iverilog/tgt-stub/stub.c

1723 lines
46 KiB
C

/*
* Copyright (c) 2000-2011 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
/*
* This is a sample target module. All this does is write to the
* output file some information about each object handle when each of
* the various object functions is called. This can be used to
* understand the behavior of the core as it uses a target module.
*/
# include "version_base.h"
# include "version_tag.h"
# include "config.h"
# include "priv.h"
# include <stdlib.h>
# include <inttypes.h>
# include <string.h>
# include <assert.h>
# include "ivl_alloc.h"
static const char*version_string =
"Icarus Verilog STUB Code Generator " VERSION " (" VERSION_TAG ")\n\n"
"Copyright (c) 2000-2011 Stephen Williams (steve@icarus.com)\n\n"
" This program is free software; you can redistribute it and/or modify\n"
" it under the terms of the GNU General Public License as published by\n"
" the Free Software Foundation; either version 2 of the License, or\n"
" (at your option) any later version.\n"
"\n"
" This program is distributed in the hope that it will be useful,\n"
" but WITHOUT ANY WARRANTY; without even the implied warranty of\n"
" MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the\n"
" GNU General Public License for more details.\n"
"\n"
" You should have received a copy of the GNU General Public License along\n"
" with this program; if not, write to the Free Software Foundation, Inc.,\n"
" 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.\n"
;
FILE*out;
int stub_errors = 0;
static struct udp_define_cell {
ivl_udp_t udp;
unsigned ref;
struct udp_define_cell*next;
}*udp_define_list = 0;
static void reference_udp_definition(ivl_udp_t udp)
{
struct udp_define_cell*cur;
if (udp_define_list == 0) {
udp_define_list = calloc(1, sizeof(struct udp_define_cell));
udp_define_list->udp = udp;
udp_define_list->ref = 1;
return;
}
cur = udp_define_list;
while (cur->udp != udp) {
if (cur->next == 0) {
cur->next = calloc(1, sizeof(struct udp_define_cell));
cur->next->udp = udp;
cur->next->ref = 1;
return;
}
cur = cur->next;
}
cur->ref += 1;
}
/*
* This function finds the vector width of a signal. It relies on the
* assumption that all the signal inputs to the nexus have the same
* width. The ivl_target API should assert that condition.
*/
unsigned width_of_nexus(ivl_nexus_t nex)
{
unsigned idx;
for (idx = 0 ; idx < ivl_nexus_ptrs(nex) ; idx += 1) {
ivl_nexus_ptr_t ptr = ivl_nexus_ptr(nex, idx);
ivl_signal_t sig = ivl_nexus_ptr_sig(ptr);
if (sig != 0) {
return ivl_signal_width(sig);
}
}
/* ERROR: A nexus should have at least one signal to carry
properties like width. */
return 0;
}
ivl_discipline_t discipline_of_nexus(ivl_nexus_t nex)
{
unsigned idx;
for (idx = 0 ; idx < ivl_nexus_ptrs(nex); idx += 1) {
ivl_nexus_ptr_t ptr = ivl_nexus_ptr(nex, idx);
ivl_signal_t sig = ivl_nexus_ptr_sig(ptr);
if (sig != 0) {
return ivl_signal_discipline(sig);
}
}
/* ERROR: A nexus should have at least one signal to carry
properties like the data type. */
return 0;
}
ivl_variable_type_t type_of_nexus(ivl_nexus_t net)
{
unsigned idx;
for (idx = 0 ; idx < ivl_nexus_ptrs(net); idx += 1) {
ivl_nexus_ptr_t ptr = ivl_nexus_ptr(net, idx);
ivl_signal_t sig = ivl_nexus_ptr_sig(ptr);
if (sig != 0) {
return ivl_signal_data_type(sig);
}
}
/* ERROR: A nexus should have at least one signal to carry
properties like the data type. */
return IVL_VT_NO_TYPE;
}
const char*data_type_string(ivl_variable_type_t vtype)
{
const char*vt = "??";
switch (vtype) {
case IVL_VT_NO_TYPE:
vt = "NO_TYPE";
break;
case IVL_VT_VOID:
vt = "void";
break;
case IVL_VT_BOOL:
vt = "bool";
break;
case IVL_VT_REAL:
vt = "real";
break;
case IVL_VT_LOGIC:
vt = "logic";
break;
case IVL_VT_STRING:
vt = "string";
break;
}
return vt;
}
/*
* The compiler will check the types of drivers to signals and will
* only connect outputs to signals that are compatible. This function
* shows the type compatibility that the compiler enforces at the
* ivl_target.h level.
*/
static int check_signal_drive_type(ivl_variable_type_t sig_type,
ivl_variable_type_t driver_type)
{
if (sig_type == IVL_VT_LOGIC && driver_type == IVL_VT_BOOL)
return !0;
if (sig_type == IVL_VT_LOGIC && driver_type == IVL_VT_LOGIC)
return !0;
if (sig_type == IVL_VT_BOOL && driver_type == IVL_VT_BOOL)
return !0;
if (sig_type == driver_type)
return !0;
return 0;
}
/*
* The compare-like LPM nodes have input widths that match the
* ivl_lpm_width() value, and an output width of 1. This function
* checks that that is so, and indicates errors otherwise.
*/
static void check_cmp_widths(ivl_lpm_t net)
{
unsigned width = ivl_lpm_width(net);
/* Check that the input widths are as expected. The inputs
must be the width of the ivl_lpm_width() for this device,
even though the output for this device is 1 bit. */
if (width != width_of_nexus(ivl_lpm_data(net,0))) {
fprintf(out, " ERROR: Width of A is %u, not %u\n",
width_of_nexus(ivl_lpm_data(net,0)), width);
stub_errors += 1;
}
if (width != width_of_nexus(ivl_lpm_data(net,1))) {
fprintf(out, " ERROR: Width of B is %u, not %u\n",
width_of_nexus(ivl_lpm_data(net,1)), width);
stub_errors += 1;
}
if (width_of_nexus(ivl_lpm_q(net)) != 1) {
fprintf(out, " ERROR: Width of Q is %u, not 1\n",
width_of_nexus(ivl_lpm_q(net)));
stub_errors += 1;
}
}
static void show_lpm_arithmetic_pins(ivl_lpm_t net)
{
ivl_nexus_t nex;
nex = ivl_lpm_q(net);
fprintf(out, " Q: %p\n", ivl_lpm_q(net));
nex = ivl_lpm_data(net, 0);
fprintf(out, " DataA: %p\n", nex);
nex = ivl_lpm_data(net, 1);
fprintf(out, " DataB: %p\n", nex);
}
static void show_lpm_abs(ivl_lpm_t net)
{
unsigned width = ivl_lpm_width(net);
ivl_nexus_t nex;
fprintf(out, " LPM_ABS %s: <width=%u>\n",
ivl_lpm_basename(net), width);
nex = ivl_lpm_q(net);
fprintf(out, " Q: %p\n", ivl_lpm_q(net));
nex = ivl_lpm_data(net, 0);
fprintf(out, " D: %p\n", nex);
if (nex == 0) {
fprintf(out, " ERROR: missing input\n");
stub_errors += 1;
return;
}
if (width_of_nexus(nex) != width) {
fprintf(out, " ERROR: D width (%d) is wrong\n",
width_of_nexus(nex));
stub_errors += 1;
}
}
static void show_lpm_add(ivl_lpm_t net)
{
unsigned width = ivl_lpm_width(net);
fprintf(out, " LPM_ADD %s: <width=%u>\n",
ivl_lpm_basename(net), width);
show_lpm_arithmetic_pins(net);
}
static void show_lpm_array(ivl_lpm_t net)
{
ivl_nexus_t nex;
unsigned width = ivl_lpm_width(net);
ivl_signal_t array = ivl_lpm_array(net);
fprintf(out, " LPM_ARRAY: <width=%u, signal=%s>\n",
width, ivl_signal_basename(array));
nex = ivl_lpm_q(net);
assert(nex);
fprintf(out, " Q: %p\n", nex);
nex = ivl_lpm_select(net);
assert(nex);
fprintf(out, " Address: %p (address width=%u)\n",
nex, ivl_lpm_selects(net));
if (width_of_nexus(ivl_lpm_q(net)) != width) {
fprintf(out, " ERROR: Data Q width doesn't match "
"nexus width=%u\n", width_of_nexus(ivl_lpm_q(net)));
stub_errors += 1;
}
if (ivl_signal_width(array) != width) {
fprintf(out, " ERROR: Data width doesn't match "
"word width=%u\n", ivl_signal_width(array));
stub_errors += 1;
}
}
static void show_lpm_cast_int(ivl_lpm_t net)
{
unsigned width = ivl_lpm_width(net);
ivl_nexus_t q, a;
fprintf(out, " LPM_CAST_INT %s: <width=%u>\n",
ivl_lpm_basename(net), width);
q = ivl_lpm_q(net);
a = ivl_lpm_data(net,0);
fprintf(out, " O: %p\n", ivl_lpm_q(net));
fprintf(out, " A: %p\n", ivl_lpm_data(net,0));
if (type_of_nexus(q) == IVL_VT_REAL) {
fprintf(out, " ERROR: Data type of Q is %s, expecting !real\n",
data_type_string(type_of_nexus(q)));
stub_errors += 1;
}
if (type_of_nexus(a) != IVL_VT_REAL) {
fprintf(out, " ERROR: Data type of A is %s, expecting real\n",
data_type_string(type_of_nexus(a)));
stub_errors += 1;
}
}
static void show_lpm_cast_real(ivl_lpm_t net)
{
unsigned width = ivl_lpm_width(net);
ivl_nexus_t q, a;
fprintf(out, " LPM_CAST_REAL %s: <width=%u>\n",
ivl_lpm_basename(net), width);
q = ivl_lpm_q(net);
a = ivl_lpm_data(net,0);
fprintf(out, " O: %p\n", ivl_lpm_q(net));
fprintf(out, " A: %p\n", ivl_lpm_data(net,0));
if (type_of_nexus(q) != IVL_VT_REAL) {
fprintf(out, " ERROR: Data type of Q is %s, expecting real\n",
data_type_string(type_of_nexus(q)));
stub_errors += 1;
}
if (type_of_nexus(a) == IVL_VT_REAL) {
fprintf(out, " ERROR: Data type of A is %s, expecting !real\n",
data_type_string(type_of_nexus(a)));
stub_errors += 1;
}
}
static void show_lpm_divide(ivl_lpm_t net)
{
unsigned width = ivl_lpm_width(net);
fprintf(out, " LPM_DIVIDE %s: <width=%u>\n",
ivl_lpm_basename(net), width);
show_lpm_arithmetic_pins(net);
}
/* IVL_LPM_CMP_EEQ/NEE
* This LPM node supports two-input compare. The output width is
* actually always 1, the lpm_width is the expected width of the inputs.
*/
static void show_lpm_cmp_eeq(ivl_lpm_t net)
{
const char*str = (ivl_lpm_type(net) == IVL_LPM_CMP_EEQ)? "EEQ" : "NEE";
unsigned width = ivl_lpm_width(net);
fprintf(out, " LPM_CMP_%s %s: <width=%u>\n", str,
ivl_lpm_basename(net), width);
fprintf(out, " O: %p\n", ivl_lpm_q(net));
fprintf(out, " A: %p\n", ivl_lpm_data(net,0));
fprintf(out, " B: %p\n", ivl_lpm_data(net,1));
check_cmp_widths(net);
}
/* IVL_LPM_CMP_GE
* This LPM node supports two-input compare.
*/
static void show_lpm_cmp_ge(ivl_lpm_t net)
{
unsigned width = ivl_lpm_width(net);
fprintf(out, " LPM_CMP_GE %s: <width=%u %s>\n",
ivl_lpm_basename(net), width,
ivl_lpm_signed(net)? "signed" : "unsigned");
fprintf(out, " O: %p\n", ivl_lpm_q(net));
fprintf(out, " A: %p\n", ivl_lpm_data(net,0));
fprintf(out, " B: %p\n", ivl_lpm_data(net,1));
check_cmp_widths(net);
}
/* IVL_LPM_CMP_GT
* This LPM node supports two-input compare.
*/
static void show_lpm_cmp_gt(ivl_lpm_t net)
{
unsigned width = ivl_lpm_width(net);
fprintf(out, " LPM_CMP_GT %s: <width=%u %s>\n",
ivl_lpm_basename(net), width,
ivl_lpm_signed(net)? "signed" : "unsigned");
fprintf(out, " O: %p\n", ivl_lpm_q(net));
fprintf(out, " A: %p\n", ivl_lpm_data(net,0));
fprintf(out, " B: %p\n", ivl_lpm_data(net,1));
check_cmp_widths(net);
}
/* IVL_LPM_CMP_NE
* This LPM node supports two-input compare. The output width is
* actually always 1, the lpm_width is the expected width of the inputs.
*/
static void show_lpm_cmp_ne(ivl_lpm_t net)
{
unsigned width = ivl_lpm_width(net);
fprintf(out, " LPM_CMP_NE %s: <width=%u>\n",
ivl_lpm_basename(net), width);
fprintf(out, " O: %p\n", ivl_lpm_q(net));
fprintf(out, " A: %p\n", ivl_lpm_data(net,0));
fprintf(out, " B: %p\n", ivl_lpm_data(net,1));
check_cmp_widths(net);
}
/* IVL_LPM_CONCAT
* The concat device takes N inputs (N=ivl_lpm_size) and generates
* a single output. The total output is known from the ivl_lpm_width
* function. The widths of all the inputs are inferred from the widths
* of the signals connected to the nexus of the inputs. The compiler
* makes sure the input widths add up to the output width.
*/
static void show_lpm_concat(ivl_lpm_t net)
{
unsigned idx;
unsigned width_sum = 0;
unsigned width = ivl_lpm_width(net);
fprintf(out, " LPM_CONCAT %s: <width=%u, inputs=%u>\n",
ivl_lpm_basename(net), width, ivl_lpm_size(net));
fprintf(out, " O: %p\n", ivl_lpm_q(net));
for (idx = 0 ; idx < ivl_lpm_size(net) ; idx += 1) {
ivl_nexus_t nex = ivl_lpm_data(net, idx);
unsigned signal_width = width_of_nexus(nex);
fprintf(out, " I%u: %p (width=%u)\n", idx, nex, signal_width);
width_sum += signal_width;
}
if (width_sum != width) {
fprintf(out, " ERROR! Got %u bits input, expecting %u!\n",
width_sum, width);
}
}
static void show_lpm_ff(ivl_lpm_t net)
{
ivl_nexus_t nex;
unsigned width = ivl_lpm_width(net);
fprintf(out, " LPM_FF %s: <width=%u>\n",
ivl_lpm_basename(net), width);
nex = ivl_lpm_clk(net);
fprintf(out, " clk: %p\n", nex);
if (width_of_nexus(nex) != 1) {
fprintf(out, " clk: ERROR: Nexus width is %u\n",
width_of_nexus(nex));
stub_errors += 1;
}
if (ivl_lpm_enable(net)) {
nex = ivl_lpm_enable(net);
fprintf(out, " CE: %p\n", nex);
if (width_of_nexus(nex) != 1) {
fprintf(out, " CE: ERROR: Nexus width is %u\n",
width_of_nexus(nex));
stub_errors += 1;
}
}
nex = ivl_lpm_data(net,0);
fprintf(out, " D: %p\n", nex);
if (width_of_nexus(nex) != width) {
fprintf(out, " D: ERROR: Nexus width is %u\n",
width_of_nexus(nex));
stub_errors += 1;
}
nex = ivl_lpm_q(net);
fprintf(out, " Q: %p\n", nex);
if (width_of_nexus(nex) != width) {
fprintf(out, " Q: ERROR: Nexus width is %u\n",
width_of_nexus(nex));
stub_errors += 1;
}
}
static void show_lpm_mod(ivl_lpm_t net)
{
unsigned width = ivl_lpm_width(net);
fprintf(out, " LPM_MOD %s: <width=%u>\n",
ivl_lpm_basename(net), width);
show_lpm_arithmetic_pins(net);
}
/*
* The LPM_MULT node has a Q output and two data inputs. The width of
* the Q output must be the width of the node itself.
*/
static void show_lpm_mult(ivl_lpm_t net)
{
unsigned width = ivl_lpm_width(net);
fprintf(out, " LPM_MULT %s: <width=%u>\n",
ivl_lpm_basename(net), width);
fprintf(out, " O: %p\n", ivl_lpm_q(net));
fprintf(out, " A: %p <width=%u>\n",
ivl_lpm_data(net,0), width_of_nexus(ivl_lpm_data(net,0)));
fprintf(out, " B: %p <width=%u>\n",
ivl_lpm_data(net,1), width_of_nexus(ivl_lpm_data(net,1)));
if (width != width_of_nexus(ivl_lpm_q(net))) {
fprintf(out, " ERROR: Width of Q is %u, not %u\n",
width_of_nexus(ivl_lpm_q(net)), width);
stub_errors += 1;
}
}
/*
* Show an IVL_LPM_MUX.
*
* The compiler is supposed to make sure that the Q output and data
* inputs all have the width of the device. The ivl_lpm_select input
* has its own width.
*/
static void show_lpm_mux(ivl_lpm_t net)
{
ivl_nexus_t nex;
unsigned idx;
unsigned width = ivl_lpm_width(net);
unsigned size = ivl_lpm_size(net);
ivl_drive_t drive0 = ivl_lpm_drive0(net);
ivl_drive_t drive1 = ivl_lpm_drive1(net);
fprintf(out, " LPM_MUX %s: <width=%u, size=%u>\n",
ivl_lpm_basename(net), width, size);
nex = ivl_lpm_q(net);
fprintf(out, " Q: %p <drive0/1 = %u/%u>\n", nex, drive0, drive1);
if (width != width_of_nexus(nex)) {
fprintf(out, " Q: ERROR: Nexus width is %u\n",
width_of_nexus(nex));
stub_errors += 1;
}
/* The select input is a vector with the width from the
ivl_lpm_selects function. */
nex = ivl_lpm_select(net);
fprintf(out, " S: %p <width=%u>\n",
nex, ivl_lpm_selects(net));
if (ivl_lpm_selects(net) != width_of_nexus(nex)) {
fprintf(out, " S: ERROR: Nexus width is %u\n",
width_of_nexus(nex));
stub_errors += 1;
}
/* The ivl_lpm_size() method give the number of inputs that
can be selected from. */
for (idx = 0 ; idx < size ; idx += 1) {
nex = ivl_lpm_data(net,idx);
fprintf(out, " D%u: %p\n", idx, nex);
if (width != width_of_nexus(nex)) {
fprintf(out, " D%u: ERROR, Nexus width is %u\n",
idx, width_of_nexus(nex));
stub_errors += 1;
}
}
}
static void show_lpm_part(ivl_lpm_t net)
{
unsigned width = ivl_lpm_width(net);
unsigned base = ivl_lpm_base(net);
ivl_nexus_t sel = ivl_lpm_data(net,1);
const char*part_type_string = "";
switch (ivl_lpm_type(net)) {
case IVL_LPM_PART_VP:
part_type_string = "VP";
break;
case IVL_LPM_PART_PV:
part_type_string = "PV";
break;
default:
break;
}
fprintf(out, " LPM_PART_%s %s: <width=%u, base=%u, signed=%d>\n",
part_type_string, ivl_lpm_basename(net),
width, base, ivl_lpm_signed(net));
fprintf(out, " O: %p\n", ivl_lpm_q(net));
fprintf(out, " I: %p\n", ivl_lpm_data(net,0));
if (sel != 0) {
fprintf(out, " S: %p\n", sel);
if (base != 0) {
fprintf(out, " ERROR: Part select has base AND selector\n");
stub_errors += 1;
}
}
/* The compiler must assure that the base plus the part select
width fits within the input to the part select. */
switch (ivl_lpm_type(net)) {
case IVL_LPM_PART_VP:
if (width_of_nexus(ivl_lpm_data(net,0)) < (width+base)) {
fprintf(out, " ERROR: Part select is out of range."
" Data nexus width=%u, width+base=%u\n",
width_of_nexus(ivl_lpm_data(net,0)), width+base);
stub_errors += 1;
}
if (width_of_nexus(ivl_lpm_q(net)) != width) {
fprintf(out, " ERROR: Part select input mismatch."
" Nexus width=%u, expect width=%u\n",
width_of_nexus(ivl_lpm_q(net)), width);
stub_errors += 1;
}
break;
case IVL_LPM_PART_PV:
if (width_of_nexus(ivl_lpm_q(net)) < (width+base)) {
fprintf(out, " ERROR: Part select is out of range."
" Target nexus width=%u, width+base=%u\n",
width_of_nexus(ivl_lpm_q(net)), width+base);
stub_errors += 1;
}
if (width_of_nexus(ivl_lpm_data(net,0)) != width) {
fprintf(out, " ERROR: Part select input mismatch."
" Nexus width=%u, expect width=%u\n",
width_of_nexus(ivl_lpm_data(net,0)), width);
stub_errors += 1;
}
break;
default:
assert(0);
}
}
/*
* The reduction operators have similar characteristics and are
* displayed here.
*/
static void show_lpm_re(ivl_lpm_t net)
{
ivl_nexus_t nex;
const char*type = "?";
unsigned width = ivl_lpm_width(net);
switch (ivl_lpm_type(net)) {
case IVL_LPM_RE_AND:
type = "AND";
break;
case IVL_LPM_RE_NAND:
type = "NAND";
break;
case IVL_LPM_RE_OR:
type = "OR";
break;
case IVL_LPM_RE_NOR:
type = "NOR";
case IVL_LPM_RE_XOR:
type = "XOR";
break;
case IVL_LPM_RE_XNOR:
type = "XNOR";
default:
break;
}
fprintf(out, " LPM_RE_%s: %s <width=%u>\n",
type, ivl_lpm_name(net),width);
nex = ivl_lpm_q(net);
fprintf(out, " Q: %p\n", nex);
nex = ivl_lpm_data(net, 0);
fprintf(out, " D: %p\n", nex);
nex = ivl_lpm_q(net);
if (1 != width_of_nexus(nex)) {
fprintf(out, " ERROR: Width of Q is %u, expecting 1\n",
width_of_nexus(nex));
stub_errors += 1;
}
nex = ivl_lpm_data(net, 0);
if (width != width_of_nexus(nex)) {
fprintf(out, " ERROR: Width of input is %u, expecting %u\n",
width_of_nexus(nex), width);
stub_errors += 1;
}
}
static void show_lpm_repeat(ivl_lpm_t net)
{
unsigned width = ivl_lpm_width(net);
unsigned count = ivl_lpm_size(net);
ivl_nexus_t nex_q = ivl_lpm_q(net);
ivl_nexus_t nex_a = ivl_lpm_data(net,0);
fprintf(out, " LPM_REPEAT %s: <width=%u, count=%u>\n",
ivl_lpm_basename(net), width, count);
fprintf(out, " Q: %p\n", nex_q);
fprintf(out, " D: %p\n", nex_a);
if (width != width_of_nexus(nex_q)) {
fprintf(out, " ERROR: Width of Q is %u, expecting %u\n",
width_of_nexus(nex_q), width);
stub_errors += 1;
}
if (count == 0 || count > width || (width%count != 0)) {
fprintf(out, " ERROR: Repeat count not reasonable\n");
stub_errors += 1;
} else if (width/count != width_of_nexus(nex_a)) {
fprintf(out, " ERROR: Width of D is %u, expecting %u\n",
width_of_nexus(nex_a), width/count);
stub_errors += 1;
}
}
static void show_lpm_shift(ivl_lpm_t net, const char*shift_dir)
{
ivl_nexus_t nex;
unsigned width = ivl_lpm_width(net);
fprintf(out, " LPM_SHIFT%s %s: <width=%u, %ssigned>\n", shift_dir,
ivl_lpm_basename(net), width,
ivl_lpm_signed(net)? "" : "un");
nex = ivl_lpm_q(net);
fprintf(out, " Q: %p\n", nex);
if (width != width_of_nexus(nex)) {
fprintf(out, " ERROR: Q output nexus width=%u "
"does not match part width\n", width_of_nexus(nex));
stub_errors += 1;
}
nex = ivl_lpm_data(net, 0);
fprintf(out, " D: %p\n", nex);
if (width != width_of_nexus(nex)) {
fprintf(out, " ERROR: Q output nexus width=%u "
"does not match part width\n", width_of_nexus(nex));
stub_errors += 1;
}
nex = ivl_lpm_data(net, 1);
fprintf(out, " S: %p <width=%u>\n", nex, width_of_nexus(nex));
}
static void show_lpm_sign_ext(ivl_lpm_t net)
{
unsigned width = ivl_lpm_width(net);
ivl_nexus_t nex_q = ivl_lpm_q(net);
ivl_nexus_t nex_a = ivl_lpm_data(net,0);
fprintf(out, " LPM_SIGN_EXT %s: <width=%u>\n",
ivl_lpm_basename(net), width);
fprintf(out, " Q: %p\n", nex_q);
fprintf(out, " D: %p <width=%u>\n", nex_a, width_of_nexus(nex_a));
if (width != width_of_nexus(nex_q)) {
fprintf(out, " ERROR: Width of Q is %u, expecting %u\n",
width_of_nexus(nex_q), width);
stub_errors += 1;
}
}
static void show_lpm_sub(ivl_lpm_t net)
{
unsigned width = ivl_lpm_width(net);
fprintf(out, " LPM_SUB %s: <width=%u>\n",
ivl_lpm_basename(net), width);
show_lpm_arithmetic_pins(net);
}
static void show_lpm_sfunc(ivl_lpm_t net)
{
unsigned width = ivl_lpm_width(net);
unsigned ports = ivl_lpm_size(net);
ivl_variable_type_t data_type = type_of_nexus(ivl_lpm_q(net));
ivl_nexus_t nex;
unsigned idx;
fprintf(out, " LPM_SFUNC %s: <call=%s, width=%u, type=%s, ports=%u>\n",
ivl_lpm_basename(net), ivl_lpm_string(net),
width, data_type_string(data_type), ports);
nex = ivl_lpm_q(net);
if (width != width_of_nexus(nex)) {
fprintf(out, " ERROR: Q output nexus width=%u "
" does not match part width\n", width_of_nexus(nex));
stub_errors += 1;
}
fprintf(out, " Q: %p\n", nex);
for (idx = 0 ; idx < ports ; idx += 1) {
nex = ivl_lpm_data(net, idx);
fprintf(out, " D%u: %p <width=%u, type=%s>\n", idx,
nex, width_of_nexus(nex),
data_type_string(type_of_nexus(nex)));
}
}
static void show_lpm_delays(ivl_lpm_t net)
{
ivl_expr_t rise = ivl_lpm_delay(net, 0);
ivl_expr_t fall = ivl_lpm_delay(net, 1);
ivl_expr_t decay= ivl_lpm_delay(net, 2);
if (rise==0 && fall==0 && decay==0)
return;
fprintf(out, " #DELAYS\n");
if (rise)
show_expression(rise, 8);
else
fprintf(out, " ERROR: missing rise delay\n");
if (fall)
show_expression(fall, 8);
else
fprintf(out, " ERROR: missing fall delay\n");
if (decay)
show_expression(decay, 8);
else
fprintf(out, " ERROR: missing decay delay\n");
fprintf(out, " #END DELAYS\n");
}
static void show_lpm_ufunc(ivl_lpm_t net)
{
unsigned width = ivl_lpm_width(net);
unsigned ports = ivl_lpm_size(net);
ivl_scope_t def = ivl_lpm_define(net);
ivl_nexus_t nex;
unsigned idx;
fprintf(out, " LPM_UFUNC %s: <call=%s, width=%u, ports=%u>\n",
ivl_lpm_basename(net), ivl_scope_name(def), width, ports);
show_lpm_delays(net);
nex = ivl_lpm_q(net);
if (width != width_of_nexus(nex)) {
fprintf(out, " ERROR: Q output nexus width=%u "
" does not match part width\n", width_of_nexus(nex));
stub_errors += 1;
}
fprintf(out, " Q: %p\n", nex);
for (idx = 0 ; idx < ports ; idx += 1) {
nex = ivl_lpm_data(net, idx);
fprintf(out, " D%u: %p <width=%u>\n", idx,
nex, width_of_nexus(nex));
}
}
static void show_lpm(ivl_lpm_t net)
{
switch (ivl_lpm_type(net)) {
case IVL_LPM_ABS:
show_lpm_abs(net);
break;
case IVL_LPM_ADD:
show_lpm_add(net);
break;
case IVL_LPM_ARRAY:
show_lpm_array(net);
break;
case IVL_LPM_CAST_INT:
show_lpm_cast_int(net);
break;
case IVL_LPM_CAST_REAL:
show_lpm_cast_real(net);
break;
case IVL_LPM_DIVIDE:
show_lpm_divide(net);
break;
case IVL_LPM_CMP_EEQ:
case IVL_LPM_CMP_NEE:
show_lpm_cmp_eeq(net);
break;
case IVL_LPM_FF:
show_lpm_ff(net);
break;
case IVL_LPM_CMP_GE:
show_lpm_cmp_ge(net);
break;
case IVL_LPM_CMP_GT:
show_lpm_cmp_gt(net);
break;
case IVL_LPM_CMP_NE:
show_lpm_cmp_ne(net);
break;
case IVL_LPM_CONCAT:
show_lpm_concat(net);
break;
case IVL_LPM_RE_AND:
case IVL_LPM_RE_NAND:
case IVL_LPM_RE_NOR:
case IVL_LPM_RE_OR:
case IVL_LPM_RE_XOR:
case IVL_LPM_RE_XNOR:
show_lpm_re(net);
break;
case IVL_LPM_SHIFTL:
show_lpm_shift(net, "L");
break;
case IVL_LPM_SIGN_EXT:
show_lpm_sign_ext(net);
break;
case IVL_LPM_SHIFTR:
show_lpm_shift(net, "R");
break;
case IVL_LPM_SUB:
show_lpm_sub(net);
break;
case IVL_LPM_MOD:
show_lpm_mod(net);
break;
case IVL_LPM_MULT:
show_lpm_mult(net);
break;
case IVL_LPM_MUX:
show_lpm_mux(net);
break;
case IVL_LPM_PART_VP:
case IVL_LPM_PART_PV:
show_lpm_part(net);
break;
case IVL_LPM_REPEAT:
show_lpm_repeat(net);
break;
case IVL_LPM_SFUNC:
show_lpm_sfunc(net);
break;
case IVL_LPM_UFUNC:
show_lpm_ufunc(net);
break;
default:
fprintf(out, " LPM(%d) %s: <width=%u, signed=%d>\n",
ivl_lpm_type(net),
ivl_lpm_basename(net),
ivl_lpm_width(net),
ivl_lpm_signed(net));
}
}
static int show_process(ivl_process_t net, void*x)
{
unsigned idx;
switch (ivl_process_type(net)) {
case IVL_PR_INITIAL:
if (ivl_process_analog(net))
fprintf(out, "analog initial\n");
else
fprintf(out, "initial\n");
break;
case IVL_PR_ALWAYS:
if (ivl_process_analog(net))
fprintf(out, "analog\n");
else
fprintf(out, "always\n");
break;
}
for (idx = 0 ; idx < ivl_process_attr_cnt(net) ; idx += 1) {
ivl_attribute_t attr = ivl_process_attr_val(net, idx);
switch (attr->type) {
case IVL_ATT_VOID:
fprintf(out, " (* %s *)\n", attr->key);
break;
case IVL_ATT_STR:
fprintf(out, " (* %s = \"%s\" *)\n", attr->key,
attr->val.str);
break;
case IVL_ATT_NUM:
fprintf(out, " (* %s = %ld *)\n", attr->key,
attr->val.num);
break;
}
}
show_statement(ivl_process_stmt(net), 4);
return 0;
}
static void show_parameter(ivl_parameter_t net)
{
const char*name = ivl_parameter_basename(net);
fprintf(out, " parameter %s;\n", name);
show_expression(ivl_parameter_expr(net), 7);
}
static void show_event(ivl_event_t net)
{
unsigned idx;
fprintf(out, " event %s (%u pos, %u neg, %u any);\n",
ivl_event_basename(net), ivl_event_npos(net),
ivl_event_nneg(net), ivl_event_nany(net));
for (idx = 0 ; idx < ivl_event_nany(net) ; idx += 1) {
ivl_nexus_t nex = ivl_event_any(net, idx);
fprintf(out, " ANYEDGE: %p\n", nex);
}
for (idx = 0 ; idx < ivl_event_nneg(net) ; idx += 1) {
ivl_nexus_t nex = ivl_event_neg(net, idx);
fprintf(out, " NEGEDGE: %p\n", nex);
}
for (idx = 0 ; idx < ivl_event_npos(net) ; idx += 1) {
ivl_nexus_t nex = ivl_event_pos(net, idx);
fprintf(out, " POSEDGE: %p\n", nex);
}
}
static const char* str_tab[8] = {
"HiZ", "small", "medium", "weak",
"large", "pull", "strong", "supply"};
/*
* This function is used by the show_signal to dump a constant value
* that is connected to the signal. While we are here, check that the
* value is consistent with the signal itself.
*/
static void signal_nexus_const(ivl_signal_t sig,
ivl_nexus_ptr_t ptr,
ivl_net_const_t con)
{
const char*dr0 = str_tab[ivl_nexus_ptr_drive0(ptr)];
const char*dr1 = str_tab[ivl_nexus_ptr_drive1(ptr)];
const char*bits;
unsigned idx, width = ivl_const_width(con);
fprintf(out, " const-");
switch (ivl_const_type(con)) {
case IVL_VT_BOOL:
case IVL_VT_LOGIC:
bits = ivl_const_bits(con);
assert(bits);
for (idx = 0 ; idx < width ; idx += 1) {
fprintf(out, "%c", bits[width-idx-1]);
}
break;
case IVL_VT_REAL:
fprintf(out, "%f", ivl_const_real(con));
break;
default:
fprintf(out, "????");
break;
}
fprintf(out, " (%s0, %s1, width=%u)\n", dr0, dr1, width);
if (ivl_signal_width(sig) != width) {
fprintf(out, "ERROR: Width of signal does not match "
"width of connected constant vector.\n");
stub_errors += 1;
}
int drive_type_ok = check_signal_drive_type(ivl_signal_data_type(sig),
ivl_const_type(con));
if (! drive_type_ok) {
fprintf(out, "ERROR: Signal data type does not match"
" literal type.\n");
stub_errors += 1;
}
}
static void show_nexus_details(ivl_signal_t net, ivl_nexus_t nex)
{
unsigned idx;
for (idx = 0 ; idx < ivl_nexus_ptrs(nex) ; idx += 1) {
ivl_net_const_t con;
ivl_net_logic_t logic;
ivl_lpm_t lpm;
ivl_signal_t sig;
ivl_switch_t swt;
ivl_branch_t bra;
ivl_nexus_ptr_t ptr = ivl_nexus_ptr(nex, idx);
const char*dr0 = str_tab[ivl_nexus_ptr_drive0(ptr)];
const char*dr1 = str_tab[ivl_nexus_ptr_drive1(ptr)];
if ((sig = ivl_nexus_ptr_sig(ptr))) {
fprintf(out, " SIG %s word=%u (%s0, %s1)",
ivl_signal_name(sig), ivl_nexus_ptr_pin(ptr), dr0, dr1);
if (ivl_signal_width(sig) != ivl_signal_width(net)) {
fprintf(out, " (ERROR: Width=%u)",
ivl_signal_width(sig));
stub_errors += 1;
}
if (ivl_signal_data_type(sig) != ivl_signal_data_type(net)) {
fprintf(out, " (ERROR: data type mismatch)");
stub_errors += 1;
}
fprintf(out, "\n");
} else if ((logic = ivl_nexus_ptr_log(ptr))) {
fprintf(out, " LOG %s.%s[%u] (%s0, %s1)\n",
ivl_scope_name(ivl_logic_scope(logic)),
ivl_logic_basename(logic),
ivl_nexus_ptr_pin(ptr), dr0, dr1);
} else if ((lpm = ivl_nexus_ptr_lpm(ptr))) {
fprintf(out, " LPM %s.%s (%s0, %s1)\n",
ivl_scope_name(ivl_lpm_scope(lpm)),
ivl_lpm_basename(lpm), dr0, dr1);
} else if ((swt = ivl_nexus_ptr_switch(ptr))) {
fprintf(out, " SWITCH %s.%s\n",
ivl_scope_name(ivl_switch_scope(swt)),
ivl_switch_basename(swt));
} else if ((con = ivl_nexus_ptr_con(ptr))) {
signal_nexus_const(net, ptr, con);
} else if ((bra = ivl_nexus_ptr_branch(ptr))) {
fprintf(out, " BRANCH %p terminal %u\n",
bra, ivl_nexus_ptr_pin(ptr));
} else {
fprintf(out, " ?[%u] (%s0, %s1)\n",
ivl_nexus_ptr_pin(ptr), dr0, dr1);
}
}
}
static void show_signal(ivl_signal_t net)
{
unsigned idx;
const char*type = "?";
const char*port = "";
const char*data_type = "?";
const char*sign = ivl_signal_signed(net)? "signed" : "unsigned";
switch (ivl_signal_type(net)) {
case IVL_SIT_REG:
type = "reg";
break;
case IVL_SIT_TRI:
type = "tri";
break;
case IVL_SIT_TRI0:
type = "tri0";
break;
case IVL_SIT_TRI1:
type = "tri1";
break;
case IVL_SIT_UWIRE:
type = "uwire";
break;
default:
break;
}
switch (ivl_signal_port(net)) {
case IVL_SIP_INPUT:
port = "input ";
break;
case IVL_SIP_OUTPUT:
port = "output ";
break;
case IVL_SIP_INOUT:
port = "inout ";
break;
case IVL_SIP_NONE:
break;
}
switch (ivl_signal_data_type(net)) {
case IVL_VT_BOOL:
data_type = "bool";
break;
case IVL_VT_LOGIC:
data_type = "logic";
break;
case IVL_VT_REAL:
data_type = "real";
break;
default:
data_type = "?data?";
break;
}
const char*discipline_txt = "NONE";
if (ivl_signal_discipline(net)) {
ivl_discipline_t dis = ivl_signal_discipline(net);
discipline_txt = ivl_discipline_name(dis);
}
for (idx = 0 ; idx < ivl_signal_array_count(net) ; idx += 1) {
ivl_nexus_t nex = ivl_signal_nex(net, idx);
fprintf(out, " %s %s %s%s[%d:%d] %s[word=%u, adr=%d] "
"<width=%u%s> <discipline=%s> ",
type, sign, port, data_type,
ivl_signal_msb(net), ivl_signal_lsb(net),
ivl_signal_basename(net),
idx, ivl_signal_array_base(net)+idx,
ivl_signal_width(net),
ivl_signal_local(net)? ", local":"",
discipline_txt);
if (nex == NULL) {
fprintf(out, "nexus=<virtual>\n");
continue;
} else {
fprintf(out, "nexus=%p\n", nex);
}
show_nexus_details(net, nex);
}
for (idx = 0 ; idx < ivl_signal_npath(net) ; idx += 1) {
ivl_delaypath_t path = ivl_signal_path(net,idx);
ivl_nexus_t nex = ivl_path_source(path);
ivl_nexus_t con = ivl_path_condit(path);
int posedge = ivl_path_source_posedge(path);
int negedge = ivl_path_source_negedge(path);
fprintf(out, " path %p", nex);
if (posedge) fprintf(out, " posedge");
if (negedge) fprintf(out, " negedge");
if (con) fprintf(out, " (if %p)", con);
else if (ivl_path_is_condit(path)) fprintf(out, " (ifnone)");
fprintf(out, " %" PRIu64 ",%" PRIu64 ",%" PRIu64
" %" PRIu64 ",%" PRIu64 ",%" PRIu64
" %" PRIu64 ",%" PRIu64 ",%" PRIu64
" %" PRIu64 ",%" PRIu64 ",%" PRIu64,
ivl_path_delay(path, IVL_PE_01),
ivl_path_delay(path, IVL_PE_10),
ivl_path_delay(path, IVL_PE_0z),
ivl_path_delay(path, IVL_PE_z1),
ivl_path_delay(path, IVL_PE_1z),
ivl_path_delay(path, IVL_PE_z0),
ivl_path_delay(path, IVL_PE_0x),
ivl_path_delay(path, IVL_PE_x1),
ivl_path_delay(path, IVL_PE_1x),
ivl_path_delay(path, IVL_PE_x0),
ivl_path_delay(path, IVL_PE_xz),
ivl_path_delay(path, IVL_PE_zx));
fprintf(out, " scope=%s\n", ivl_scope_name(ivl_path_scope(path)));
}
for (idx = 0 ; idx < ivl_signal_attr_cnt(net) ; idx += 1) {
ivl_attribute_t atr = ivl_signal_attr_val(net, idx);
switch (atr->type) {
case IVL_ATT_STR:
fprintf(out, " %s = %s\n", atr->key, atr->val.str);
break;
case IVL_ATT_NUM:
fprintf(out, " %s = %ld\n", atr->key, atr->val.num);
break;
case IVL_ATT_VOID:
fprintf(out, " %s\n", atr->key);
break;
}
}
}
void test_expr_is_delay(ivl_expr_t expr)
{
switch (ivl_expr_type(expr)) {
case IVL_EX_ULONG:
return;
case IVL_EX_NUMBER:
return;
case IVL_EX_SIGNAL:
return;
default:
break;
}
fprintf(out, " ERROR: Expression is not a suitable delay\n");
stub_errors += 1;
}
/*
* All logic gates have inputs and outputs that match exactly in
* width. For example, and AND gate with 4 bit inputs generates a 4
* bit output, and all the inputs are 4 bits.
*/
static void show_logic(ivl_net_logic_t net)
{
unsigned npins, idx;
const char*name = ivl_logic_basename(net);
ivl_drive_t drive0 = ivl_logic_drive0(net);
ivl_drive_t drive1 = ivl_logic_drive1(net);
switch (ivl_logic_type(net)) {
case IVL_LO_AND:
fprintf(out, " and %s", name);
break;
case IVL_LO_BUF:
fprintf(out, " buf %s", name);
break;
case IVL_LO_BUFIF0:
fprintf(out, " bufif0 %s", name);
break;
case IVL_LO_BUFIF1:
fprintf(out, " bufif1 %s", name);
break;
case IVL_LO_BUFT:
fprintf(out, " buft %s", name);
break;
case IVL_LO_BUFZ:
fprintf(out, " bufz %s", name);
break;
case IVL_LO_CMOS:
fprintf(out, " cmos %s", name);
break;
case IVL_LO_NAND:
fprintf(out, " nand %s", name);
break;
case IVL_LO_NMOS:
fprintf(out, " nmos %s", name);
break;
case IVL_LO_NOR:
fprintf(out, " nor %s", name);
break;
case IVL_LO_NOT:
fprintf(out, " not %s", name);
break;
case IVL_LO_NOTIF0:
fprintf(out, " notif0 %s", name);
break;
case IVL_LO_NOTIF1:
fprintf(out, " notif1 %s", name);
break;
case IVL_LO_OR:
fprintf(out, " or %s", name);
break;
case IVL_LO_PMOS:
fprintf(out, " pmos %s", name);
break;
case IVL_LO_PULLDOWN:
fprintf(out, " pulldown %s", name);
break;
case IVL_LO_PULLUP:
fprintf(out, " pullup %s", name);
break;
case IVL_LO_RCMOS:
fprintf(out, " rcmos %s", name);
break;
case IVL_LO_RNMOS:
fprintf(out, " rnmos %s", name);
break;
case IVL_LO_RPMOS:
fprintf(out, " rpmos %s", name);
break;
case IVL_LO_XNOR:
fprintf(out, " xnor %s", name);
break;
case IVL_LO_XOR:
fprintf(out, " xor %s", name);
break;
case IVL_LO_UDP:
fprintf(out, " primitive<%s> %s",
ivl_udp_name(ivl_logic_udp(net)), name);
break;
default:
fprintf(out, " unsupported gate<type=%d> %s", ivl_logic_type(net), name);
break;
}
fprintf(out, " <width=%u>\n", ivl_logic_width(net));
fprintf(out, " <Delays...>\n");
if (ivl_logic_delay(net,0)) {
test_expr_is_delay(ivl_logic_delay(net,0));
show_expression(ivl_logic_delay(net,0), 6);
}
if (ivl_logic_delay(net,1)) {
test_expr_is_delay(ivl_logic_delay(net,1));
show_expression(ivl_logic_delay(net,1), 6);
}
if (ivl_logic_delay(net,2)) {
test_expr_is_delay(ivl_logic_delay(net,2));
show_expression(ivl_logic_delay(net,2), 6);
}
npins = ivl_logic_pins(net);
/* Show the pins of the gate. Pin-0 is always the output, and
the remaining pins are the inputs. Inputs may be
unconnected, but if connected the nexus width must exactly
match the gate width. */
for (idx = 0 ; idx < npins ; idx += 1) {
ivl_nexus_t nex = ivl_logic_pin(net, idx);
fprintf(out, " %d: %p", idx, nex);
if (idx == 0)
fprintf(out, " <drive0/1 = %u/%u>", drive0, drive1);
fprintf(out, "\n");
if (nex == 0) {
if (idx == 0) {
fprintf(out, " 0: ERROR: Pin 0 must not "
"be unconnected\n");
stub_errors += 1;
}
continue;
}
if (ivl_logic_width(net) != width_of_nexus(nex)) {
fprintf(out, " %d: ERROR: Nexus width is %u\n",
idx, width_of_nexus(nex));
stub_errors += 1;
}
}
/* If this is an instance of a UDP, then check that the
instantiation is consistent with the definition. */
if (ivl_logic_type(net) == IVL_LO_UDP) {
ivl_udp_t udp = ivl_logic_udp(net);
if (npins != 1+ivl_udp_nin(udp)) {
fprintf(out, " ERROR: UDP %s expects %u inputs\n",
ivl_udp_name(udp), ivl_udp_nin(udp));
stub_errors += 1;
}
/* Add a reference to this udp definition. */
reference_udp_definition(udp);
}
npins = ivl_logic_attr_cnt(net);
for (idx = 0 ; idx < npins ; idx += 1) {
ivl_attribute_t cur = ivl_logic_attr_val(net,idx);
switch (cur->type) {
case IVL_ATT_VOID:
fprintf(out, " %s\n", cur->key);
break;
case IVL_ATT_NUM:
fprintf(out, " %s = %ld\n", cur->key, cur->val.num);
break;
case IVL_ATT_STR:
fprintf(out, " %s = %s\n", cur->key, cur->val.str);
break;
}
}
}
static int show_scope(ivl_scope_t net, void*x)
{
unsigned idx;
const char *is_auto;
fprintf(out, "scope: %s (%u parameters, %u signals, %u logic)",
ivl_scope_name(net), ivl_scope_params(net),
ivl_scope_sigs(net), ivl_scope_logs(net));
is_auto = ivl_scope_is_auto(net) ? "automatic " : "";
switch (ivl_scope_type(net)) {
case IVL_SCT_MODULE:
fprintf(out, " module %s%s", ivl_scope_tname(net),
ivl_scope_is_cell(net) ? " (cell)" : "");
break;
case IVL_SCT_FUNCTION:
fprintf(out, " function %s%s", is_auto, ivl_scope_tname(net));
break;
case IVL_SCT_BEGIN:
fprintf(out, " begin : %s", ivl_scope_tname(net));
break;
case IVL_SCT_FORK:
fprintf(out, " fork : %s", ivl_scope_tname(net));
break;
case IVL_SCT_TASK:
fprintf(out, " task %s%s", is_auto, ivl_scope_tname(net));
break;
default:
fprintf(out, " type(%u) %s", ivl_scope_type(net),
ivl_scope_tname(net));
break;
}
fprintf(out, " time units = 1e%d\n", ivl_scope_time_units(net));
fprintf(out, " time precision = 1e%d\n", ivl_scope_time_precision(net));
for (idx = 0 ; idx < ivl_scope_attr_cnt(net) ; idx += 1) {
ivl_attribute_t attr = ivl_scope_attr_val(net, idx);
switch (attr->type) {
case IVL_ATT_VOID:
fprintf(out, " (* %s *)\n", attr->key);
break;
case IVL_ATT_STR:
fprintf(out, " (* %s = \"%s\" *)\n", attr->key,
attr->val.str);
break;
case IVL_ATT_NUM:
fprintf(out, " (* %s = %ld *)\n", attr->key,
attr->val.num);
break;
}
}
for (idx = 0 ; idx < ivl_scope_params(net) ; idx += 1)
show_parameter(ivl_scope_param(net, idx));
for (idx = 0 ; idx < ivl_scope_enumerates(net) ; idx += 1)
show_enumerate(ivl_scope_enumerate(net, idx));
for (idx = 0 ; idx < ivl_scope_sigs(net) ; idx += 1)
show_signal(ivl_scope_sig(net, idx));
for (idx = 0 ; idx < ivl_scope_events(net) ; idx += 1)
show_event(ivl_scope_event(net, idx));
for (idx = 0 ; idx < ivl_scope_logs(net) ; idx += 1)
show_logic(ivl_scope_log(net, idx));
for (idx = 0 ; idx < ivl_scope_lpms(net) ; idx += 1)
show_lpm(ivl_scope_lpm(net, idx));
for (idx = 0 ; idx < ivl_scope_switches(net) ; idx += 1)
show_switch(ivl_scope_switch(net, idx));
switch (ivl_scope_type(net)) {
case IVL_SCT_FUNCTION:
case IVL_SCT_TASK:
fprintf(out, " scope function/task definition\n");
if (ivl_scope_def(net) == 0) {
fprintf(out, " ERROR: scope missing required task definition\n");
stub_errors += 1;
} else {
show_statement(ivl_scope_def(net), 6);
}
break;
default:
if (ivl_scope_def(net)) {
fprintf(out, " ERROR: scope has an attached task definition:\n");
show_statement(ivl_scope_def(net), 6);
stub_errors += 1;
}
break;
}
fprintf(out, "end scope %s\n", ivl_scope_name(net));
return ivl_scope_children(net, show_scope, 0);
}
static void show_primitive(ivl_udp_t net, unsigned ref_count)
{
unsigned rdx;
fprintf(out, "primitive %s (referenced %u times)\n",
ivl_udp_name(net), ref_count);
if (ivl_udp_sequ(net))
fprintf(out, " reg out = %c;\n", ivl_udp_init(net));
else
fprintf(out, " wire out;\n");
fprintf(out, " table\n");
for (rdx = 0 ; rdx < ivl_udp_rows(net) ; rdx += 1) {
/* Each row has the format:
Combinational: iii...io
Sequential: oiii...io
In the sequential case, the o value in the front is
the current output value. */
unsigned idx;
const char*row = ivl_udp_row(net,rdx);
fprintf(out, " ");
if (ivl_udp_sequ(net))
fprintf(out, " cur=%c :", *row++);
for (idx = 0 ; idx < ivl_udp_nin(net) ; idx += 1)
fprintf(out, " %c", *row++);
fprintf(out, " : out=%c\n", *row++);
}
fprintf(out, " endtable\n");
fprintf(out, "endprimitive\n");
}
int target_design(ivl_design_t des)
{
ivl_scope_t*root_scopes;
unsigned nroot = 0;
unsigned idx;
const char*path = ivl_design_flag(des, "-o");
if (path == 0) {
return -1;
}
out = fopen(path, "w");
if (out == 0) {
perror(path);
return -2;
}
for (idx = 0 ; idx < ivl_design_disciplines(des) ; idx += 1) {
ivl_discipline_t dis = ivl_design_discipline(des,idx);
fprintf(out, "discipline %s\n", ivl_discipline_name(dis));
}
ivl_design_roots(des, &root_scopes, &nroot);
for (idx = 0 ; idx < nroot ; idx += 1) {
fprintf(out, "root module = %s;\n",
ivl_scope_name(root_scopes[idx]));
show_scope(root_scopes[idx], 0);
}
while (udp_define_list) {
struct udp_define_cell*cur = udp_define_list;
udp_define_list = cur->next;
show_primitive(cur->udp, cur->ref);
free(cur);
}
ivl_design_process(des, show_process, 0);
fclose(out);
return stub_errors;
}
const char* target_query(const char*key)
{
if (strcmp(key,"version") == 0)
return version_string;
return 0;
}