iverilog/netmisc.cc

383 lines
10 KiB
C++

/*
* Copyright (c) 2001-2008 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
# include "config.h"
# include <cstdlib>
# include "netlist.h"
# include "netmisc.h"
# include "PExpr.h"
# include "pform_types.h"
# include "ivl_assert.h"
NetNet* add_to_net(Design*des, NetNet*sig, long val)
{
if (val == 0)
return sig;
#if 0
NetScope*scope = sig->scope();
unsigned long abs_val = (val >= 0)? val : (-val);
unsigned width = sig->pin_count();
verinum val_v (abs_val, width);
NetConst*val_c = new NetConst(scope, scope->local_symbol(), val_v);
NetNet*val_s = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, width);
val_s->local_flag(true);
NetNet*res = new NetNet(scope, scope->local_symbol(),
NetNet::IMPLICIT, width);
res->local_flag(true);
NetAddSub*add = new NetAddSub(scope, scope->local_symbol(), width);
for (unsigned idx = 0 ; idx < width ; idx += 1)
connect(sig->pin(idx), add->pin_DataA(idx));
for (unsigned idx = 0 ; idx < width ; idx += 1)
connect(val_c->pin(idx), add->pin_DataB(idx));
for (unsigned idx = 0 ; idx < width ; idx += 1)
connect(val_s->pin(idx), add->pin_DataB(idx));
for (unsigned idx = 0 ; idx < width ; idx += 1)
connect(res->pin(idx), add->pin_Result(idx));
if (val < 0)
add->attribute(perm_string::literal("LPM_Direction"), verinum("SUB"));
else
add->attribute(perm_string::literal("LPM_Direction"), verinum("ADD"));
des->add_node(add);
des->add_node(val_c);
return res;
#else
cerr << sig->get_fileline() << ": XXXX: Forgot how to implement add_to_net" << endl;
return 0;
#endif
}
NetNet* cast_to_int(Design*des, NetScope*scope, NetNet*src, unsigned wid)
{
if (src->data_type() != IVL_VT_REAL)
return src;
NetNet*tmp = new NetNet(scope, scope->local_symbol(), NetNet::WIRE, wid);
tmp->data_type(IVL_VT_LOGIC);
tmp->set_line(*src);
tmp->local_flag(true);
NetCastInt*cast = new NetCastInt(scope, scope->local_symbol(), wid);
cast->set_line(*src);
des->add_node(cast);
connect(cast->pin(0), tmp->pin(0));
connect(cast->pin(1), src->pin(0));
return tmp;
}
NetNet* cast_to_real(Design*des, NetScope*scope, NetNet*src)
{
if (src->data_type() == IVL_VT_REAL)
return src;
NetNet*tmp = new NetNet(scope, scope->local_symbol(), NetNet::WIRE);
tmp->data_type(IVL_VT_REAL);
tmp->set_line(*src);
tmp->local_flag(true);
NetCastReal*cast = new NetCastReal(scope, scope->local_symbol(), src->get_signed());
cast->set_line(*src);
des->add_node(cast);
connect(cast->pin(0), tmp->pin(0));
connect(cast->pin(1), src->pin(0));
return tmp;
}
/*
* Add a signed constant to an existing expression. Generate a new
* NetEBAdd node that has the input expression and an expression made
* from the constant value.
*/
NetExpr* make_add_expr(NetExpr*expr, long val)
{
if (val == 0)
return expr;
// If the value to be added is <0, then instead generate a
// SUBTRACT node and turn the value positive.
char add_op = '+';
if (val < 0) {
add_op = '-';
val = -val;
}
verinum val_v (val);
val_v.has_sign(true);
if (expr->has_width()) {
val_v = verinum(val_v, expr->expr_width());
}
NetEConst*val_c = new NetEConst(val_v);
val_c->set_line(*expr);
NetEBAdd*res = new NetEBAdd(add_op, expr, val_c);
res->set_line(*expr);
return res;
}
NetExpr* make_sub_expr(long val, NetExpr*expr)
{
verinum val_v (val, expr->expr_width());
val_v.has_sign(true);
NetEConst*val_c = new NetEConst(val_v);
val_c->set_line(*expr);
NetEBAdd*res = new NetEBAdd('-', val_c, expr);
res->set_line(*expr);
return res;
}
NetEConst* make_const_x(unsigned long wid)
{
verinum xxx (verinum::Vx, wid);
NetEConst*resx = new NetEConst(xxx);
return resx;
}
NetExpr* condition_reduce(NetExpr*expr)
{
if (expr->expr_width() == 1)
return expr;
verinum zero (verinum::V0, expr->expr_width());
NetEConst*ezero = new NetEConst(zero);
ezero->cast_signed(expr->has_sign());
ezero->set_line(*expr);
ezero->set_width(expr->expr_width());
NetEBComp*cmp = new NetEBComp('n', expr, ezero);
cmp->cast_signed(false);
cmp->set_line(*expr);
return cmp;
}
NetExpr* elab_and_eval(Design*des, NetScope*scope,
const PExpr*pe, int expr_wid, int prune_width)
{
NetExpr*tmp = pe->elaborate_expr(des, scope, expr_wid, false);
if (tmp == 0) return 0;
eval_expr(tmp, prune_width);
return tmp;
}
void eval_expr(NetExpr*&expr, int prune_width)
{
assert(expr);
if (dynamic_cast<NetEConst*>(expr)) return;
if (dynamic_cast<NetECReal*>(expr)) return;
NetExpr*tmp = expr->eval_tree(prune_width);
if (tmp != 0) {
tmp->set_line(*expr);
delete expr;
expr = tmp;
}
}
bool eval_as_long(long&value, NetExpr*expr)
{
if (NetEConst*tmp = dynamic_cast<NetEConst*>(expr) ) {
value = tmp->value().as_long();
return true;
}
if (NetECReal*rtmp = dynamic_cast<NetECReal*>(expr)) {
value = rtmp->value().as_long();
return true;
}
return false;
}
bool eval_as_double(double&value, NetExpr*expr)
{
if (NetEConst*tmp = dynamic_cast<NetEConst*>(expr) ) {
value = tmp->value().as_long();
return true;
}
if (NetECReal*rtmp = dynamic_cast<NetECReal*>(expr)) {
value = rtmp->value().as_double();
return true;
}
return false;
}
/*
* At the parser level, a name component it a name with a collection
* of expressions. For example foo[N] is the name "foo" and the index
* expression "N". This function takes as input the name component and
* returns the path component name. It will evaulate the index
* expression if it is present.
*/
hname_t eval_path_component(Design*des, NetScope*scope,
const name_component_t&comp)
{
// No index exression, so the path component is an undecorated
// name, for example "foo".
if (comp.index.empty())
return hname_t(comp.name);
// The parser will assure that path components will have only
// one index. For example, foo[N] is one index, foo[n][m] is two.
assert(comp.index.size() == 1);
const index_component_t&index = comp.index.front();
// The parser will assure that path components will have only
// bit select index expressions. For example, "foo[n]" is OK,
// but "foo[n:m]" is not.
assert(index.sel == index_component_t::SEL_BIT);
// Evaluate the bit select to get a number.
NetExpr*tmp = elab_and_eval(des, scope, index.msb, -1);
ivl_assert(*index.msb, tmp);
// Now we should have a constant value for the bit select
// expression, and we can use it to make the final hname_t
// value, for example "foo[5]".
if (NetEConst*ctmp = dynamic_cast<NetEConst*>(tmp)) {
hname_t res(comp.name, ctmp->value().as_long());
delete ctmp;
return res;
}
// Darn, the expression doesn't evaluate to a constant. That's
// and error to be reported. And make up a fake index value to
// return to the caller.
cerr << index.msb->get_fileline() << ": error: "
<< "Scope index expression is not constant: "
<< *index.msb << endl;
des->errors += 1;
delete tmp;
return hname_t (comp.name, 0);
}
std::list<hname_t> eval_scope_path(Design*des, NetScope*scope,
const pform_name_t&path)
{
list<hname_t> res;
typedef pform_name_t::const_iterator pform_path_it;
for (pform_path_it cur = path.begin() ; cur != path.end(); cur++) {
const name_component_t&comp = *cur;
res.push_back( eval_path_component(des,scope,comp) );
}
return res;
}
/*
* Human readable version of op. Used in elaboration error messages.
*/
const char *human_readable_op(const char op)
{
const char *type;
switch (op) {
case '~': type = "~"; break; // Negation
case '^': type = "^"; break; // XOR
case 'X': type = "~^"; break; // XNOR
case '&': type = "&"; break; // Bitwise AND
case 'A': type = "~&"; break; // NAND (~&)
case '|': type = "|"; break; // Bitwise OR
case 'O': type = "~|"; break; // NOR
case 'a': type = "&&"; break; // Logical AND
case 'o': type = "||"; break; // Logical OR
case 'E': type = "==="; break; // Case equality
case 'N': type = "!=="; break; // Case inequality
case 'l': type = "<<(<)"; break; // Left shifts
case 'r': type = ">>"; break; // Logical right shift
case 'R': type = ">>>"; break; // Arithmetic right shift
default: assert(0);
}
return type;
}
const_bool const_logical(const NetExpr*expr)
{
switch (expr->expr_type()) {
case IVL_VT_REAL: {
const NetECReal*val = dynamic_cast<const NetECReal*> (expr);
if (val == 0) return C_NON;
if (val->value().as_double() == 0.0) return C_0;
else return C_1;
}
case IVL_VT_BOOL:
case IVL_VT_LOGIC: {
const NetEConst*val = dynamic_cast<const NetEConst*> (expr);
if (val == 0) return C_NON;
verinum cval = val->value();
const_bool res = C_0;
for (unsigned idx = 0; idx < cval.len(); idx += 1) {
switch (cval.get(idx)) {
case verinum::V1:
res = C_1;
break;
case verinum::V0:
break;
default:
if (res == C_0) res = C_X;
break;
}
}
return res;
}
default:
break;
}
return C_NON;
}