iverilog/vhdlpp/expression.cc

322 lines
5.8 KiB
C++

/*
* Copyright (c) 2011 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
# include "expression.h"
# include "scope.h"
# include <iostream>
# include <typeinfo>
# include <cstring>
# include <cassert>
using namespace std;
Expression::Expression()
: type_(0)
{
}
Expression::~Expression()
{
}
void Expression::set_type(const VType*typ)
{
assert(type_ == 0);
type_ = typ;
}
bool Expression::evaluate(ScopeBase*, int64_t&) const
{
return false;
}
bool Expression::symbolic_compare(const Expression*) const
{
cerr << get_fileline() << ": internal error: "
<< "symbolic_compare() method not implemented "
<< "for " << typeid(*this).name() << endl;
return false;
}
bool ExpName::symbolic_compare(const Expression*that) const
{
const ExpName*that_name = dynamic_cast<const ExpName*> (that);
if (that_name == 0)
return false;
if (name_ != that_name->name_)
return false;
if (that_name->index_ && !index_)
return false;
if (index_ && !that_name->index_)
return false;
if (index_) {
assert(that_name->index_);
return index_->symbolic_compare(that_name->index_);
}
return true;
}
ExpAttribute::ExpAttribute(ExpName*bas, perm_string nam)
: base_(bas), name_(nam)
{
}
ExpAttribute::~ExpAttribute()
{
delete base_;
}
ExpBinary::ExpBinary(Expression*op1, Expression*op2)
: operand1_(op1), operand2_(op2)
{
}
ExpBinary::~ExpBinary()
{
delete operand1_;
delete operand2_;
}
bool ExpBinary::eval_operand1(ScopeBase*scope, int64_t&val) const
{
return operand1_->evaluate(scope, val);
}
bool ExpBinary::eval_operand2(ScopeBase*scope, int64_t&val) const
{
return operand2_->evaluate(scope, val);
}
ExpUnary::ExpUnary(Expression*op1)
: operand1_(op1)
{
}
ExpUnary::~ExpUnary()
{
delete operand1_;
}
ExpArithmetic::ExpArithmetic(ExpArithmetic::fun_t op, Expression*op1, Expression*op2)
: ExpBinary(op1, op2), fun_(op)
{
}
ExpArithmetic::~ExpArithmetic()
{
}
bool ExpArithmetic::evaluate(ScopeBase*scope, int64_t&val) const
{
int64_t val1, val2;
bool rc;
rc = eval_operand1(scope, val1);
if (rc == false)
return false;
rc = eval_operand2(scope, val2);
if (rc == false)
return false;
switch (fun_) {
case PLUS:
val = val1 + val2;
break;
case MINUS:
val = val1 - val2;
break;
case MULT:
val = val1 * val2;
break;
case DIV:
if (val2 == 0)
return false;
val = val1 / val2;
break;
case MOD:
if (val2 == 0)
return false;
val = val1 % val2;
break;
case REM:
return false;
case POW:
return false;
case CONCAT:
return false;
}
return true;
}
/*
* Store bitstrings in little-endian order.
*/
ExpBitstring::ExpBitstring(const char*val)
: value_(strlen(val))
{
for (size_t idx = value_.size() ; idx > 0 ; idx -= 1)
value_[idx-1] = *val++;
}
ExpBitstring::~ExpBitstring()
{
}
ExpCharacter::ExpCharacter(char val)
: value_(val)
{
}
ExpCharacter::~ExpCharacter()
{
}
ExpConditional::ExpConditional(Expression*co, list<Expression*>*tru, list<Expression*>*els)
: cond_(co)
{
if (tru) true_clause_.splice(true_clause_.end(), *tru);
if (els) else_clause_.splice(else_clause_.end(), *els);
}
ExpConditional::~ExpConditional()
{
delete cond_;
while (! true_clause_.empty()) {
Expression*tmp = true_clause_.front();
true_clause_.pop_front();
delete tmp;
}
while (! else_clause_.empty()) {
Expression*tmp = else_clause_.front();
else_clause_.pop_front();
delete tmp;
}
}
ExpEdge::ExpEdge(ExpEdge::fun_t typ, Expression*op)
: ExpUnary(op), fun_(typ)
{
}
ExpEdge::~ExpEdge()
{
}
ExpInteger::ExpInteger(int64_t val)
: value_(val)
{
}
ExpInteger::~ExpInteger()
{
}
bool ExpInteger::evaluate(ScopeBase*, int64_t&val) const
{
val = value_;
return true;
}
ExpLogical::ExpLogical(ExpLogical::fun_t ty, Expression*op1, Expression*op2)
: ExpBinary(op1, op2), fun_(ty)
{
}
ExpLogical::~ExpLogical()
{
}
ExpName::ExpName(perm_string nn)
: name_(nn), index_(0)
{
}
ExpName::ExpName(perm_string nn, Expression*ix)
: name_(nn), index_(ix)
{
}
ExpName::~ExpName()
{
delete index_;
}
const char* ExpName::name() const
{
return name_;
}
bool ExpName::evaluate(ScopeBase*scope, int64_t&val) const
{
const VType*type;
Expression*exp;
bool rc = scope->find_constant(name_, type, exp);
if (rc == false) {
cerr << "XXXX Unable to evaluate name " << name_ << "." << endl;
return false;
}
return exp->evaluate(scope, val);
}
ExpRelation::ExpRelation(ExpRelation::fun_t ty, Expression*op1, Expression*op2)
: ExpBinary(op1, op2), fun_(ty)
{
}
ExpRelation::~ExpRelation()
{
}
ExpString::ExpString(const char* value)
: value_(strlen(value))
{
for(unsigned i=0; i<strlen(value); ++i)
value_.push_back(value[i]);
}
ExpString::~ExpString()
{
}
ExpUAbs::ExpUAbs(Expression*op1)
: ExpUnary(op1)
{
}
ExpUAbs::~ExpUAbs()
{
}
ExpUNot::ExpUNot(Expression*op1)
: ExpUnary(op1)
{
}
ExpUNot::~ExpUNot()
{
}