iverilog/vpi/v2009_array.c

387 lines
12 KiB
C

/*
* Copyright (C) 2013 Cary R. (cygcary@yahoo.com)
* Copyright (C) 2014 Stephen Williams (steve@icarus.com)
* Copyright (C) 2014 CERN
* @author Maciej Suminski (maciej.suminski@cern.ch)
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*/
# include "sys_priv.h"
# include <assert.h>
# include <math.h>
# include <stdlib.h>
# include <string.h>
static PLI_INT32 one_array_arg_compiletf(ICARUS_VPI_CONST PLI_BYTE8*name)
{
vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
vpiHandle argv;
vpiHandle arg;
argv = vpi_iterate(vpiArgument, callh);
if (argv == 0) {
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s requires an array argument.\n", name);
vpi_control(vpiFinish, 1);
return 0;
}
arg = vpi_scan(argv);
if (arg == 0) return 0;
arg = vpi_scan(argv);
if (arg != 0) {
vpi_printf("ERROR: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("%s has too many arguments.\n", name);
vpi_control(vpiFinish, 1);
return 0;
}
return 0;
}
static PLI_INT32 func_not_implemented_compiletf(ICARUS_VPI_CONST PLI_BYTE8* name)
{
vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
vpi_printf("SORRY: %s:%d: function %s() is not currently implemented.\n",
vpi_get_str(vpiFile, callh), (int)vpi_get(vpiLineNo, callh),
name);
vpi_control(vpiFinish, 1);
return 0;
}
static void high_array(const char*name, vpiHandle callh, vpiHandle arg)
{
s_vpi_value value;
int array_type;
int size;
switch ( (array_type = vpi_get(vpiArrayType, arg)) ) {
case vpiDynamicArray:
case vpiQueueArray:
size = vpi_get(vpiSize, arg);
value.format = vpiIntVal;
value.value.integer = size - 1;
vpi_put_value(callh, &value, 0, vpiNoDelay);
break;
default:
vpi_printf("SORRY: %s:%d: function %s() argument object code is %d\n",
vpi_get_str(vpiFile,callh), (int)vpi_get(vpiLineNo, callh),
name, array_type);
break;
}
}
static PLI_INT32 high_calltf(ICARUS_VPI_CONST PLI_BYTE8*name)
{
vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
vpiHandle argv;
vpiHandle arg;
int object_code;
(void)name; /* Parameter is not used. */
argv = vpi_iterate(vpiArgument, callh);
assert(argv);
arg = vpi_scan(argv);
assert(arg);
vpi_free_object(argv);
switch ( (object_code = vpi_get(vpiType, arg)) ) {
case vpiArrayVar:
high_array(name, callh, arg);
break;
default:
vpi_printf("SORRY: %s:%d: function %s() argument object code is %d\n",
vpi_get_str(vpiFile,callh), (int)vpi_get(vpiLineNo, callh),
name, object_code);
return 0;
}
return 0;
}
static void low_array(const char*name, vpiHandle callh, vpiHandle arg)
{
s_vpi_value value;
int array_type;
switch ( (array_type = vpi_get(vpiArrayType, arg)) ) {
case vpiDynamicArray:
case vpiQueueArray:
value.format = vpiIntVal;
value.value.integer = 0;
vpi_put_value(callh, &value, 0, vpiNoDelay);
break;
default:
vpi_printf("SORRY: %s:%d: function %s() argument object code is %d\n",
vpi_get_str(vpiFile,callh), (int)vpi_get(vpiLineNo, callh),
name, array_type);
break;
}
}
static PLI_INT32 low_calltf(ICARUS_VPI_CONST PLI_BYTE8*name)
{
vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
vpiHandle argv;
vpiHandle arg;
int object_code;
(void)name; /* Parameter is not used. */
argv = vpi_iterate(vpiArgument, callh);
assert(argv);
arg = vpi_scan(argv);
assert(arg);
vpi_free_object(argv);
switch ( (object_code = vpi_get(vpiType, arg)) ) {
case vpiArrayVar:
low_array(name, callh, arg);
break;
default:
vpi_printf("SORRY: %s:%d: function %s() argument object code is %d\n",
vpi_get_str(vpiFile,callh), (int)vpi_get(vpiLineNo, callh),
name, object_code);
return 0;
}
return 0;
}
static PLI_INT32 to_vec_compiletf(ICARUS_VPI_CONST PLI_BYTE8*user_data)
{
(void) user_data; /* Parameter is not used. */
vpiHandle systf_handle, arg_iterator, arg_handle;
PLI_INT32 arg_type[2];
/* obtain a handle to the system task instance */
systf_handle = vpi_handle(vpiSysTfCall, NULL);
if (systf_handle == NULL) {
vpi_printf("ERROR: $ivl_darray_method$to_vec failed to obtain systf handle\n");
vpi_control(vpiFinish,0); /* abort simulation */
return 0;
}
/* obtain handles to system task arguments */
arg_iterator = vpi_iterate(vpiArgument, systf_handle);
if (arg_iterator == NULL) {
vpi_printf("ERROR: $ivl_darray_method$to_vec requires 2 arguments\n");
vpi_control(vpiFinish, 0);
return 0;
}
/* check the type of object in system task arguments */
arg_handle = vpi_scan(arg_iterator);
for(int i = 0; i < 2; ++i) {
arg_type[i] = vpi_get(vpiType, arg_handle);
arg_handle = vpi_scan(arg_iterator);
}
if (arg_handle != NULL) { /* are there more arguments? */
vpi_printf("ERROR: $ivl_darray_method$to_vec can only have 2 arguments\n");
vpi_free_object(arg_iterator);
vpi_control(vpiFinish, 0);
return 0;
}
if ((arg_type[0] != vpiRegArray) ||
(arg_type[1] != vpiNet && arg_type[1] != vpiReg && arg_type[1] != vpiBitVar)) {
vpi_printf("ERROR: $ivl_darray_method$to_vec value arguments must be a dynamic array and a net or reg\n");
vpi_free_object(arg_iterator);
vpi_control(vpiFinish, 0);
return 0;
}
return 0;
}
static PLI_INT32 to_vec_calltf(ICARUS_VPI_CONST PLI_BYTE8*name)
{
(void)name; /* Parameter is not used. */
const unsigned int PLI_INT32_bits = sizeof(PLI_INT32) * 8;
vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
vpiHandle argv, darr, darr_word, vec;
s_vpi_value darr_val;
s_vpi_vecval*vec_val;
/* Fetch arguments */
argv = vpi_iterate(vpiArgument, callh);
assert(argv);
darr = vpi_scan(argv);
assert(darr);
vec = vpi_scan(argv);
assert(vec);
vpi_free_object(argv);
int darr_length = vpi_get(vpiSize, darr);
darr_word = vpi_handle_by_index(darr, 0);
int darr_word_bit_size = vpi_get(vpiSize, darr_word);
int darr_bit_size = darr_length * darr_word_bit_size;
int vec_size = vpi_get(vpiSize, vec);
if(darr_length <= 0) {
vpi_printf("ERROR: Cannot cast empty dynamic array");
vpi_control(vpiFinish, 0);
return 0;
}
if(vec_size != darr_bit_size) {
vpi_printf("ERROR: Dynamic array and vector size do not match");
vpi_control(vpiFinish, 0);
return 0;
}
/* Conversion part */
int vec_number = ceil((double)darr_bit_size / PLI_INT32_bits);
vec_val = calloc(vec_number, sizeof(s_vpi_vecval));
int darr_number = ceil((double)darr_word_bit_size / PLI_INT32_bits);
darr_val.format = vpiVectorVal;
unsigned int offset = 0;
s_vpi_vecval*vec_val_ptr = vec_val;
vec_val_ptr->aval = 0;
vec_val_ptr->bval = 0;
/* We have to reverse the order of the dynamic array, no memcpy here */
for(int i = darr_length - 1; i >= 0; --i) {
unsigned int bits_to_copy = darr_word_bit_size;
darr_word = vpi_handle_by_index(darr, i);
vpi_get_value(darr_word, &darr_val);
assert(darr_val.value.vector);
for(int j = 0; j < darr_number; ++j) {
PLI_INT32 aval = darr_val.value.vector->aval;
PLI_INT32 bval = darr_val.value.vector->bval;
if(offset < PLI_INT32_bits) {
vec_val_ptr->aval |= (aval << offset);
vec_val_ptr->bval |= (bval << offset);
}
offset += bits_to_copy > PLI_INT32_bits ? PLI_INT32_bits : bits_to_copy;
if(offset >= PLI_INT32_bits) {
++vec_val_ptr;
vec_val_ptr->aval = 0;
vec_val_ptr->bval = 0;
// is the current word crossing the s_vpi_vecval boundary?
if(offset > PLI_INT32_bits) {
// this assert is to warn you, that the following
// part could not be tested at the moment of writing
// (dynamic arrays work with vectors of 8, 16, 32, 64
// bits, so there is no chance that one of the vectors
// will cross the s_vpi_vecval boundary)
// it *may* work, but it is better to check first
assert(0);
// copy the remainder that did not fit in the previous s_vpi_vecval
offset -= PLI_INT32_bits;
vec_val_ptr->aval |= (aval >> (darr_word_bit_size - offset));
vec_val_ptr->bval |= (bval >> (darr_word_bit_size - offset));
} else {
offset = 0;
}
}
bits_to_copy -= PLI_INT32_bits;
darr_val.value.vector++;
}
}
darr_val.format = vpiVectorVal;
darr_val.value.vector = vec_val;
vpi_put_value(vec, &darr_val, 0, vpiNoDelay);
free(vec_val);
return 0;
}
void v2009_array_register(void)
{
s_vpi_systf_data tf_data;
vpiHandle res;
tf_data.type = vpiSysTask;
tf_data.sysfunctype = 0;
tf_data.tfname = "$ivl_darray_method$to_vec";
tf_data.calltf = to_vec_calltf;
tf_data.compiletf = to_vec_compiletf;
tf_data.sizetf = 0;
tf_data.user_data = "$ivl_darray_method$to_vec";
res = vpi_register_systf(&tf_data);
vpip_make_systf_system_defined(res);
tf_data.type = vpiSysFunc;
tf_data.sysfunctype = vpiIntFunc;
tf_data.calltf = 0;
tf_data.compiletf = func_not_implemented_compiletf;;
tf_data.sizetf = 0;
/* These functions are not currently implemented. */
tf_data.tfname = "$dimensions";
tf_data.user_data = "$dimensions";
res = vpi_register_systf(&tf_data);
vpip_make_systf_system_defined(res);
tf_data.tfname = "$unpacked_dimensions";
tf_data.user_data = "$unpacked_dimensions";
res = vpi_register_systf(&tf_data);
vpip_make_systf_system_defined(res);
tf_data.tfname = "$left";
tf_data.user_data = "$left";
res = vpi_register_systf(&tf_data);
vpip_make_systf_system_defined(res);
tf_data.tfname = "$right";
tf_data.user_data = "$right";
res = vpi_register_systf(&tf_data);
vpip_make_systf_system_defined(res);
tf_data.tfname = "$increment";
tf_data.user_data = "$increment";
res = vpi_register_systf(&tf_data);
vpip_make_systf_system_defined(res);
tf_data.tfname = "$high";
tf_data.user_data = "$high";
tf_data.compiletf = one_array_arg_compiletf;
tf_data.calltf = high_calltf;
res = vpi_register_systf(&tf_data);
vpip_make_systf_system_defined(res);
tf_data.tfname = "$low";
tf_data.user_data = "$low";
tf_data.compiletf = one_array_arg_compiletf;
tf_data.calltf = low_calltf;
res = vpi_register_systf(&tf_data);
vpip_make_systf_system_defined(res);
}