iverilog/vvp/compile.cc

758 lines
20 KiB
C++

/*
* Copyright (c) 2001 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#if !defined(WINNT)
#ident "$Id: compile.cc,v 1.21 2001/03/31 17:36:02 steve Exp $"
#endif
# include "compile.h"
# include "functor.h"
# include "symbols.h"
# include "codes.h"
# include "schedule.h"
# include "vpi_priv.h"
# include "vthread.h"
# include "parse_misc.h"
# include <malloc.h>
# include <stdlib.h>
# include <string.h>
# include <assert.h>
unsigned compile_errors = 0;
/*
* The opcode table lists all the code mnemonics, along with their
* opcode and operand types. The table is written sorted by mnemonic
* so that it can be searched by binary search. The opcode_compare
* function is a helper function for that lookup.
*/
enum operand_e {
/* Place holder for unused operand */
OA_NONE,
/* The operand is a number, an immediate unsigned integer */
OA_NUMBER,
/* The operand is a thread bit index */
OA_BIT1,
OA_BIT2,
/* The operand is a pointer to code space */
OA_CODE_PTR,
/* The operand is a variable or net pointer */
OA_FUNC_PTR
};
struct opcode_table_s {
const char*mnemonic;
vvp_code_fun opcode;
unsigned argc;
enum operand_e argt[OPERAND_MAX];
};
const static struct opcode_table_s opcode_table[] = {
{ "%add", of_ADD, 3, {OA_BIT1, OA_BIT2, OA_NUMBER} },
{ "%assign", of_ASSIGN, 3, {OA_FUNC_PTR, OA_BIT1, OA_BIT2} },
{ "%cmp/u", of_CMPU, 3, {OA_BIT1, OA_BIT2, OA_NUMBER} },
{ "%delay", of_DELAY, 1, {OA_NUMBER, OA_NONE, OA_NONE} },
{ "%end", of_END, 0, {OA_NONE, OA_NONE, OA_NONE} },
{ "%fork", of_FORK, 1, {OA_CODE_PTR, OA_NONE, OA_NONE} },
{ "%inv", of_INV, 2, {OA_BIT1, OA_BIT2, OA_NONE} },
{ "%jmp", of_JMP, 1, {OA_CODE_PTR, OA_NONE, OA_NONE} },
{ "%jmp/0", of_JMP0, 2, {OA_CODE_PTR, OA_BIT1, OA_NONE} },
{ "%jmp/0xz",of_JMP0XZ, 2, {OA_CODE_PTR, OA_BIT1, OA_NONE} },
{ "%jmp/1", of_JMP1, 2, {OA_CODE_PTR, OA_BIT1, OA_NONE} },
{ "%join", of_JOIN, 0, {OA_NONE, OA_NONE, OA_NONE} },
{ "%load", of_LOAD, 2, {OA_BIT1, OA_FUNC_PTR, OA_NONE} },
{ "%mov", of_MOV, 3, {OA_BIT1, OA_BIT2, OA_NUMBER} },
{ "%set", of_SET, 2, {OA_FUNC_PTR, OA_BIT1, OA_NONE} },
{ "%wait", of_WAIT, 1, {OA_FUNC_PTR, OA_NONE, OA_NONE} },
{ 0, of_NOOP, 0, {OA_NONE, OA_NONE, OA_NONE} }
};
static unsigned opcode_count = 0;
static int opcode_compare(const void*k, const void*r)
{
const char*kp = (const char*)k;
const struct opcode_table_s*rp = (const struct opcode_table_s*)r;
return strcmp(kp, rp->mnemonic);
}
/*
* Keep a symbol table of addresses within code space. Labels on
* executable opcodes are mapped to their address here.
*/
static symbol_table_t sym_codespace = 0;
/*
* Keep a symbol table of functors mentioned in the source. This table
* is used to resolve references as they come.
*/
static symbol_table_t sym_functors = 0;
/*
* VPI objects are indexed during compile time so that they can be
* linked together as they are created. This symbol table matches
* labels to vpiHandles.
*/
static symbol_table_t sym_vpi = 0;
/*
* If a functor parameter makes a forward reference to a functor, then
* I need to save that reference and resolve it after the functors are
* created. Use this structure to keep the unresolved references in an
* unsorted singly linked list.
*
* The postpone_functor_input arranges for a functor input to be
* resolved and connected at cleanup. This is used if the symbol is
* defined after its use in a functor. The ptr parameter is the
* complete vvp_input_t for the input port.
*/
struct resolv_list_s {
struct resolv_list_s*next;
vvp_ipoint_t port;
char*source;
unsigned idx;
};
static struct resolv_list_s*resolv_list = 0;
static void postpone_functor_input(vvp_ipoint_t ptr, char*lab, unsigned idx)
{
struct resolv_list_s*res = (struct resolv_list_s*)
calloc(1, sizeof(struct resolv_list_s));
res->port = ptr;
res->source = lab;
res->idx = idx;
res->next = resolv_list;
resolv_list = res;
}
/*
* Instructions may make forward references to labels. In this case,
* the compile makes one of these to remember to retry the
* resolution.
*/
struct cresolv_list_s {
struct cresolv_list_s*next;
struct vvp_code_s*cp;
char*lab;
};
static struct cresolv_list_s*cresolv_list = 0;
/*
* Initialize the compiler by allocation empty symbol tables and
* initializing the various address spaces.
*/
void compile_init(void)
{
sym_vpi = new_symbol_table();
sym_functors = new_symbol_table();
functor_init();
sym_codespace = new_symbol_table();
codespace_init();
opcode_count = 0;
while (opcode_table[opcode_count].mnemonic)
opcode_count += 1;
}
void compile_load_vpi_module(char*name)
{
vpip_load_module(name, module_path);
free(name);
}
/*
* The parser calls this function to create a functor. I allocate a
* functor, and map the name to the vvp_ipoint_t address for the
* functor. Also resolve the inputs to the functor.
*/
void compile_functor(char*label, char*type, unsigned init,
unsigned argc, struct symb_s*argv)
{
vvp_ipoint_t fdx = functor_allocate(1);
functor_t obj = functor_index(fdx);
{ symbol_value_t val;
val.num = fdx;
sym_set_value(sym_functors, label, val);
}
assert(argc <= 4);
/* Run through the arguments looking for the functors that are
connected to my input ports. For each source functor that I
find, connect the output of that functor to the indexed
input by inserting myself (complete with the port number in
the vvp_ipoint_t) into the list that the source heads.
If the source functor is not declared yet, then don't do
the link yet. Save the reference to be resolved later. */
for (unsigned idx = 0 ; idx < argc ; idx += 1) {
symbol_value_t val = sym_get_value(sym_functors, argv[idx].text);
vvp_ipoint_t tmp = val.num;
if (tmp) {
tmp = ipoint_index(tmp, argv[idx].idx);
functor_t fport = functor_index(tmp);
obj->port[idx] = fport->out;
fport->out = ipoint_make(fdx, idx);
free(argv[idx].text);
} else {
postpone_functor_input(ipoint_make(fdx, idx),
argv[idx].text,
argv[idx].idx);
}
}
obj->ival = init;
obj->oval = 2;
obj->mode = 0;
if (strcmp(type, "OR") == 0) {
obj->table = ft_OR;
} else if (strcmp(type, "AND") == 0) {
obj->table = ft_AND;
} else if (strcmp(type, "NOR") == 0) {
obj->table = ft_NOR;
} else if (strcmp(type, "NOT") == 0) {
obj->table = ft_NOT;
} else {
yyerror("invalid functor type.");
}
free(argv);
free(label);
free(type);
}
void compile_event(char*label, char*type,
unsigned argc, struct symb_s*argv)
{
vvp_ipoint_t fdx = functor_allocate(1);
functor_t obj = functor_index(fdx);
{ symbol_value_t val;
val.num = fdx;
sym_set_value(sym_functors, label, val);
}
assert(argc <= 4);
/* Run through the arguments looking for the functors that are
connected to my input ports. For each source functor that I
find, connect the output of that functor to the indexed
input by inserting myself (complete with the port number in
the vvp_ipoint_t) into the list that the source heads.
If the source functor is not declared yet, then don't do
the link yet. Save the reference to be resolved later. */
for (unsigned idx = 0 ; idx < argc ; idx += 1) {
symbol_value_t val = sym_get_value(sym_functors, argv[idx].text);
vvp_ipoint_t tmp = val.num;
if (tmp) {
tmp = ipoint_index(tmp, argv[idx].idx);
functor_t fport = functor_index(tmp);
obj->port[idx] = fport->out;
fport->out = ipoint_make(fdx, idx);
free(argv[idx].text);
} else {
postpone_functor_input(ipoint_make(fdx, idx),
argv[idx].text,
argv[idx].idx);
}
}
free(argv);
obj->ival = 0xaa;
obj->oval = 2;
obj->mode = 1;
obj->event = (struct vvp_event_s*) malloc(sizeof (struct vvp_event_s));
obj->event->threads = 0;
obj->event->ival = obj->ival;
if (strcmp(type,"posedge") == 0)
obj->event->vvp_edge_tab = vvp_edge_posedge;
else if (strcmp(type,"negedge") == 0)
obj->event->vvp_edge_tab = vvp_edge_negedge;
else if (strcmp(type,"edge") == 0)
obj->event->vvp_edge_tab = vvp_edge_anyedge;
else
obj->event->vvp_edge_tab = 0;
free(type);
free(label);
}
void compile_named_event(char*label, char*name)
{
vvp_ipoint_t fdx = functor_allocate(1);
functor_t obj = functor_index(fdx);
{ symbol_value_t val;
val.num = fdx;
sym_set_value(sym_functors, label, val);
}
obj->ival = 0xaa;
obj->oval = 2;
obj->mode = 2;
obj->event = (struct vvp_event_s*) malloc(sizeof (struct vvp_event_s));
obj->event->threads = 0;
obj->event->ival = obj->ival;
free(label);
free(name);
}
/*
* The parser uses this function to compile an link an executable
* opcode. I do this by looking up the opcode in the opcode_table. The
* table gives the operand structure that is acceptible, so I can
* process the operands here as well.
*/
void compile_code(char*label, char*mnem, comp_operands_t opa)
{
vvp_cpoint_t ptr = codespace_allocate();
/* First, I can give the label a value that is the current
codespace pointer. Don't need the text of the label after
this is done. */
if (label) {
symbol_value_t val;
val.num = ptr;
sym_set_value(sym_codespace, label, val);
free(label);
}
/* Lookup the opcode in the opcode table. */
struct opcode_table_s*op = (struct opcode_table_s*)
bsearch(mnem, opcode_table, opcode_count,
sizeof(struct opcode_table_s), &opcode_compare);
if (op == 0) {
yyerror("Invalid opcode");
return;
}
assert(op);
/* Build up the code from the information about the opcode and
the information from the comiler. */
vvp_code_t code = codespace_index(ptr);
code->opcode = op->opcode;
if (op->argc != (opa? opa->argc : 0)) {
yyerror("operand count");
return;
}
/* Pull the operands that the instruction expects from the
list that the parser supplied. */
for (unsigned idx = 0 ; idx < op->argc ; idx += 1) {
symbol_value_t tmp;
switch (op->argt[idx]) {
case OA_NONE:
break;
case OA_BIT1:
if (opa->argv[idx].ltype != L_NUMB) {
yyerror("operand format");
break;
}
code->bit_idx1 = opa->argv[idx].numb;
break;
case OA_BIT2:
if (opa->argv[idx].ltype != L_NUMB) {
yyerror("operand format");
break;
}
code->bit_idx2 = opa->argv[idx].numb;
break;
case OA_CODE_PTR:
if (opa->argv[idx].ltype != L_SYMB) {
yyerror("operand format");
break;
}
assert(opa->argv[idx].symb.idx == 0);
tmp = sym_get_value(sym_codespace, opa->argv[idx].symb.text);
code->cptr = tmp.num;
if (code->cptr == 0) {
struct cresolv_list_s*res = (struct cresolv_list_s*)
calloc(1, sizeof(struct cresolv_list_s));
res->cp = code;
res->lab = opa->argv[idx].symb.text;
res->next = cresolv_list;
cresolv_list = res;
} else {
free(opa->argv[idx].symb.text);
}
break;
case OA_FUNC_PTR:
if (opa->argv[idx].ltype != L_SYMB) {
yyerror("operand format");
break;
}
tmp = sym_get_value(sym_functors, opa->argv[idx].symb.text);
if (tmp.num == 0) {
yyerror("functor undefined");
break;
}
code->iptr = ipoint_index(tmp.num, opa->argv[idx].symb.idx);
free(opa->argv[idx].symb.text);
break;
case OA_NUMBER:
if (opa->argv[idx].ltype != L_NUMB) {
yyerror("operand format");
break;
}
code->number = opa->argv[idx].numb;
break;
}
}
if (opa) free(opa);
free(mnem);
}
void compile_vpi_call(char*label, char*name, unsigned argc, vpiHandle*argv)
{
vvp_cpoint_t ptr = codespace_allocate();
/* First, I can give the label a value that is the current
codespace pointer. Don't need the text of the label after
this is done. */
if (label) {
symbol_value_t val;
val.num = ptr;
sym_set_value(sym_codespace, label, val);
free(label);
}
/* Create an instruction in the code space. */
vvp_code_t code = codespace_index(ptr);
code->opcode = &of_VPI_CALL;
/* Create a vpiHandle that bundles the call information, and
store that handle in the instruction. */
code->handle = vpip_build_vpi_call(name, argc, argv);
if (code->handle == 0)
compile_errors += 1;
/* Done with the lexor-allocated name string. */
free(name);
}
/*
* When the parser finds a thread statement, I create a new thread
* with the start address referenced by the program symbol passed to
* me.
*/
void compile_thread(char*start_sym)
{
symbol_value_t tmp = sym_get_value(sym_codespace, start_sym);
vvp_cpoint_t pc = tmp.num;
if (pc == 0) {
yyerror("unresolved address");
return;
}
vthread_t thr = v_newthread(pc);
schedule_vthread(thr, 0);
free(start_sym);
}
void compile_vpi_symbol(const char*label, vpiHandle obj)
{
symbol_value_t val;
val.ptr = obj;
sym_set_value(sym_vpi, label, val);
}
vpiHandle compile_vpi_lookup(const char*label)
{
symbol_value_t val;
val = sym_get_value(sym_vpi, label);
return (vpiHandle) val.ptr;
}
/*
* A variable is a special functor, so we allocate that functor and
* write the label into the symbol table.
*/
void compile_variable(char*label, char*name, int msb, int lsb)
{
unsigned wid = ((msb > lsb)? msb-lsb : lsb-msb) + 1;
vvp_ipoint_t fdx = functor_allocate(wid);
symbol_value_t val;
val.num = fdx;
sym_set_value(sym_functors, label, val);
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
functor_t obj = functor_index(ipoint_index(fdx,idx));
obj->table = ft_var;
obj->ival = 0x22;
obj->oval = 0x02;
obj->mode = 0;
}
/* Make the vpiHandle for the reg. */
vpiHandle obj = vpip_make_reg(name, msb, lsb, fdx);
compile_vpi_symbol(label, obj);
free(label);
}
void compile_net(char*label, char*name, int msb, int lsb,
unsigned argc, struct symb_s*argv)
{
unsigned wid = ((msb > lsb)? msb-lsb : lsb-msb) + 1;
vvp_ipoint_t fdx = functor_allocate(wid);
symbol_value_t val;
val.num = fdx;
sym_set_value(sym_functors, label, val);
/* Allocate all the functors for the net itself. */
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
functor_t obj = functor_index(ipoint_index(fdx,idx));
obj->table = ft_var;
obj->ival = 0x22;
obj->oval = 0x02;
obj->mode = 0;
}
assert(argc == wid);
/* Connect port[0] of each of the net functors to the output
of the addressed object. */
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
vvp_ipoint_t ptr = ipoint_index(fdx,idx);
functor_t obj = functor_index(ptr);
val = sym_get_value(sym_functors, argv[idx].text);
if (val.num) {
functor_t src = functor_index(ipoint_index(val.num,
argv[idx].idx));
obj->port[0] = src->out;
src->out = ptr;
} else {
postpone_functor_input(ipoint_make(ptr, 0),
argv[idx].text,
argv[idx].idx);
}
}
/* Make the vpiHandle for the reg. */
vpiHandle obj = vpip_make_net(name, msb, lsb, fdx);
compile_vpi_symbol(label, obj);
free(label);
free(argv);
}
/*
* When parsing is otherwise complete, this function is called to do
* the final stuff. Clean up deferred linking here.
*/
void compile_cleanup(void)
{
struct resolv_list_s*tmp_list = resolv_list;
resolv_list = 0;
while (tmp_list) {
struct resolv_list_s*res = tmp_list;
tmp_list = res->next;
/* Get the addressed functor object and select the input
port that needs resolution. */
functor_t obj = functor_index(res->port);
unsigned idx = ipoint_port(res->port);
/* Try again to look up the symbol that was not defined
the first time around. */
symbol_value_t val = sym_get_value(sym_functors, res->source);
vvp_ipoint_t tmp = val.num;
if (tmp != 0) {
/* The symbol is defined, link the functor input
to the resolved output. */
tmp = ipoint_index(tmp, res->idx);
functor_t fport = functor_index(tmp);
obj->port[idx] = fport->out;
fport->out = res->port;
free(res->source);
free(res);
} else {
/* Still not resolved. put back into the list. */
res->next = resolv_list;
resolv_list = res;
}
}
struct cresolv_list_s*tmp_clist = cresolv_list;
cresolv_list = 0;
while (tmp_clist) {
struct cresolv_list_s*res = tmp_clist;
tmp_clist = res->next;
symbol_value_t val = sym_get_value(sym_codespace, res->lab);
vvp_cpoint_t tmp = val.num;
if (tmp != 0) {
res->cp->cptr = tmp;
free(res->lab);
} else {
fprintf(stderr, "unresolved code label: %s\n", res->lab);
res->next = cresolv_list;
cresolv_list = res;
}
}
}
void compile_dump(FILE*fd)
{
fprintf(fd, "FUNCTOR SYMBOL TABLE:\n");
sym_dump(sym_functors, fd);
fprintf(fd, "FUNCTORS:\n");
functor_dump(fd);
fprintf(fd, "UNRESOLVED PORT INPUTS:\n");
for (struct resolv_list_s*cur = resolv_list ; cur ; cur = cur->next)
fprintf(fd, " %p: %s\n", (void*)cur->port, cur->source);
fprintf(fd, "CODE SPACE SYMBOL TABLE:\n");
sym_dump(sym_codespace, fd);
fprintf(fd, "CODE SPACE DISASSEMBLY:\n");
codespace_dump(fd);
}
/*
* $Log: compile.cc,v $
* Revision 1.21 2001/03/31 17:36:02 steve
* Add the jmp/1 instruction.
*
* Revision 1.20 2001/03/31 01:59:59 steve
* Add the ADD instrunction.
*
* Revision 1.19 2001/03/30 04:55:22 steve
* Add fork and join instructions.
*
* Revision 1.18 2001/03/29 03:46:36 steve
* Support named events as mode 2 functors.
*
* Revision 1.17 2001/03/28 17:24:32 steve
* include string.h for strcmp et al.
*
* Revision 1.16 2001/03/26 04:00:39 steve
* Add the .event statement and the %wait instruction.
*
* Revision 1.15 2001/03/25 19:38:23 steve
* Support NOR and NOT gates.
*
* Revision 1.14 2001/03/25 03:54:26 steve
* Add JMP0XZ and postpone net inputs when needed.
*
* Revision 1.13 2001/03/25 00:35:35 steve
* Add the .net statement.
*
* Revision 1.12 2001/03/23 02:40:22 steve
* Add the :module header statement.
*
* Revision 1.11 2001/03/22 22:38:13 steve
* Detect undefined system tasks at compile time.
*
* Revision 1.10 2001/03/22 05:28:41 steve
* Add code label forward references.
*
* Revision 1.9 2001/03/22 05:08:00 steve
* implement %load, %inv, %jum/0 and %cmp/u
*
* Revision 1.8 2001/03/21 05:13:03 steve
* Allow var objects as vpiHandle arguments to %vpi_call.
*
* Revision 1.7 2001/03/20 06:16:24 steve
* Add support for variable vectors.
*
* Revision 1.6 2001/03/18 04:35:18 steve
* Add support for string constants to VPI.
*
* Revision 1.5 2001/03/18 00:37:55 steve
* Add support for vpi scopes.
*
* Revision 1.4 2001/03/16 01:44:34 steve
* Add structures for VPI support, and all the %vpi_call
* instruction. Get linking of VPI modules to work.
*
* Revision 1.3 2001/03/11 23:06:49 steve
* Compact the vvp_code_s structure.
*
* Revision 1.2 2001/03/11 22:42:11 steve
* Functor values and propagation.
*
* Revision 1.1 2001/03/11 00:29:38 steve
* Add the vvp engine to cvs.
*
*/