iverilog/expr_synth.cc

1005 lines
28 KiB
C++

/*
* Copyright (c) 1999-2005 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CVS_IDENT
#ident "$Id: expr_synth.cc,v 1.71 2005/06/13 23:22:14 steve Exp $"
#endif
# include "config.h"
# include <iostream>
# include "netlist.h"
# include "netmisc.h"
NetNet* NetExpr::synthesize(Design*des)
{
cerr << get_line() << ": internal error: cannot synthesize expression: "
<< *this << endl;
des->errors += 1;
return 0;
}
/*
* Make an LPM_ADD_SUB device from addition operators.
*/
NetNet* NetEBAdd::synthesize(Design*des)
{
assert((op()=='+') || (op()=='-'));
NetNet*lsig = left_->synthesize(des);
NetNet*rsig = right_->synthesize(des);
assert(expr_width() >= lsig->vector_width());
assert(expr_width() >= rsig->vector_width());
lsig = pad_to_width(des, lsig, expr_width());
rsig = pad_to_width(des, rsig, expr_width());
assert(lsig->vector_width() == rsig->vector_width());
unsigned width=lsig->vector_width();
perm_string path = lsig->scope()->local_symbol();
NetNet*osig = new NetNet(lsig->scope(), path, NetNet::IMPLICIT, width);
osig->local_flag(true);
perm_string oname = osig->scope()->local_symbol();
NetAddSub *adder = new NetAddSub(lsig->scope(), oname, width);
connect(lsig->pin(0), adder->pin_DataA());
connect(rsig->pin(0), adder->pin_DataB());
connect(osig->pin(0), adder->pin_Result());
des->add_node(adder);
switch (op()) {
case '+':
adder->attribute(perm_string::literal("LPM_Direction"), verinum("ADD"));
break;
case '-':
adder->attribute(perm_string::literal("LPM_Direction"), verinum("SUB"));
break;
}
return osig;
}
/*
* The bitwise logic operators are turned into discrete gates pretty
* easily. Synthesize the left and right sub-expressions to get
* signals, then just connect a single gate to each bit of the vector
* of the expression.
*/
NetNet* NetEBBits::synthesize(Design*des)
{
NetNet*lsig = left_->synthesize(des);
NetNet*rsig = right_->synthesize(des);
NetScope*scope = lsig->scope();
assert(scope);
string path = des->local_symbol(scope->name());
if (lsig->vector_width() != rsig->vector_width()) {
cerr << get_line() << ": internal error: bitwise (" << op_
<< ") widths do not match: " << lsig->vector_width()
<< " != " << rsig->vector_width() << endl;
cerr << get_line() << ": : width="
<< lsig->vector_width() << ": " << *left_ << endl;
cerr << get_line() << ": : width="
<< rsig->vector_width() << ": " << *right_ << endl;
return 0;
}
assert(lsig->vector_width() == rsig->vector_width());
NetNet*osig = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, lsig->vector_width());
osig->local_flag(true);
perm_string oname = scope->local_symbol();
unsigned wid = lsig->vector_width();
NetLogic*gate;
switch (op()) {
case '&':
gate = new NetLogic(scope, oname, 3, NetLogic::AND, wid);
break;
case '|':
gate = new NetLogic(scope, oname, 3, NetLogic::OR, wid);
break;
case '^':
gate = new NetLogic(scope, oname, 3, NetLogic::XOR, wid);
break;
case 'O':
gate = new NetLogic(scope, oname, 3, NetLogic::NOR, wid);
break;
case 'X':
gate = new NetLogic(scope, oname, 3, NetLogic::XNOR, wid);
break;
default:
assert(0);
}
connect(osig->pin(0), gate->pin(0));
connect(lsig->pin(0), gate->pin(1));
connect(rsig->pin(0), gate->pin(2));
gate->set_line(*this);
des->add_node(gate);
return osig;
}
NetNet* NetEBComp::synthesize(Design*des)
{
NetEConst*lcon = reinterpret_cast<NetEConst*>(left_);
NetEConst*rcon = reinterpret_cast<NetEConst*>(right_);
/* Handle the special case where one of the inputs is constant
0. We can use an OR gate to do the comparison. Synthesize
the non-const side as normal, then or(nor) the signals
together to get result. */
#if 0
// XXXX Need to check this for vector_width and wide logic.
if ((rcon && (rcon->value() == verinum(0UL,rcon->expr_width())))
|| (lcon && (lcon->value() == verinum(0UL,lcon->expr_width())))) {
NetNet*lsig = rcon
? left_->synthesize(des)
: right_->synthesize(des);
NetScope*scope = lsig->scope();
assert(scope);
NetNet*osig = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, 1);
osig->local_flag(true);
NetLogic*gate;
switch (op_) {
case 'e':
case 'E':
gate = new NetLogic(scope, scope->local_symbol(),
lsig->pin_count()+1, NetLogic::NOR, 1);
break;
case 'n':
case 'N':
gate = new NetLogic(scope, scope->local_symbol(),
lsig->pin_count()+1, NetLogic::OR, 1);
break;
case '>':
/* sig > 0 is true if any bit in sig is set. This
is very much like sig != 0. (0 > sig) shouldn't
happen. */
if (rcon) {
gate = new NetLogic(scope, scope->local_symbol(),
lsig->pin_count()+1, NetLogic::OR, 1);
} else {
assert(0);
gate = new NetLogic(scope, scope->local_symbol(),
lsig->pin_count()+1, NetLogic::NOR, 1);
}
break;
case '<':
/* 0 < sig is handled like sig > 0. */
if (! rcon) {
gate = new NetLogic(scope, scope->local_symbol(),
lsig->pin_count()+1, NetLogic::OR, 1);
} else {
assert(0);
gate = new NetLogic(scope, scope->local_symbol(),
lsig->pin_count()+1, NetLogic::NOR, 1);
}
break;
default:
assert(0);
}
connect(gate->pin(0), osig->pin(0));
for (unsigned idx = 0 ; idx < lsig->pin_count() ; idx += 1)
connect(gate->pin(idx+1), lsig->pin(idx));
des->add_node(gate);
return osig;
}
#endif
NetNet*lsig = left_->synthesize(des);
NetNet*rsig = right_->synthesize(des);
NetScope*scope = lsig->scope();
assert(scope);
unsigned width = lsig->vector_width();
if (rsig->vector_width() > width)
width = rsig->vector_width();
lsig = pad_to_width(des, lsig, width);
rsig = pad_to_width(des, rsig, width);
NetNet*osig = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, 1);
osig->local_flag(true);
/* Handle the special case of a single bit equality
operation. Make an XNOR gate instead of a comparator. */
if ((width == 1) && ((op_ == 'e') || (op_ == 'E'))) {
NetLogic*gate = new NetLogic(scope, scope->local_symbol(),
3, NetLogic::XNOR, 1);
connect(gate->pin(0), osig->pin(0));
connect(gate->pin(1), lsig->pin(0));
connect(gate->pin(2), rsig->pin(0));
des->add_node(gate);
return osig;
}
/* Handle the special case of a single bit inequality
operation. This is similar to single bit equality, but uses
an XOR instead of an XNOR gate. */
if ((width == 1) && ((op_ == 'n') || (op_ == 'N'))) {
NetLogic*gate = new NetLogic(scope, scope->local_symbol(),
3, NetLogic::XOR, 1);
connect(gate->pin(0), osig->pin(0));
connect(gate->pin(1), lsig->pin(0));
connect(gate->pin(2), rsig->pin(0));
des->add_node(gate);
return osig;
}
NetCompare*dev = new NetCompare(scope, scope->local_symbol(), width);
des->add_node(dev);
connect(dev->pin_DataA(), lsig->pin(0));
connect(dev->pin_DataB(), rsig->pin(0));
switch (op_) {
case '<':
connect(dev->pin_ALB(), osig->pin(0));
break;
case '>':
connect(dev->pin_AGB(), osig->pin(0));
break;
case 'e': // ==
case 'E': // === ?
connect(dev->pin_AEB(), osig->pin(0));
break;
case 'G': // >=
connect(dev->pin_AGEB(), osig->pin(0));
break;
case 'L': // <=
connect(dev->pin_ALEB(), osig->pin(0));
break;
case 'n': // !=
case 'N': // !==
connect(dev->pin_ANEB(), osig->pin(0));
break;
default:
cerr << get_line() << ": internal error: cannot synthesize "
"comparison: " << *this << endl;
des->errors += 1;
return 0;
}
return osig;
}
NetNet* NetEBMult::synthesize(Design*des)
{
NetNet*lsig = left_->synthesize(des);
NetNet*rsig = right_->synthesize(des);
if (lsig == 0)
return 0;
if (rsig == 0)
return 0;
NetScope*scope = lsig->scope();
assert(scope);
NetMult*mult = new NetMult(scope, scope->local_symbol(),
expr_width(),
lsig->vector_width(),
rsig->vector_width());
des->add_node(mult);
mult->set_signed( has_sign() );
mult->set_line(*this);
connect(mult->pin_DataA(), lsig->pin(0));
connect(mult->pin_DataB(), rsig->pin(0));
NetNet*osig = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, expr_width());
osig->local_flag(true);
connect(mult->pin_Result(), osig->pin(0));
return osig;
}
NetNet* NetEBDiv::synthesize(Design*des)
{
NetNet*lsig = left_->synthesize(des);
NetNet*rsig = right_->synthesize(des);
NetScope*scope = lsig->scope();
NetNet*osig = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, expr_width());
osig->local_flag(true);
switch (op()) {
case '/': {
NetDivide*div = new NetDivide(scope, scope->local_symbol(),
expr_width(),
lsig->vector_width(),
rsig->vector_width());
des->add_node(div);
connect(div->pin_DataA(), lsig->pin(0));
connect(div->pin_DataB(), rsig->pin(0));
connect(div->pin_Result(),osig->pin(0));
break;
}
case '%': {
NetModulo*div = new NetModulo(scope, scope->local_symbol(),
expr_width(),
lsig->vector_width(),
rsig->vector_width());
des->add_node(div);
connect(div->pin_DataA(), lsig->pin(0));
connect(div->pin_DataB(), rsig->pin(0));
connect(div->pin_Result(),osig->pin(0));
break;
}
default: {
cerr << get_line() << ": internal error: "
<< "NetEBDiv has unexpeced op() code: "
<< op() << endl;
des->errors += 1;
delete osig;
return 0;
}
}
return osig;
}
NetNet* NetEBLogic::synthesize(Design*des)
{
NetNet*lsig = left_->synthesize(des);
NetNet*rsig = right_->synthesize(des);
if (lsig == 0)
return 0;
if (rsig == 0)
return 0;
NetScope*scope = lsig->scope();
assert(scope);
NetNet*osig = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, 1);
osig->local_flag(true);
if (op() == 'o') {
/* Logic OR can handle the reduction *and* the logical
comparison with a single wide OR gate. So handle this
magically. */
perm_string oname = scope->local_symbol();
NetLogic*olog = new NetLogic(scope, oname,
lsig->pin_count()+rsig->pin_count()+1,
NetLogic::OR, 1);
connect(osig->pin(0), olog->pin(0));
unsigned pin = 1;
for (unsigned idx = 0 ; idx < lsig->pin_count() ; idx = 1)
connect(olog->pin(pin+idx), lsig->pin(idx));
pin += lsig->pin_count();
for (unsigned idx = 0 ; idx < rsig->pin_count() ; idx = 1)
connect(olog->pin(pin+idx), rsig->pin(idx));
des->add_node(olog);
} else {
assert(op() == 'a');
/* Create the logic AND gate. This is a single bit
output, with inputs for each of the operands. */
NetLogic*olog;
perm_string oname = scope->local_symbol();
olog = new NetLogic(scope, oname, 3, NetLogic::AND, 1);
connect(osig->pin(0), olog->pin(0));
des->add_node(olog);
/* XXXX Here, I need to reduce the parameters with
reduction or. */
/* By this point, the left and right parameters have been
reduced to single bit values. Now we just connect them to
the logic gate. */
assert(lsig->pin_count() == 1);
connect(lsig->pin(0), olog->pin(1));
assert(rsig->pin_count() == 1);
connect(rsig->pin(0), olog->pin(2));
}
return osig;
}
NetNet* NetEBShift::synthesize(Design*des)
{
if (! dynamic_cast<NetEConst*>(right_)) {
NetExpr*tmp = right_->eval_tree();
if (tmp) {
delete right_;
right_ = tmp;
}
}
NetNet*lsig = left_->synthesize(des);
if (lsig == 0)
return 0;
bool right_flag = op_ == 'r' || op_ == 'R';
bool signed_flag = op_ == 'R';
NetScope*scope = lsig->scope();
/* Detect the special case where the shift amount is
constant. Evaluate the shift amount, and simply reconnect
the left operand to the output, but shifted. */
if (NetEConst*rcon = dynamic_cast<NetEConst*>(right_)) {
verinum shift_v = rcon->value();
long shift = shift_v.as_long();
if (op() == 'r')
shift = 0-shift;
if (shift == 0)
return lsig;
NetNet*osig = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, expr_width());
osig->local_flag(true);
unsigned long ushift = shift>=0? shift : -shift;
if (ushift > osig->vector_width())
ushift = osig->vector_width();
verinum znum (verinum::V0, ushift, true);
NetConst*zcon = new NetConst(scope, scope->local_symbol(),
znum);
des->add_node(zcon);
/* Detect the special case that the shift is the size of
the whole expression. Simply connect the pad to the
osig and escape. */
if (ushift >= osig->vector_width()) {
connect(zcon->pin(0), osig->pin(0));
return osig;
}
NetNet*zsig = new NetNet(scope, scope->local_symbol(),
NetNet::WIRE, znum.len());
connect(zcon->pin(0), zsig->pin(0));
NetConcat*ccat = new NetConcat(scope, scope->local_symbol(),
osig->vector_width(), 2);
ccat->set_line(*this);
des->add_node(ccat);
connect(ccat->pin(0), osig->pin(0));
if (shift > 0) {
connect(ccat->pin(1), zsig->pin(0));
connect(ccat->pin(2), lsig->pin(0));
} else {
connect(ccat->pin(1), lsig->pin(0));
connect(ccat->pin(2), zsig->pin(0));
}
return osig;
}
NetNet*rsig = right_->synthesize(des);
if (rsig == 0)
return 0;
NetNet*osig = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, expr_width());
osig->local_flag(true);
assert(op() == 'l');
NetCLShift*dev = new NetCLShift(scope, scope->local_symbol(),
osig->vector_width(),
rsig->vector_width(),
right_flag, signed_flag);
dev->set_line(*this);
des->add_node(dev);
connect(dev->pin_Result(), osig->pin(0));
assert(lsig->vector_width() == dev->width());
connect(dev->pin_Data(), lsig->pin(0));
connect(dev->pin_Distance(), rsig->pin(0));
return osig;
}
NetNet* NetEConcat::synthesize(Design*des)
{
/* First, synthesize the operands. */
NetNet**tmp = new NetNet*[parms_.count()];
for (unsigned idx = 0 ; idx < parms_.count() ; idx += 1)
tmp[idx] = parms_[idx]->synthesize(des);
assert(tmp[0]);
NetScope*scope = tmp[0]->scope();
assert(scope);
/* Make a NetNet object to carry the output vector. */
perm_string path = scope->local_symbol();
NetNet*osig = new NetNet(scope, path, NetNet::IMPLICIT, expr_width());
osig->local_flag(true);
NetConcat*concat = new NetConcat(scope, scope->local_symbol(),
osig->vector_width(), parms_.count());
concat->set_line(*this);
des->add_node(concat);
connect(concat->pin(0), osig->pin(0));
for (unsigned idx = 0 ; idx < parms_.count() ; idx += 1) {
connect(concat->pin(idx+1), tmp[parms_.count()-idx-1]->pin(0));
}
delete[]tmp;
return osig;
}
NetNet* NetEConst::synthesize(Design*des)
{
NetScope*scope = des->find_root_scope();
assert(scope);
perm_string path = scope->local_symbol();
unsigned width=expr_width();
NetNet*osig = new NetNet(scope, path, NetNet::IMPLICIT, width-1,0);
osig->local_flag(true);
osig->set_signed(has_sign());
NetConst*con = new NetConst(scope, scope->local_symbol(), value());
connect(osig->pin(0), con->pin(0));
des->add_node(con);
return osig;
}
NetNet* NetECReal::synthesize(Design*des)
{
cerr << get_line() << ": error: Real constants are "
<< "not synthesizable." << endl;
des->errors += 1;
return 0;
}
/*
* The bitwise unary logic operator (there is only one) is turned
* into discrete gates just as easily as the binary ones above.
*/
NetNet* NetEUBits::synthesize(Design*des)
{
NetNet*isig = expr_->synthesize(des);
NetScope*scope = isig->scope();
assert(scope);
unsigned width = isig->vector_width();
NetNet*osig = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, width);
osig->local_flag(true);
perm_string oname = scope->local_symbol();
NetLogic*gate;
switch (op()) {
case '~':
gate = new NetLogic(scope, oname, 2, NetLogic::NOT, width);
break;
default:
assert(0);
}
connect(osig->pin(0), gate->pin(0));
connect(isig->pin(0), gate->pin(1));
des->add_node(gate);
return osig;
}
NetNet* NetEUReduce::synthesize(Design*des)
{
NetNet*isig = expr_->synthesize(des);
NetScope*scope = isig->scope();
assert(scope);
NetNet*osig = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, 1);
osig->local_flag(true);
perm_string oname = scope->local_symbol();
NetLogic*gate;
switch (op()) {
case 'N':
case '!':
gate = new NetLogic(scope, oname, isig->pin_count()+1,
NetLogic::NOR, 1);
break;
case '&':
gate = new NetLogic(scope, oname, isig->pin_count()+1,
NetLogic::AND, 1);
break;
case '|':
gate = new NetLogic(scope, oname, isig->pin_count()+1,
NetLogic::OR, 1);
break;
case '^':
gate = new NetLogic(scope, oname, isig->pin_count()+1,
NetLogic::XOR, 1);
break;
case 'A':
gate = new NetLogic(scope, oname, isig->pin_count()+1,
NetLogic::NAND, 1);
break;
case 'X':
gate = new NetLogic(scope, oname, isig->pin_count()+1,
NetLogic::XNOR, 1);
break;
default:
cerr << get_line() << ": internal error: "
<< "Unable to synthesize " << *this << "." << endl;
return 0;
}
des->add_node(gate);
connect(gate->pin(0), osig->pin(0));
for (unsigned idx = 0 ; idx < isig->pin_count() ; idx += 1)
connect(gate->pin(1+idx), isig->pin(idx));
return osig;
}
NetNet* NetESelect::synthesize(Design *des)
{
NetNet*sub = expr_->synthesize(des);
if (sub == 0)
return 0;
NetScope*scope = sub->scope();
unsigned off = 0;
if (base_ != 0) {
// For now, only handle constant part selects in this
// context.
NetEConst*bcon = dynamic_cast<NetEConst*>(base_);
assert(bcon);
long bval = bcon->value().as_long();
off = sub->sb_to_idx(bval);
}
/* If there is a part select, then generate a PartSelect node
to actually do the part select. This does not expansion,
that is handled later. */
if ((off != 0) || (off+expr_width() < sub->vector_width())) {
unsigned wid = expr_width();
if ((wid + off) > sub->vector_width())
wid = sub->vector_width() - off;
NetPartSelect*sel = new NetPartSelect(sub, off, wid,
NetPartSelect::VP);
sel->set_line(*this);
des->add_node(sel);
sub = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, expr_width());
sub->local_flag(true);
sub->set_line(*this);
connect(sub->pin(0), sel->pin(0));
}
/* Done? Vector is already the right width? then stop now. */
if (sub->vector_width() == expr_width())
return sub;
NetNet*net = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, expr_width());
if (has_sign()) {
NetSignExtend*pad = new NetSignExtend(scope,
scope->local_symbol(),
expr_width());
pad->set_line(*this);
des->add_node(pad);
connect(pad->pin(1), sub->pin(0));
connect(pad->pin(0), net->pin(0));
} else {
NetConcat*cat = new NetConcat(scope, scope->local_symbol(),
expr_width(), 2);
cat->set_line(*this);
des->add_node(cat);
assert(expr_width() > sub->vector_width());
unsigned pad_width = expr_width() - sub->vector_width();
verinum pad(0UL, pad_width);
NetConst*con = new NetConst(scope, scope->local_symbol(),
pad);
con->set_line(*this);
des->add_node(con);
NetNet*tmp = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, pad_width);
tmp->local_flag(true);
tmp->set_line(*this);
connect(tmp->pin(0), con->pin(0));
connect(cat->pin(0), net->pin(0));
connect(cat->pin(1), sub->pin(0));
connect(cat->pin(2), con->pin(0));
}
return net;
}
/*
* Synthesize a ?: operator as a NetMux device. Connect the condition
* expression to the select input, then connect the true and false
* expressions to the B and A inputs. This way, when the select input
* is one, the B input, which is the true expression, is selected.
*/
NetNet* NetETernary::synthesize(Design *des)
{
NetNet*csig = cond_->synthesize(des);
NetNet*tsig = true_val_->synthesize(des);
NetNet*fsig = false_val_->synthesize(des);
perm_string path = csig->scope()->local_symbol();
assert(csig->vector_width() == 1);
unsigned width=expr_width();
NetNet*osig = new NetNet(csig->scope(), path, NetNet::IMPLICIT, width);
osig->local_flag(true);
/* Make sure both value operands are the right width. */
tsig = crop_to_width(des, pad_to_width(des, tsig, width), width);
fsig = crop_to_width(des, pad_to_width(des, fsig, width), width);
assert(width == tsig->vector_width());
assert(width == fsig->vector_width());
perm_string oname = csig->scope()->local_symbol();
NetMux *mux = new NetMux(csig->scope(), oname, width,
2, csig->vector_width());
connect(tsig->pin(0), mux->pin_Data(1));
connect(fsig->pin(0), mux->pin_Data(0));
connect(osig->pin(0), mux->pin_Result());
connect(csig->pin(0), mux->pin_Sel());
des->add_node(mux);
return osig;
}
/*
* When synthesizing a signal expression, it is usually fine to simply
* return the NetNet that it refers to. If this is a part select,
* though, a bit more work needs to be done. Return a temporary that
* represents the connections to the selected bits.
*
* For example, if there is a reg foo, like so:
* reg [5:0] foo;
* and this expression node represents a part select foo[3:2], then
* create a temporary like so:
*
* foo
* +---+
* | 5 |
* +---+
* tmp | 4 |
* +---+ +---+
* | 1 | <---> | 3 |
* +---+ +---+
* | 0 | <---> | 2 |
* +---+ +---+
* | 1 |
* +---+
* | 0 |
* +---+
* The temporary is marked as a temporary and returned to the
* caller. This causes the caller to get only the selected part of the
* signal, and when it hooks up to tmp, it hooks up to the right parts
* of foo.
*/
NetNet* NetESignal::synthesize(Design*des)
{
return net_;
}
/*
* $Log: expr_synth.cc,v $
* Revision 1.71 2005/06/13 23:22:14 steve
* use NetPartSelect to shrink part from high bits.
*
* Revision 1.70 2005/06/13 22:26:03 steve
* Make synthesized padding vector-aware.
*
* Revision 1.69 2005/05/15 04:47:00 steve
* synthesis of Logic and shifts using vector gates.
*
* Revision 1.68 2005/05/06 00:25:13 steve
* Handle synthesis of concatenation expressions.
*
* Revision 1.67 2005/04/25 01:30:31 steve
* synthesis of add and unary get vector widths right.
*
* Revision 1.66 2005/04/24 23:44:02 steve
* Update DFF support to new data flow.
*
* Revision 1.65 2005/03/12 06:43:35 steve
* Update support for LPM_MOD.
*
* Revision 1.64 2005/02/19 02:43:38 steve
* Support shifts and divide.
*
* Revision 1.63 2005/02/12 06:25:40 steve
* Restructure NetMux devices to pass vectors.
* Generate NetMux devices from ternary expressions,
* Reduce NetMux devices to bufif when appropriate.
*
* Revision 1.62 2005/01/28 05:39:33 steve
* Simplified NetMult and IVL_LPM_MULT.
*
* Revision 1.61 2005/01/16 04:20:32 steve
* Implement LPM_COMPARE nodes as two-input vector functors.
*
* Revision 1.60 2004/12/11 02:31:26 steve
* Rework of internals to carry vectors through nexus instead
* of single bits. Make the ivl, tgt-vvp and vvp initial changes
* down this path.
*
* Revision 1.59 2004/06/30 02:16:26 steve
* Implement signed divide and signed right shift in nets.
*
* Revision 1.58 2004/06/16 16:21:34 steve
* Connect rsif of multiply to DataB.
*
* Revision 1.57 2004/06/12 15:00:02 steve
* Support / and % in synthesized contexts.
*
* Revision 1.56 2004/06/01 01:04:57 steve
* Fix synthesis method for logical and/or
*
* Revision 1.55 2004/02/20 18:53:35 steve
* Addtrbute keys are perm_strings.
*
* Revision 1.54 2004/02/18 17:11:56 steve
* Use perm_strings for named langiage items.
*
* Revision 1.53 2004/02/15 04:23:48 steve
* Fix evaluation of compare to constant expression.
*
* Revision 1.52 2003/11/10 19:39:20 steve
* Remove redundant scope tokens.
*
* Revision 1.51 2003/10/27 06:04:21 steve
* More flexible width handling for synthesized add.
*
* Revision 1.50 2003/09/26 02:44:27 steve
* Assure ternary arguments are wide enough.
*
* Revision 1.49 2003/09/03 23:31:36 steve
* Support synthesis of constant downshifts.
*
* Revision 1.48 2003/08/28 04:11:18 steve
* Spelling patch.
*
* Revision 1.47 2003/08/09 03:23:40 steve
* Add support for IVL_LPM_MULT device.
*
* Revision 1.46 2003/07/26 03:34:42 steve
* Start handling pad of expressions in code generators.
*
* Revision 1.45 2003/06/24 01:38:02 steve
* Various warnings fixed.
*
* Revision 1.44 2003/04/19 04:52:56 steve
* Less picky about expression widths while synthesizing ternary.
*
* Revision 1.43 2003/04/08 05:07:15 steve
* Detect constant shift distances in synthesis.
*
* Revision 1.42 2003/04/08 04:33:55 steve
* Synthesize shift expressions.
*
* Revision 1.41 2003/03/06 00:28:41 steve
* All NetObj objects have lex_string base names.
*
* Revision 1.40 2003/02/26 01:29:24 steve
* LPM objects store only their base names.
*
* Revision 1.39 2003/01/30 16:23:07 steve
* Spelling fixes.
*
* Revision 1.38 2003/01/26 21:15:58 steve
* Rework expression parsing and elaboration to
* accommodate real/realtime values and expressions.
*
* Revision 1.37 2002/11/17 23:37:55 steve
* Magnitude compare to 0.
*
* Revision 1.36 2002/08/12 01:34:59 steve
* conditional ident string using autoconfig.
*
* Revision 1.35 2002/07/07 22:31:39 steve
* Smart synthesis of binary AND expressions.
*
* Revision 1.34 2002/07/05 21:26:17 steve
* Avoid emitting to vvp local net symbols.
*
* Revision 1.33 2002/05/26 01:39:02 steve
* Carry Verilog 2001 attributes with processes,
* all the way through to the ivl_target API.
*
* Divide signal reference counts between rval
* and lval references.
*/