567 lines
15 KiB
C
567 lines
15 KiB
C
/*
|
|
* Copyright (c) 2001 Stephen Williams (steve@icarus.com)
|
|
*
|
|
* This source code is free software; you can redistribute it
|
|
* and/or modify it in source code form under the terms of the GNU
|
|
* General Public License as published by the Free Software
|
|
* Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
|
|
*/
|
|
#ifdef HAVE_CVS_IDENT
|
|
#ident "$Id: d-generic.c,v 1.14 2003/11/12 03:20:14 steve Exp $"
|
|
#endif
|
|
|
|
# include "device.h"
|
|
# include "fpga_priv.h"
|
|
# include <assert.h>
|
|
|
|
/*
|
|
* This is the device emitter for the most generic FPGA. It doesn't
|
|
* know anything special about device types, so can't handle complex
|
|
* logic.
|
|
*/
|
|
|
|
static void xnf_draw_pin(ivl_nexus_t nex, const char*nam, char dir)
|
|
{
|
|
const char*use_name = nam;
|
|
const char*nex_name = xnf_mangle_nexus_name(nex);
|
|
int invert = 0;
|
|
|
|
if (use_name[0] == '~') {
|
|
invert = 1;
|
|
use_name += 1;
|
|
}
|
|
|
|
fprintf(xnf, " PIN, %s, %c, %s", use_name, dir, nex_name);
|
|
|
|
if (invert)
|
|
fprintf(xnf, ",,INV");
|
|
|
|
fprintf(xnf, "\n");
|
|
}
|
|
|
|
static void show_root_ports_xnf(ivl_scope_t root)
|
|
{
|
|
unsigned cnt = ivl_scope_sigs(root);
|
|
unsigned idx;
|
|
|
|
for (idx = 0 ; idx < cnt ; idx += 1) {
|
|
ivl_signal_t sig = ivl_scope_sig(root, idx);
|
|
const char*use_name;
|
|
|
|
if (ivl_signal_port(sig) == IVL_SIP_NONE)
|
|
continue;
|
|
|
|
use_name = ivl_signal_basename(sig);
|
|
if (ivl_signal_pins(sig) == 1) {
|
|
ivl_nexus_t nex = ivl_signal_pin(sig, 0);
|
|
fprintf(xnf, "SIG, %s, PIN=%s\n",
|
|
xnf_mangle_nexus_name(nex), use_name);
|
|
|
|
} else {
|
|
unsigned pin;
|
|
|
|
for (pin = 0 ; pin < ivl_signal_pins(sig); pin += 1) {
|
|
ivl_nexus_t nex = ivl_signal_pin(sig, pin);
|
|
fprintf(xnf, "SIG, %s, PIN=%s%u\n",
|
|
xnf_mangle_nexus_name(nex), use_name,
|
|
pin);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void show_design_consts_xnf(ivl_design_t des)
|
|
{
|
|
unsigned idx;
|
|
|
|
for (idx = 0 ; idx < ivl_design_consts(des) ; idx += 1) {
|
|
unsigned pin;
|
|
ivl_net_const_t net = ivl_design_const(des, idx);
|
|
const char*val = ivl_const_bits(net);
|
|
|
|
for (pin = 0 ; pin < ivl_const_pins(net) ; pin += 1) {
|
|
ivl_nexus_t nex = ivl_const_pin(net, pin);
|
|
fprintf(xnf, "PWR,%c,%s\n", val[pin],
|
|
xnf_mangle_nexus_name(nex));
|
|
}
|
|
}
|
|
}
|
|
|
|
static void generic_show_header(ivl_design_t des)
|
|
{
|
|
ivl_scope_t root = ivl_design_root(des);
|
|
|
|
fprintf(xnf, "LCANET,6\n");
|
|
fprintf(xnf, "PROG,iverilog,$Name: $,\"Icarus Verilog/fpga.tgt\"\n");
|
|
|
|
if (part && (part[0]!=0)) {
|
|
fprintf(xnf, "PART,%s\n", part);
|
|
}
|
|
|
|
show_root_ports_xnf(root);
|
|
}
|
|
|
|
static void generic_show_footer(ivl_design_t des)
|
|
{
|
|
show_design_consts_xnf(des);
|
|
fprintf(xnf, "EOF\n");
|
|
}
|
|
|
|
|
|
static void generic_show_logic(ivl_net_logic_t net)
|
|
{
|
|
char name[1024];
|
|
ivl_nexus_t nex;
|
|
unsigned idx;
|
|
|
|
xnf_mangle_logic_name(net, name, sizeof name);
|
|
|
|
switch (ivl_logic_type(net)) {
|
|
|
|
case IVL_LO_AND:
|
|
fprintf(xnf, "SYM, %s, AND, LIBVER=2.0.0\n", name);
|
|
nex = ivl_logic_pin(net, 0);
|
|
xnf_draw_pin(nex, "O", 'O');
|
|
for (idx = 1 ; idx < ivl_logic_pins(net) ; idx += 1) {
|
|
char ipin[32];
|
|
nex = ivl_logic_pin(net, idx);
|
|
sprintf(ipin, "I%u", idx-1);
|
|
xnf_draw_pin(nex, ipin, 'I');
|
|
}
|
|
fprintf(xnf, "END\n");
|
|
break;
|
|
|
|
case IVL_LO_BUF:
|
|
assert(ivl_logic_pins(net) == 2);
|
|
fprintf(xnf, "SYM, %s, BUF, LIBVER=2.0.0\n", name);
|
|
nex = ivl_logic_pin(net, 0);
|
|
xnf_draw_pin(nex, "O", 'O');
|
|
nex = ivl_logic_pin(net, 1);
|
|
xnf_draw_pin(nex, "I", 'I');
|
|
fprintf(xnf, "END\n");
|
|
break;
|
|
|
|
case IVL_LO_NAND:
|
|
fprintf(xnf, "SYM, %s, NAND, LIBVER=2.0.0\n", name);
|
|
nex = ivl_logic_pin(net, 0);
|
|
xnf_draw_pin(nex, "O", 'O');
|
|
for (idx = 1 ; idx < ivl_logic_pins(net) ; idx += 1) {
|
|
char ipin[32];
|
|
nex = ivl_logic_pin(net, idx);
|
|
sprintf(ipin, "I%u", idx-1);
|
|
xnf_draw_pin(nex, ipin, 'I');
|
|
}
|
|
fprintf(xnf, "END\n");
|
|
break;
|
|
|
|
case IVL_LO_NOR:
|
|
fprintf(xnf, "SYM, %s, NOR, LIBVER=2.0.0\n", name);
|
|
nex = ivl_logic_pin(net, 0);
|
|
xnf_draw_pin(nex, "O", 'O');
|
|
for (idx = 1 ; idx < ivl_logic_pins(net) ; idx += 1) {
|
|
char ipin[32];
|
|
nex = ivl_logic_pin(net, idx);
|
|
sprintf(ipin, "I%u", idx-1);
|
|
xnf_draw_pin(nex, ipin, 'I');
|
|
}
|
|
fprintf(xnf, "END\n");
|
|
break;
|
|
|
|
case IVL_LO_NOT:
|
|
assert(ivl_logic_pins(net) == 2);
|
|
fprintf(xnf, "SYM, %s, INV, LIBVER=2.0.0\n", name);
|
|
nex = ivl_logic_pin(net, 0);
|
|
xnf_draw_pin(nex, "O", 'O');
|
|
nex = ivl_logic_pin(net, 1);
|
|
xnf_draw_pin(nex, "I", 'I');
|
|
fprintf(xnf, "END\n");
|
|
break;
|
|
|
|
case IVL_LO_OR:
|
|
fprintf(xnf, "SYM, %s, OR, LIBVER=2.0.0\n", name);
|
|
nex = ivl_logic_pin(net, 0);
|
|
xnf_draw_pin(nex, "O", 'O');
|
|
for (idx = 1 ; idx < ivl_logic_pins(net) ; idx += 1) {
|
|
char ipin[32];
|
|
nex = ivl_logic_pin(net, idx);
|
|
sprintf(ipin, "I%u", idx-1);
|
|
xnf_draw_pin(nex, ipin, 'I');
|
|
}
|
|
fprintf(xnf, "END\n");
|
|
break;
|
|
|
|
case IVL_LO_XOR:
|
|
fprintf(xnf, "SYM, %s, XOR, LIBVER=2.0.0\n", name);
|
|
nex = ivl_logic_pin(net, 0);
|
|
xnf_draw_pin(nex, "O", 'O');
|
|
for (idx = 1 ; idx < ivl_logic_pins(net) ; idx += 1) {
|
|
char ipin[32];
|
|
nex = ivl_logic_pin(net, idx);
|
|
sprintf(ipin, "I%u", idx-1);
|
|
xnf_draw_pin(nex, ipin, 'I');
|
|
}
|
|
fprintf(xnf, "END\n");
|
|
break;
|
|
|
|
case IVL_LO_XNOR:
|
|
fprintf(xnf, "SYM, %s, XNOR, LIBVER=2.0.0\n", name);
|
|
nex = ivl_logic_pin(net, 0);
|
|
xnf_draw_pin(nex, "O", 'O');
|
|
for (idx = 1 ; idx < ivl_logic_pins(net) ; idx += 1) {
|
|
char ipin[32];
|
|
nex = ivl_logic_pin(net, idx);
|
|
sprintf(ipin, "I%u", idx-1);
|
|
xnf_draw_pin(nex, ipin, 'I');
|
|
}
|
|
fprintf(xnf, "END\n");
|
|
break;
|
|
|
|
case IVL_LO_BUFIF0:
|
|
fprintf(xnf, "SYM, %s, TBUF, LIBVER=2.0.0\n", name);
|
|
nex = ivl_logic_pin(net, 0);
|
|
xnf_draw_pin(nex, "O", 'O');
|
|
nex = ivl_logic_pin(net, 1);
|
|
xnf_draw_pin(nex, "I", 'I');
|
|
nex = ivl_logic_pin(net, 2);
|
|
xnf_draw_pin(nex, "~T", 'I');
|
|
fprintf(xnf, "END\n");
|
|
break;
|
|
|
|
case IVL_LO_BUFIF1:
|
|
fprintf(xnf, "SYM, %s, TBUF, LIBVER=2.0.0\n", name);
|
|
nex = ivl_logic_pin(net, 0);
|
|
xnf_draw_pin(nex, "O", 'O');
|
|
nex = ivl_logic_pin(net, 1);
|
|
xnf_draw_pin(nex, "I", 'I');
|
|
nex = ivl_logic_pin(net, 2);
|
|
xnf_draw_pin(nex, "T", 'I');
|
|
fprintf(xnf, "END\n");
|
|
break;
|
|
|
|
default:
|
|
fprintf(stderr, "fpga.tgt: unknown logic type %u\n",
|
|
ivl_logic_type(net));
|
|
break;
|
|
}
|
|
|
|
}
|
|
|
|
static void generic_show_dff(ivl_lpm_t net)
|
|
{
|
|
char name[1024];
|
|
ivl_nexus_t nex;
|
|
|
|
xnf_mangle_lpm_name(net, name, sizeof name);
|
|
|
|
fprintf(xnf, "SYM, %s, DFF, LIBVER=2.0.0\n", name);
|
|
|
|
nex = ivl_lpm_q(net, 0);
|
|
xnf_draw_pin(nex, "Q", 'O');
|
|
|
|
nex = ivl_lpm_data(net, 0);
|
|
xnf_draw_pin(nex, "D", 'I');
|
|
|
|
nex = ivl_lpm_clk(net);
|
|
xnf_draw_pin(nex, "C", 'I');
|
|
|
|
if ((nex = ivl_lpm_enable(net)))
|
|
xnf_draw_pin(nex, "CE", 'I');
|
|
|
|
fprintf(xnf, "END\n");
|
|
}
|
|
|
|
/*
|
|
* The generic == comparator uses EQN records to generate 2-bit
|
|
* comparators, that are then connected together by a wide AND gate.
|
|
*/
|
|
static void generic_show_cmp_eq(ivl_lpm_t net)
|
|
{
|
|
ivl_nexus_t nex;
|
|
unsigned idx;
|
|
char name[1024];
|
|
/* Make this many dual pair comparators, and */
|
|
unsigned deqn = ivl_lpm_width(net) / 2;
|
|
/* Make this many single pair comparators. */
|
|
unsigned seqn = ivl_lpm_width(net) % 2;
|
|
|
|
xnf_mangle_lpm_name(net, name, sizeof name);
|
|
|
|
for (idx = 0 ; idx < deqn ; idx += 1) {
|
|
fprintf(xnf, "SYM, %s/CD%u, EQN, "
|
|
"EQN=(~((I0 @ I1) + (I2 @ I3)))\n",
|
|
name, idx);
|
|
|
|
fprintf(xnf, " PIN, O, O, %s/CDO%u\n", name, idx);
|
|
|
|
nex = ivl_lpm_data(net, 2*idx);
|
|
xnf_draw_pin(nex, "I0", 'I');
|
|
nex = ivl_lpm_datab(net, 2*idx);
|
|
xnf_draw_pin(nex, "I1", 'I');
|
|
|
|
nex = ivl_lpm_data(net, 2*idx+1);
|
|
xnf_draw_pin(nex, "I2", 'I');
|
|
nex = ivl_lpm_datab(net, 2*idx+1);
|
|
xnf_draw_pin(nex, "I3", 'I');
|
|
|
|
fprintf(xnf, "END\n");
|
|
}
|
|
|
|
if (seqn != 0) {
|
|
fprintf(xnf, "SYM, %s/CT, XNOR, LIBVER=2.0.0\n", name);
|
|
|
|
fprintf(xnf, " PIN, O, O, %s/CTO\n", name);
|
|
|
|
nex = ivl_lpm_data(net, 2*deqn);
|
|
xnf_draw_pin(nex, "I0", 'I');
|
|
|
|
nex = ivl_lpm_datab(net, 2*deqn);
|
|
xnf_draw_pin(nex, "I1", 'I');
|
|
|
|
fprintf(xnf, "END\n");
|
|
}
|
|
|
|
if (ivl_lpm_type(net) == IVL_LPM_CMP_EQ)
|
|
fprintf(xnf, "SYM, %s/OUT, AND, LIBVER=2.0.0\n", name);
|
|
else
|
|
fprintf(xnf, "SYM, %s/OUT, NAND, LIBVER=2.0.0\n", name);
|
|
|
|
nex = ivl_lpm_q(net, 0);
|
|
xnf_draw_pin(nex, "O", 'O');
|
|
|
|
for (idx = 0 ; idx < deqn ; idx += 1)
|
|
fprintf(xnf, " PIN, I%u, I, %s/CDO%u\n", idx, name, idx);
|
|
|
|
for (idx = 0 ; idx < seqn ; idx += 1)
|
|
fprintf(xnf, " PIN, I%u, I, %s/CTO\n", deqn+idx, name);
|
|
|
|
fprintf(xnf, "END\n");
|
|
}
|
|
|
|
/*
|
|
* This function draws N-bit wide binary mux devices. These are so
|
|
* very popular because they are the result of such expressions as:
|
|
*
|
|
* x = sel? a : b;
|
|
*
|
|
* This code only supports the case where sel is a single bit. It
|
|
* works by drawing for each bit of the width an EQN device that takes
|
|
* as inputs I0 and I1 the alternative inputs, and I2 the select. The
|
|
* select bit is common with all the generated mux devices.
|
|
*/
|
|
static void generic_show_mux(ivl_lpm_t net)
|
|
{
|
|
char name[1024];
|
|
ivl_nexus_t nex, sel;
|
|
unsigned idx;
|
|
|
|
xnf_mangle_lpm_name(net, name, sizeof name);
|
|
|
|
/* Access the single select bit. This is common to the whole
|
|
width of the mux. */
|
|
assert(ivl_lpm_selects(net) == 1);
|
|
sel = ivl_lpm_select(net, 0);
|
|
|
|
for (idx = 0 ; idx < ivl_lpm_width(net) ; idx += 1) {
|
|
fprintf(xnf, "SYM, %s/M%u, EQN, "
|
|
"EQN=((I0 * ~I2) + (I1 * I2))\n",
|
|
name, idx);
|
|
|
|
nex = ivl_lpm_q(net, idx);
|
|
xnf_draw_pin(nex, "O", 'O');
|
|
|
|
nex = ivl_lpm_data2(net, 0, idx);
|
|
xnf_draw_pin(nex, "I0", 'I');
|
|
|
|
nex = ivl_lpm_data2(net, 1, idx);
|
|
xnf_draw_pin(nex, "I1", 'I');
|
|
|
|
xnf_draw_pin(sel, "I2", 'I');
|
|
|
|
fprintf(xnf, "END\n");
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This code cheats and just generates ADD4 devices enough to support
|
|
* the add. Make no effort to optimize, because we have no idea what
|
|
* kind of device we have.
|
|
*/
|
|
static void generic_show_add(ivl_lpm_t net)
|
|
{
|
|
char name[1024];
|
|
ivl_nexus_t nex;
|
|
unsigned idx, nadd4, tail;
|
|
|
|
xnf_mangle_lpm_name(net, name, sizeof name);
|
|
|
|
/* Make this many ADD4 devices. */
|
|
nadd4 = ivl_lpm_width(net) / 4;
|
|
tail = ivl_lpm_width(net) % 4;
|
|
|
|
for (idx = 0 ; idx < nadd4 ; idx += 1) {
|
|
fprintf(xnf, "SYM, %s/A%u, ADD4\n", name, idx);
|
|
|
|
if (idx > 0)
|
|
fprintf(xnf, " PIN, CI, I, %s/CO%u\n", name, idx-1);
|
|
|
|
nex = ivl_lpm_q(net, idx*4+0);
|
|
xnf_draw_pin(nex, "S0", 'O');
|
|
|
|
nex = ivl_lpm_q(net, idx*4+1);
|
|
xnf_draw_pin(nex, "S1", 'O');
|
|
|
|
nex = ivl_lpm_q(net, idx*4+2);
|
|
xnf_draw_pin(nex, "S2", 'O');
|
|
|
|
nex = ivl_lpm_q(net, idx*4+3);
|
|
xnf_draw_pin(nex, "S3", 'O');
|
|
|
|
nex = ivl_lpm_data(net, idx*4+0);
|
|
xnf_draw_pin(nex, "A0", 'I');
|
|
|
|
nex = ivl_lpm_data(net, idx*4+1);
|
|
xnf_draw_pin(nex, "A1", 'I');
|
|
|
|
nex = ivl_lpm_data(net, idx*4+2);
|
|
xnf_draw_pin(nex, "A2", 'I');
|
|
|
|
nex = ivl_lpm_data(net, idx*4+3);
|
|
xnf_draw_pin(nex, "A3", 'I');
|
|
|
|
nex = ivl_lpm_datab(net, idx*4+0);
|
|
xnf_draw_pin(nex, "B0", 'I');
|
|
|
|
nex = ivl_lpm_datab(net, idx*4+1);
|
|
xnf_draw_pin(nex, "B1", 'I');
|
|
|
|
nex = ivl_lpm_datab(net, idx*4+2);
|
|
xnf_draw_pin(nex, "B2", 'I');
|
|
|
|
nex = ivl_lpm_datab(net, idx*4+3);
|
|
xnf_draw_pin(nex, "B3", 'I');
|
|
|
|
if ((idx*4+4) < ivl_lpm_width(net))
|
|
fprintf(xnf, " PIN, CO, O, %s/CO%u\n", name, idx);
|
|
|
|
fprintf(xnf, "END\n");
|
|
}
|
|
|
|
if (tail > 0) {
|
|
fprintf(xnf, "SYM, %s/A%u, ADD4\n", name, nadd4);
|
|
if (nadd4 > 0)
|
|
fprintf(xnf, " PIN, CI, I, %s/CO%u\n", name, nadd4-1);
|
|
|
|
switch (tail) {
|
|
case 3:
|
|
nex = ivl_lpm_data(net, nadd4*4+2);
|
|
xnf_draw_pin(nex, "A2", 'I');
|
|
|
|
nex = ivl_lpm_datab(net, nadd4*4+2);
|
|
xnf_draw_pin(nex, "B2", 'I');
|
|
|
|
nex = ivl_lpm_q(net, nadd4*4+2);
|
|
xnf_draw_pin(nex, "S2", 'O');
|
|
case 2:
|
|
nex = ivl_lpm_data(net, nadd4*4+1);
|
|
xnf_draw_pin(nex, "A1", 'I');
|
|
|
|
nex = ivl_lpm_datab(net, nadd4*4+1);
|
|
xnf_draw_pin(nex, "B1", 'I');
|
|
|
|
nex = ivl_lpm_q(net, nadd4*4+1);
|
|
xnf_draw_pin(nex, "S1", 'O');
|
|
case 1:
|
|
nex = ivl_lpm_data(net, nadd4*4+0);
|
|
xnf_draw_pin(nex, "A0", 'I');
|
|
|
|
nex = ivl_lpm_datab(net, nadd4*4+0);
|
|
xnf_draw_pin(nex, "B0", 'I');
|
|
|
|
nex = ivl_lpm_q(net, nadd4*4+0);
|
|
xnf_draw_pin(nex, "S0", 'O');
|
|
}
|
|
|
|
fprintf(xnf, "END\n");
|
|
}
|
|
}
|
|
|
|
const struct device_s d_generic = {
|
|
generic_show_header,
|
|
generic_show_footer,
|
|
0, /* show_scope */
|
|
0, /* show_pad not implemented */
|
|
generic_show_logic,
|
|
generic_show_dff,
|
|
generic_show_cmp_eq,
|
|
generic_show_cmp_eq,
|
|
0, /* ge not implemented */
|
|
0, /* gt not implemented */
|
|
generic_show_mux,
|
|
generic_show_add,
|
|
0, /* subtract not implemented */
|
|
0,
|
|
0
|
|
};
|
|
|
|
|
|
/*
|
|
* $Log: d-generic.c,v $
|
|
* Revision 1.14 2003/11/12 03:20:14 steve
|
|
* devices need show_cmp_gt
|
|
*
|
|
* Revision 1.13 2003/06/24 03:55:00 steve
|
|
* Add ivl_synthesis_cell support for virtex2.
|
|
*
|
|
* Revision 1.12 2002/10/28 02:05:56 steve
|
|
* Add Virtex code generators for left shift,
|
|
* subtraction, and GE comparators.
|
|
*
|
|
* Revision 1.11 2002/08/12 01:35:02 steve
|
|
* conditional ident string using autoconfig.
|
|
*
|
|
* Revision 1.10 2002/08/11 23:47:04 steve
|
|
* Add missing Log and Ident strings.
|
|
*
|
|
* Revision 1.9 2001/09/16 01:48:16 steve
|
|
* Suppor the PAD attribute on signals.
|
|
*
|
|
* Revision 1.8 2001/09/02 21:33:07 steve
|
|
* Rearrange the XNF code generator to be generic-xnf
|
|
* so that non-XNF code generation is also possible.
|
|
*
|
|
* Start into the virtex EDIF output driver.
|
|
*
|
|
* Revision 1.7 2001/09/01 04:30:44 steve
|
|
* Generic ADD code.
|
|
*
|
|
* Revision 1.6 2001/09/01 02:28:42 steve
|
|
* Generate code for MUX devices.
|
|
*
|
|
* Revision 1.5 2001/09/01 02:01:30 steve
|
|
* identity compare, and PWR records for constants.
|
|
*
|
|
* Revision 1.4 2001/08/31 23:02:13 steve
|
|
* Relax pin count restriction on logic gates.
|
|
*
|
|
* Revision 1.3 2001/08/31 04:17:56 steve
|
|
* Many more logic gate types.
|
|
*
|
|
* Revision 1.2 2001/08/31 02:59:06 steve
|
|
* Add root port SIG records.
|
|
*
|
|
* Revision 1.1 2001/08/28 04:14:20 steve
|
|
* Add the fpga target.
|
|
*
|
|
*/
|
|
|