iverilog/tgt-fpga/d-generic.c

514 lines
13 KiB
C

/*
* Copyright (c) 2001-2014 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "device.h"
# include "fpga_priv.h"
# include <assert.h>
/*
* This is the device emitter for the most generic FPGA. It doesn't
* know anything special about device types, so can't handle complex
* logic.
*/
static void xnf_draw_pin(ivl_nexus_t nex, const char*nam, char dir)
{
const char*use_name = nam;
const char*nex_name = xnf_mangle_nexus_name(nex);
int invert = 0;
if (use_name[0] == '~') {
invert = 1;
use_name += 1;
}
fprintf(xnf, " PIN, %s, %c, %s", use_name, dir, nex_name);
if (invert)
fprintf(xnf, ",,INV");
fprintf(xnf, "\n");
}
static void show_root_ports_xnf(ivl_scope_t root)
{
unsigned cnt = ivl_scope_sigs(root);
unsigned idx;
for (idx = 0 ; idx < cnt ; idx += 1) {
ivl_signal_t sig = ivl_scope_sig(root, idx);
const char*use_name;
if (ivl_signal_port(sig) == IVL_SIP_NONE)
continue;
use_name = ivl_signal_basename(sig);
if (ivl_signal_pins(sig) == 1) {
ivl_nexus_t nex = ivl_signal_pin(sig, 0);
fprintf(xnf, "SIG, %s, PIN=%s\n",
xnf_mangle_nexus_name(nex), use_name);
} else {
unsigned pin;
for (pin = 0 ; pin < ivl_signal_pins(sig); pin += 1) {
ivl_nexus_t nex = ivl_signal_pin(sig, pin);
fprintf(xnf, "SIG, %s, PIN=%s%u\n",
xnf_mangle_nexus_name(nex), use_name,
pin);
}
}
}
}
static void show_design_consts_xnf(ivl_design_t des)
{
unsigned idx;
for (idx = 0 ; idx < ivl_design_consts(des) ; idx += 1) {
unsigned pin;
ivl_net_const_t net = ivl_design_const(des, idx);
const char*val = ivl_const_bits(net);
for (pin = 0 ; pin < ivl_const_pins(net) ; pin += 1) {
ivl_nexus_t nex = ivl_const_pin(net, pin);
fprintf(xnf, "PWR,%c,%s\n", val[pin],
xnf_mangle_nexus_name(nex));
}
}
}
static void generic_show_header(ivl_design_t des)
{
ivl_scope_t root = ivl_design_root(des);
fprintf(xnf, "LCANET,6\n");
fprintf(xnf, "PROG,iverilog,$Name: $,\"Icarus Verilog/fpga.tgt\"\n");
if (part && (part[0]!=0)) {
fprintf(xnf, "PART,%s\n", part);
}
show_root_ports_xnf(root);
}
static void generic_show_footer(ivl_design_t des)
{
show_design_consts_xnf(des);
fprintf(xnf, "EOF\n");
}
static void generic_show_logic(ivl_net_logic_t net)
{
char name[1024];
ivl_nexus_t nex;
unsigned idx;
xnf_mangle_logic_name(net, name, sizeof name);
switch (ivl_logic_type(net)) {
case IVL_LO_AND:
fprintf(xnf, "SYM, %s, AND, LIBVER=2.0.0\n", name);
nex = ivl_logic_pin(net, 0);
xnf_draw_pin(nex, "O", 'O');
for (idx = 1 ; idx < ivl_logic_pins(net) ; idx += 1) {
char ipin[32];
nex = ivl_logic_pin(net, idx);
sprintf(ipin, "I%u", idx-1);
xnf_draw_pin(nex, ipin, 'I');
}
fprintf(xnf, "END\n");
break;
case IVL_LO_BUF:
assert(ivl_logic_pins(net) == 2);
fprintf(xnf, "SYM, %s, BUF, LIBVER=2.0.0\n", name);
nex = ivl_logic_pin(net, 0);
xnf_draw_pin(nex, "O", 'O');
nex = ivl_logic_pin(net, 1);
xnf_draw_pin(nex, "I", 'I');
fprintf(xnf, "END\n");
break;
case IVL_LO_NAND:
fprintf(xnf, "SYM, %s, NAND, LIBVER=2.0.0\n", name);
nex = ivl_logic_pin(net, 0);
xnf_draw_pin(nex, "O", 'O');
for (idx = 1 ; idx < ivl_logic_pins(net) ; idx += 1) {
char ipin[32];
nex = ivl_logic_pin(net, idx);
sprintf(ipin, "I%u", idx-1);
xnf_draw_pin(nex, ipin, 'I');
}
fprintf(xnf, "END\n");
break;
case IVL_LO_NOR:
fprintf(xnf, "SYM, %s, NOR, LIBVER=2.0.0\n", name);
nex = ivl_logic_pin(net, 0);
xnf_draw_pin(nex, "O", 'O');
for (idx = 1 ; idx < ivl_logic_pins(net) ; idx += 1) {
char ipin[32];
nex = ivl_logic_pin(net, idx);
sprintf(ipin, "I%u", idx-1);
xnf_draw_pin(nex, ipin, 'I');
}
fprintf(xnf, "END\n");
break;
case IVL_LO_NOT:
assert(ivl_logic_pins(net) == 2);
fprintf(xnf, "SYM, %s, INV, LIBVER=2.0.0\n", name);
nex = ivl_logic_pin(net, 0);
xnf_draw_pin(nex, "O", 'O');
nex = ivl_logic_pin(net, 1);
xnf_draw_pin(nex, "I", 'I');
fprintf(xnf, "END\n");
break;
case IVL_LO_OR:
fprintf(xnf, "SYM, %s, OR, LIBVER=2.0.0\n", name);
nex = ivl_logic_pin(net, 0);
xnf_draw_pin(nex, "O", 'O');
for (idx = 1 ; idx < ivl_logic_pins(net) ; idx += 1) {
char ipin[32];
nex = ivl_logic_pin(net, idx);
sprintf(ipin, "I%u", idx-1);
xnf_draw_pin(nex, ipin, 'I');
}
fprintf(xnf, "END\n");
break;
case IVL_LO_XOR:
fprintf(xnf, "SYM, %s, XOR, LIBVER=2.0.0\n", name);
nex = ivl_logic_pin(net, 0);
xnf_draw_pin(nex, "O", 'O');
for (idx = 1 ; idx < ivl_logic_pins(net) ; idx += 1) {
char ipin[32];
nex = ivl_logic_pin(net, idx);
sprintf(ipin, "I%u", idx-1);
xnf_draw_pin(nex, ipin, 'I');
}
fprintf(xnf, "END\n");
break;
case IVL_LO_XNOR:
fprintf(xnf, "SYM, %s, XNOR, LIBVER=2.0.0\n", name);
nex = ivl_logic_pin(net, 0);
xnf_draw_pin(nex, "O", 'O');
for (idx = 1 ; idx < ivl_logic_pins(net) ; idx += 1) {
char ipin[32];
nex = ivl_logic_pin(net, idx);
sprintf(ipin, "I%u", idx-1);
xnf_draw_pin(nex, ipin, 'I');
}
fprintf(xnf, "END\n");
break;
case IVL_LO_BUFIF0:
fprintf(xnf, "SYM, %s, TBUF, LIBVER=2.0.0\n", name);
nex = ivl_logic_pin(net, 0);
xnf_draw_pin(nex, "O", 'O');
nex = ivl_logic_pin(net, 1);
xnf_draw_pin(nex, "I", 'I');
nex = ivl_logic_pin(net, 2);
xnf_draw_pin(nex, "~T", 'I');
fprintf(xnf, "END\n");
break;
case IVL_LO_BUFIF1:
fprintf(xnf, "SYM, %s, TBUF, LIBVER=2.0.0\n", name);
nex = ivl_logic_pin(net, 0);
xnf_draw_pin(nex, "O", 'O');
nex = ivl_logic_pin(net, 1);
xnf_draw_pin(nex, "I", 'I');
nex = ivl_logic_pin(net, 2);
xnf_draw_pin(nex, "T", 'I');
fprintf(xnf, "END\n");
break;
default:
fprintf(stderr, "fpga.tgt: unknown logic type %d\n",
ivl_logic_type(net));
break;
}
}
static void generic_show_dff(ivl_lpm_t net)
{
char name[1024];
ivl_nexus_t nex;
xnf_mangle_lpm_name(net, name, sizeof name);
fprintf(xnf, "SYM, %s, DFF, LIBVER=2.0.0\n", name);
nex = ivl_lpm_q(net, 0);
xnf_draw_pin(nex, "Q", 'O');
nex = ivl_lpm_data(net, 0);
xnf_draw_pin(nex, "D", 'I');
nex = ivl_lpm_clk(net);
xnf_draw_pin(nex, "C", 'I');
if ((nex = ivl_lpm_enable(net)))
xnf_draw_pin(nex, "CE", 'I');
fprintf(xnf, "END\n");
}
/*
* The generic == comparator uses EQN records to generate 2-bit
* comparators, that are then connected together by a wide AND gate.
*/
static void generic_show_cmp_eq(ivl_lpm_t net)
{
ivl_nexus_t nex;
unsigned idx;
char name[1024];
/* Make this many dual pair comparators, and */
unsigned deqn = ivl_lpm_width(net) / 2;
/* Make this many single pair comparators. */
unsigned seqn = ivl_lpm_width(net) % 2;
xnf_mangle_lpm_name(net, name, sizeof name);
for (idx = 0 ; idx < deqn ; idx += 1) {
fprintf(xnf, "SYM, %s/CD%u, EQN, "
"EQN=(~((I0 @ I1) + (I2 @ I3)))\n",
name, idx);
fprintf(xnf, " PIN, O, O, %s/CDO%u\n", name, idx);
nex = ivl_lpm_data(net, 2*idx);
xnf_draw_pin(nex, "I0", 'I');
nex = ivl_lpm_datab(net, 2*idx);
xnf_draw_pin(nex, "I1", 'I');
nex = ivl_lpm_data(net, 2*idx+1);
xnf_draw_pin(nex, "I2", 'I');
nex = ivl_lpm_datab(net, 2*idx+1);
xnf_draw_pin(nex, "I3", 'I');
fprintf(xnf, "END\n");
}
if (seqn != 0) {
fprintf(xnf, "SYM, %s/CT, XNOR, LIBVER=2.0.0\n", name);
fprintf(xnf, " PIN, O, O, %s/CTO\n", name);
nex = ivl_lpm_data(net, 2*deqn);
xnf_draw_pin(nex, "I0", 'I');
nex = ivl_lpm_datab(net, 2*deqn);
xnf_draw_pin(nex, "I1", 'I');
fprintf(xnf, "END\n");
}
if (ivl_lpm_type(net) == IVL_LPM_CMP_EQ)
fprintf(xnf, "SYM, %s/OUT, AND, LIBVER=2.0.0\n", name);
else
fprintf(xnf, "SYM, %s/OUT, NAND, LIBVER=2.0.0\n", name);
nex = ivl_lpm_q(net, 0);
xnf_draw_pin(nex, "O", 'O');
for (idx = 0 ; idx < deqn ; idx += 1)
fprintf(xnf, " PIN, I%u, I, %s/CDO%u\n", idx, name, idx);
for (idx = 0 ; idx < seqn ; idx += 1)
fprintf(xnf, " PIN, I%u, I, %s/CTO\n", deqn+idx, name);
fprintf(xnf, "END\n");
}
/*
* This function draws N-bit wide binary mux devices. These are so
* very popular because they are the result of such expressions as:
*
* x = sel? a : b;
*
* This code only supports the case where sel is a single bit. It
* works by drawing for each bit of the width an EQN device that takes
* as inputs I0 and I1 the alternative inputs, and I2 the select. The
* select bit is common with all the generated mux devices.
*/
static void generic_show_mux(ivl_lpm_t net)
{
char name[1024];
ivl_nexus_t sel;
unsigned idx;
xnf_mangle_lpm_name(net, name, sizeof name);
/* Access the single select bit. This is common to the whole
width of the mux. */
assert(ivl_lpm_selects(net) == 1);
sel = ivl_lpm_select(net, 0);
for (idx = 0 ; idx < ivl_lpm_width(net) ; idx += 1) {
ivl_nexus_t nex;
fprintf(xnf, "SYM, %s/M%u, EQN, "
"EQN=((I0 * ~I2) + (I1 * I2))\n",
name, idx);
nex = ivl_lpm_q(net, idx);
xnf_draw_pin(nex, "O", 'O');
nex = ivl_lpm_data2(net, 0, idx);
xnf_draw_pin(nex, "I0", 'I');
nex = ivl_lpm_data2(net, 1, idx);
xnf_draw_pin(nex, "I1", 'I');
xnf_draw_pin(sel, "I2", 'I');
fprintf(xnf, "END\n");
}
}
/*
* This code cheats and just generates ADD4 devices enough to support
* the add. Make no effort to optimize, because we have no idea what
* kind of device we have.
*/
static void generic_show_add(ivl_lpm_t net)
{
char name[1024];
ivl_nexus_t nex;
unsigned idx, nadd4, tail;
xnf_mangle_lpm_name(net, name, sizeof name);
/* Make this many ADD4 devices. */
nadd4 = ivl_lpm_width(net) / 4;
tail = ivl_lpm_width(net) % 4;
for (idx = 0 ; idx < nadd4 ; idx += 1) {
fprintf(xnf, "SYM, %s/A%u, ADD4\n", name, idx);
if (idx > 0)
fprintf(xnf, " PIN, CI, I, %s/CO%u\n", name, idx-1);
nex = ivl_lpm_q(net, idx*4+0);
xnf_draw_pin(nex, "S0", 'O');
nex = ivl_lpm_q(net, idx*4+1);
xnf_draw_pin(nex, "S1", 'O');
nex = ivl_lpm_q(net, idx*4+2);
xnf_draw_pin(nex, "S2", 'O');
nex = ivl_lpm_q(net, idx*4+3);
xnf_draw_pin(nex, "S3", 'O');
nex = ivl_lpm_data(net, idx*4+0);
xnf_draw_pin(nex, "A0", 'I');
nex = ivl_lpm_data(net, idx*4+1);
xnf_draw_pin(nex, "A1", 'I');
nex = ivl_lpm_data(net, idx*4+2);
xnf_draw_pin(nex, "A2", 'I');
nex = ivl_lpm_data(net, idx*4+3);
xnf_draw_pin(nex, "A3", 'I');
nex = ivl_lpm_datab(net, idx*4+0);
xnf_draw_pin(nex, "B0", 'I');
nex = ivl_lpm_datab(net, idx*4+1);
xnf_draw_pin(nex, "B1", 'I');
nex = ivl_lpm_datab(net, idx*4+2);
xnf_draw_pin(nex, "B2", 'I');
nex = ivl_lpm_datab(net, idx*4+3);
xnf_draw_pin(nex, "B3", 'I');
if ((idx*4+4) < ivl_lpm_width(net))
fprintf(xnf, " PIN, CO, O, %s/CO%u\n", name, idx);
fprintf(xnf, "END\n");
}
if (tail > 0) {
fprintf(xnf, "SYM, %s/A%u, ADD4\n", name, nadd4);
if (nadd4 > 0)
fprintf(xnf, " PIN, CI, I, %s/CO%u\n", name, nadd4-1);
switch (tail) {
case 3:
nex = ivl_lpm_data(net, nadd4*4+2);
xnf_draw_pin(nex, "A2", 'I');
nex = ivl_lpm_datab(net, nadd4*4+2);
xnf_draw_pin(nex, "B2", 'I');
nex = ivl_lpm_q(net, nadd4*4+2);
xnf_draw_pin(nex, "S2", 'O');
case 2:
nex = ivl_lpm_data(net, nadd4*4+1);
xnf_draw_pin(nex, "A1", 'I');
nex = ivl_lpm_datab(net, nadd4*4+1);
xnf_draw_pin(nex, "B1", 'I');
nex = ivl_lpm_q(net, nadd4*4+1);
xnf_draw_pin(nex, "S1", 'O');
case 1:
nex = ivl_lpm_data(net, nadd4*4+0);
xnf_draw_pin(nex, "A0", 'I');
nex = ivl_lpm_datab(net, nadd4*4+0);
xnf_draw_pin(nex, "B0", 'I');
nex = ivl_lpm_q(net, nadd4*4+0);
xnf_draw_pin(nex, "S0", 'O');
}
fprintf(xnf, "END\n");
}
}
const struct device_s d_generic = {
generic_show_header,
generic_show_footer,
0, /* show_scope */
0, /* show_pad not implemented */
generic_show_logic,
generic_show_dff,
generic_show_cmp_eq,
generic_show_cmp_eq,
0, /* ge not implemented */
0, /* gt not implemented */
generic_show_mux,
generic_show_add,
0, /* subtract not implemented */
0,
0
};