::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit,
vvp_context_t)
{
/* The real valued mux can only take in the select as a
vector4_t. The muxed data is real. */
if (ptr.port() != 2)
return;
assert(bit.size() == 1);
switch (bit.value(0)) {
case BIT4_0:
if (select_ == SEL_PORT0) return;
select_ = SEL_PORT0;
break;
case BIT4_1:
if (select_ == SEL_PORT1) return;
select_ = SEL_PORT1;
break;
default:
if (select_ == SEL_BOTH) return;
select_ = SEL_BOTH;
}
if (net_ == 0) {
net_ = ptr.ptr();
schedule_functor(this);
}
}
void vvp_fun_muxr::recv_real(vvp_net_ptr_t ptr, double bit,
vvp_context_t)
{
switch (ptr.port()) {
case 0:
if (a_ == bit) return;
a_ = bit;
if (select_ == SEL_PORT1) return; // The other port is selected.
break;
case 1:
if (b_ == bit) return;
b_ = bit;
if (select_ == SEL_PORT0) return; // The other port is selected.
break;
default:
fprintf(stderr, "Unsupported port type %d.\n", ptr.port());
assert(0);
}
if (net_ == 0) {
net_ = ptr.ptr();
schedule_functor(this);
}
}
void vvp_fun_muxr::run_run()
{
vvp_net_t*ptr = net_;
net_ = 0;
switch (select_) {
case SEL_PORT0:
ptr->send_real(a_, 0);
break;
case SEL_PORT1:
ptr->send_real(b_, 0);
break;
default:
if (a_ == b_) {
ptr->send_real(a_, 0);
} else {
ptr->send_real(0.0, 0); // Should this be NaN?
}
break;
}
}
vvp_fun_muxz::vvp_fun_muxz(unsigned wid)
: a_(wid, BIT4_Z), b_(wid, BIT4_Z)
{
net_ = 0;
count_functors_logic += 1;
select_ = SEL_BOTH;
has_run_ = false;
}
vvp_fun_muxz::~vvp_fun_muxz()
{
}
void vvp_fun_muxz::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit,
vvp_context_t)
{
switch (ptr.port()) {
case 0:
if (a_ .eeq(bit) && has_run_) return;
a_ = bit;
if (select_ == SEL_PORT1) return; // The other port is selected.
break;
case 1:
if (b_ .eeq(bit) && has_run_) return;
b_ = bit;
if (select_ == SEL_PORT0) return; // The other port is selected.
break;
case 2:
assert(bit.size() == 1);
switch (bit.value(0)) {
case BIT4_0:
if (select_ == SEL_PORT0) return;
select_ = SEL_PORT0;
break;
case BIT4_1:
if (select_ == SEL_PORT1) return;
select_ = SEL_PORT1;
break;
default:
if (select_ == SEL_BOTH && has_run_) return;
select_ = SEL_BOTH;
}
break;
default:
return;
}
if (net_ == 0) {
net_ = ptr.ptr();
schedule_functor(this);
}
}
void vvp_fun_muxz::recv_vec4_pv(vvp_net_ptr_t ptr, const vvp_vector4_t&bit,
unsigned base, unsigned wid, unsigned vwid,
vvp_context_t)
{
assert(bit.size() == wid);
assert(base + wid <= vwid);
switch (ptr.port()) {
case 0:
if (a_.subvalue(base, wid) .eeq(bit) && has_run_) return;
a_.set_vec(base, bit);
if (select_ == SEL_PORT1) return; // The other port is selected.
break;
case 1:
if (b_.subvalue(base, wid) .eeq(bit) && has_run_) return;
b_.set_vec(base, bit);
if (select_ == SEL_PORT0) return; // The other port is selected.
break;
case 2:
assert((base == 0) && (wid == 1));
recv_vec4(ptr, bit, 0);
default:
return;
}
if (net_ == 0) {
net_ = ptr.ptr();
schedule_functor(this);
}
}
void vvp_fun_muxz::run_run()
{
has_run_ = true;
vvp_net_t*ptr = net_;
net_ = 0;
switch (select_) {
case SEL_PORT0:
ptr->send_vec4(a_, 0);
break;
case SEL_PORT1:
ptr->send_vec4(b_, 0);
break;
default:
{
unsigned min_size = a_.size();
unsigned max_size = a_.size();
if (b_.size() < min_size)
min_size = b_.size();
if (b_.size() > max_size)
max_size = b_.size();
vvp_vector4_t res (max_size);
for (unsigned idx = 0 ; idx < min_size ; idx += 1) {
if (a_.value(idx) == b_.value(idx))
res.set_bit(idx, a_.value(idx));
else
res.set_bit(idx, BIT4_X);
}
for (unsigned idx = min_size ; idx < max_size ; idx += 1)
res.set_bit(idx, BIT4_X);
ptr->send_vec4(res, 0);
}
break;
}
}
vvp_fun_not::vvp_fun_not(unsigned wid)
: input_(wid, BIT4_Z)
{
net_ = 0;
count_functors_logic += 1;
}
vvp_fun_not::~vvp_fun_not()
{
}
/*
* The not functor is very simple--change the z bits to x bits in the
* vector it passes, and propagate the inverted result.
*/
void vvp_fun_not::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit,
vvp_context_t)
{
if (ptr.port() != 0)
return;
if (input_ .eeq( bit ))
return;
input_ = bit;
if (net_ == 0) {
net_ = ptr.ptr();
schedule_functor(this);
}
}
void vvp_fun_not::recv_vec4_pv(vvp_net_ptr_t ptr, const vvp_vector4_t&bit,
unsigned base, unsigned wid, unsigned vwid,
vvp_context_t)
{
if (ptr.port() != 0)
return;
assert(bit.size() == wid);
assert(base + wid <= vwid);
if (input_.subvalue(base, wid) .eeq( bit ))
return;
input_.set_vec(base, bit);
if (net_ == 0) {
net_ = ptr.ptr();
schedule_functor(this);
}
}
void vvp_fun_not::run_run()
{
vvp_net_t*ptr = net_;
net_ = 0;
vvp_vector4_t result (input_, true /* invert */);
ptr->send_vec4(result, 0);
}
vvp_fun_or::vvp_fun_or(unsigned wid, bool invert)
: vvp_fun_boolean_(wid), invert_(invert)
{
count_functors_logic += 1;
}
vvp_fun_or::~vvp_fun_or()
{
}
void vvp_fun_or::run_run()
{
vvp_net_t*ptr = net_;
net_ = 0;
vvp_vector4_t result (input_[0]);
for (unsigned idx = 0 ; idx < result.size() ; idx += 1) {
vvp_bit4_t bitbit = result.value(idx);
for (unsigned pdx = 1 ; pdx < 4 ; pdx += 1) {
if (input_[pdx].size() < idx) {
bitbit = BIT4_X;
break;
}
bitbit = bitbit | input_[pdx].value(idx);
}
if (invert_)
bitbit = ~bitbit;
result.set_bit(idx, bitbit);
}
ptr->send_vec4(result, 0);
}
vvp_fun_xor::vvp_fun_xor(unsigned wid, bool invert)
: vvp_fun_boolean_(wid), invert_(invert)
{
count_functors_logic += 1;
}
vvp_fun_xor::~vvp_fun_xor()
{
}
void vvp_fun_xor::run_run()
{
vvp_net_t*ptr = net_;
net_ = 0;
vvp_vector4_t result (input_[0]);
for (unsigned idx = 0 ; idx < result.size() ; idx += 1) {
vvp_bit4_t bitbit = result.value(idx);
for (unsigned pdx = 1 ; pdx < 4 ; pdx += 1) {
if (input_[pdx].size() < idx) {
bitbit = BIT4_X;
break;
}
bitbit = bitbit ^ input_[pdx].value(idx);
}
if (invert_)
bitbit = ~bitbit;
result.set_bit(idx, bitbit);
}
ptr->send_vec4(result, 0);
}
/*
* The parser calls this function to create a logic functor. I allocate a
* functor, and map the name to the vvp_ipoint_t address for the
* functor. Also resolve the inputs to the functor.
*/
void compile_functor(char*label, char*type, unsigned width,
unsigned ostr0, unsigned ostr1,
unsigned argc, struct symb_s*argv)
{
vvp_net_fun_t* obj = 0;
bool strength_aware = false;
if (strcmp(type, "OR") == 0) {
obj = new vvp_fun_or(width, false);
} else if (strcmp(type, "AND") == 0) {
obj = new vvp_fun_and(width, false);
} else if (strcmp(type, "BUF") == 0) {
obj = new vvp_fun_buf(width);
} else if (strcmp(type, "BUFIF0") == 0) {
obj = new vvp_fun_bufif(true,false, ostr0, ostr1);
strength_aware = true;
} else if (strcmp(type, "BUFIF1") == 0) {
obj = new vvp_fun_bufif(false,false, ostr0, ostr1);
strength_aware = true;
} else if (strcmp(type, "NAND") == 0) {
obj = new vvp_fun_and(width, true);
} else if (strcmp(type, "NOR") == 0) {
obj = new vvp_fun_or(width, true);
} else if (strcmp(type, "NOTIF0") == 0) {
obj = new vvp_fun_bufif(true,true, ostr0, ostr1);
strength_aware = true;
} else if (strcmp(type, "NOTIF1") == 0) {
obj = new vvp_fun_bufif(false,true, ostr0, ostr1);
strength_aware = true;
} else if (strcmp(type, "BUFZ") == 0) {
obj = new vvp_fun_bufz();
} else if (strcmp(type, "MUXR") == 0) {
obj = new vvp_fun_muxr;
} else if (strcmp(type, "MUXZ") == 0) {
obj = new vvp_fun_muxz(width);
} else if (strcmp(type, "CMOS") == 0) {
obj = new vvp_fun_cmos();
} else if (strcmp(type, "NMOS") == 0) {
obj = new vvp_fun_pmos(true);
} else if (strcmp(type, "PMOS") == 0) {
obj = new vvp_fun_pmos(false);
} else if (strcmp(type, "RCMOS") == 0) {
obj = new vvp_fun_rcmos();
} else if (strcmp(type, "RNMOS") == 0) {
obj = new vvp_fun_rpmos(true);
} else if (strcmp(type, "RPMOS") == 0) {
obj = new vvp_fun_rpmos(false);
} else if (strcmp(type, "NOT") == 0) {
obj = new vvp_fun_not(width);
} else if (strcmp(type, "XNOR") == 0) {
obj = new vvp_fun_xor(width, true);
} else if (strcmp(type, "XOR") == 0) {
obj = new vvp_fun_xor(width, false);
} else {
yyerror("invalid functor type.");
free(type);
free(argv);
free(label);
return;
}
free(type);
assert(argc <= 4);
vvp_net_t*net = new vvp_net_t;
net->fun = obj;
inputs_connect(net, argc, argv);
free(argv);
/* If both the strengths are the default strong drive, then
there is no need for a specialized driver. Attach the label
to this node and we are finished. */
if (strength_aware || (ostr0 == 6 && ostr1 == 6)) {
define_functor_symbol(label, net);
free(label);
return;
}
vvp_net_t*net_drv = new vvp_net_t;
vvp_net_fun_t*obj_drv = new vvp_fun_drive(BIT4_X, ostr0, ostr1);
net_drv->fun = obj_drv;
/* Point the gate to the drive node. */
net->link(vvp_net_ptr_t(net_drv, 0));
define_functor_symbol(label, net_drv);
free(label);
}