iverilog/vpi/sys_lxt.c

852 lines
21 KiB
C

/*
* Copyright (c) 2002-2023 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/* The sys_priv.h include must be before the lxt_write.h include! */
# include "sys_priv.h"
# include "lxt_write.h"
# include "vcd_priv.h"
/*
* This file contains the implementations of the LXT related functions.
*/
# include <stdio.h>
# include <stdlib.h>
# include <string.h>
# include <assert.h>
# include <time.h>
# include "stringheap.h"
# include "ivl_alloc.h"
static struct lt_trace *dump_file = NULL;
static struct t_vpi_time zero_delay = { vpiSimTime, 0, 0, 0.0 };
struct vcd_info {
vpiHandle item;
vpiHandle cb;
struct t_vpi_time time;
struct lt_symbol *sym;
struct vcd_info *next;
struct vcd_info *dmp_next;
int scheduled;
};
static struct vcd_info *vcd_list = NULL;
static struct vcd_info *vcd_dmp_list = NULL;
static PLI_UINT64 vcd_cur_time = 0;
static int dump_is_off = 0;
static long dump_limit = 0;
static int dump_is_full = 0;
static int finish_status = 0;
static enum lxm_optimum_mode_e {
LXM_NONE = 0,
LXM_SPACE = 1,
LXM_SPEED = 2
} lxm_optimum_mode = LXM_SPEED;
/*
* The lxt_scope head and current pointers are used to keep a scope
* stack that can be accessed from the bottom. The lxt_scope_head
* points to the first (bottom) item in the stack and
* lxt_scope_current points to the last (top) item in the stack. The
* push_scope and pop_scope methods manipulate the stack.
*/
struct lxt_scope
{
struct lxt_scope *next, *prev;
char *name;
int len;
};
static struct lxt_scope *lxt_scope_head=NULL, *lxt_scope_current=NULL;
static void push_scope(const char *name)
{
struct lxt_scope *t = (struct lxt_scope *)
calloc(1, sizeof(struct lxt_scope));
t->name = strdup(name);
t->len = strlen(name);
if(!lxt_scope_head) {
lxt_scope_head = lxt_scope_current = t;
} else {
lxt_scope_current->next = t;
t->prev = lxt_scope_current;
lxt_scope_current = t;
}
}
static void pop_scope(void)
{
struct lxt_scope *t;
assert(lxt_scope_current);
t=lxt_scope_current->prev;
free(lxt_scope_current->name);
free(lxt_scope_current);
lxt_scope_current = t;
if (lxt_scope_current) {
lxt_scope_current->next = 0;
} else {
lxt_scope_head = 0;
}
}
/*
* This function uses the scope stack to generate a hierarchical
* name. Scan the scope stack from the bottom up to construct the
* name.
*/
static char *create_full_name(const char *name)
{
char *n, *n2;
int len = 0;
int is_esc_id = is_escaped_id(name);
struct lxt_scope *t = lxt_scope_head;
/* Figure out how long the combined string will be. */
while(t) {
len+=t->len+1;
t=t->next;
}
len += strlen(name) + 1;
if (is_esc_id) len += 1;
/* Allocate a string buffer. */
n = n2 = malloc(len);
t = lxt_scope_head;
while(t) {
strcpy(n2, t->name);
n2 += t->len;
*n2 = '.';
n2++;
t=t->next;
}
if (is_esc_id) {
*n2 = '\\';
n2++;
}
strcpy(n2, name);
n2 += strlen(n2);
assert( (n2 - n + 1) == len );
return n;
}
static void show_this_item(struct vcd_info*info)
{
s_vpi_value value;
if (vpi_get(vpiType, info->item) == vpiRealVar) {
value.format = vpiRealVal;
vpi_get_value(info->item, &value);
lt_emit_value_double(dump_file, info->sym, 0, value.value.real);
} else {
value.format = vpiBinStrVal;
vpi_get_value(info->item, &value);
lt_emit_value_bit_string(dump_file, info->sym,
0 /* array row */,
value.value.str);
}
}
static void show_this_item_x(struct vcd_info*info)
{
if (vpi_get(vpiType,info->item) == vpiRealVar) {
/* Should write a NaN here? */
} else {
lt_emit_value_bit_string(dump_file, info->sym, 0, "x");
}
}
/*
* managed qsorted list of scope names for duplicates bsearching
*/
struct vcd_names_list_s lxt_tab;
static PLI_UINT64 dumpvars_time;
__inline__ static int dump_header_pending(void)
{
return dumpvars_status != 2;
}
/*
* This function writes out all the traced variables, whether they
* changed or not.
*/
static void vcd_checkpoint(void)
{
struct vcd_info*cur;
for (cur = vcd_list ; cur ; cur = cur->next)
show_this_item(cur);
}
static void vcd_checkpoint_x(void)
{
struct vcd_info*cur;
for (cur = vcd_list ; cur ; cur = cur->next)
show_this_item_x(cur);
}
static PLI_INT32 variable_cb_2(p_cb_data cause)
{
struct vcd_info* info = vcd_dmp_list;
PLI_UINT64 now = timerec_to_time64(cause->time);
if (now != vcd_cur_time) {
lt_set_time64(dump_file, now);
vcd_cur_time = now;
}
do {
show_this_item(info);
info->scheduled = 0;
} while ((info = info->dmp_next) != 0);
vcd_dmp_list = 0;
return 0;
}
static PLI_INT32 variable_cb_1(p_cb_data cause)
{
struct t_cb_data cb;
struct vcd_info*info = (struct vcd_info*)cause->user_data;
if (dump_is_full) return 0;
if (dump_is_off) return 0;
if (dump_header_pending()) return 0;
if (info->scheduled) return 0;
if ((dump_limit > 0) && (ftell(dump_file->handle) > dump_limit)) {
dump_is_full = 1;
vpi_printf("WARNING: Dump file limit (%ld bytes) "
"exceeded.\n", dump_limit);
return 0;
}
if (!vcd_dmp_list) {
cb = *cause;
cb.time = &zero_delay;
cb.reason = cbReadOnlySynch;
cb.cb_rtn = variable_cb_2;
vpi_register_cb(&cb);
}
info->scheduled = 1;
info->dmp_next = vcd_dmp_list;
vcd_dmp_list = info;
return 0;
}
static PLI_INT32 dumpvars_cb(p_cb_data cause)
{
if (dumpvars_status != 1) return 0;
dumpvars_status = 2;
dumpvars_time = timerec_to_time64(cause->time);
vcd_cur_time = dumpvars_time;
if (!dump_is_off) {
lt_set_time64(dump_file, dumpvars_time);
vcd_checkpoint();
}
return 0;
}
static PLI_INT32 finish_cb(p_cb_data cause)
{
struct vcd_info *cur, *next;
if (finish_status != 0) return 0;
finish_status = 1;
dumpvars_time = timerec_to_time64(cause->time);
if (!dump_is_off && !dump_is_full && dumpvars_time != vcd_cur_time) {
lt_set_time64(dump_file, dumpvars_time);
}
for (cur = vcd_list ; cur ; cur = next) {
next = cur->next;
free(cur);
}
vcd_list = 0;
vcd_names_delete(&lxt_tab);
nexus_ident_delete();
vcd_free_dump_path();
return 0;
}
__inline__ static int install_dumpvars_callback(void)
{
struct t_cb_data cb;
if (dumpvars_status == 1) return 0;
if (dumpvars_status == 2) {
vpi_printf("LXT warning: $dumpvars ignored, previously"
" called at simtime %" PLI_UINT64_FMT "\n",
dumpvars_time);
return 1;
}
cb.time = &zero_delay;
cb.reason = cbReadOnlySynch;
cb.cb_rtn = dumpvars_cb;
cb.user_data = 0x0;
cb.obj = 0x0;
vpi_register_cb(&cb);
cb.reason = cbEndOfSimulation;
cb.cb_rtn = finish_cb;
vpi_register_cb(&cb);
dumpvars_status = 1;
return 0;
}
static PLI_INT32 sys_dumpoff_calltf(ICARUS_VPI_CONST PLI_BYTE8*name)
{
s_vpi_time now;
PLI_UINT64 now64;
(void)name; /* Parameter is not used. */
if (dump_is_off) return 0;
dump_is_off = 1;
if (dump_file == 0) return 0;
if (dump_header_pending()) return 0;
now.type = vpiSimTime;
vpi_get_time(0, &now);
now64 = timerec_to_time64(&now);
if (now64 > vcd_cur_time) {
lt_set_time64(dump_file, now64);
vcd_cur_time = now64;
}
lt_set_dumpoff(dump_file);
vcd_checkpoint_x();
return 0;
}
static PLI_INT32 sys_dumpon_calltf(ICARUS_VPI_CONST PLI_BYTE8*name)
{
s_vpi_time now;
PLI_UINT64 now64;
(void)name; /* Parameter is not used. */
if (!dump_is_off) return 0;
dump_is_off = 0;
if (dump_file == 0) return 0;
if (dump_header_pending()) return 0;
now.type = vpiSimTime;
vpi_get_time(0, &now);
now64 = timerec_to_time64(&now);
if (now64 > vcd_cur_time) {
lt_set_time64(dump_file, now64);
vcd_cur_time = now64;
}
lt_set_dumpon(dump_file);
vcd_checkpoint();
return 0;
}
static PLI_INT32 sys_dumpall_calltf(ICARUS_VPI_CONST PLI_BYTE8*name)
{
s_vpi_time now;
PLI_UINT64 now64;
(void)name; /* Parameter is not used. */
if (dump_is_off) return 0;
if (dump_file == 0) return 0;
if (dump_header_pending()) return 0;
now.type = vpiSimTime;
vpi_get_time(0, &now);
now64 = timerec_to_time64(&now);
if (now64 > vcd_cur_time) {
lt_set_time64(dump_file, now64);
vcd_cur_time = now64;
}
vcd_checkpoint();
return 0;
}
static void *close_dumpfile(void)
{
lt_close(dump_file);
dump_file = NULL;
return NULL;
}
static void open_dumpfile(vpiHandle callh)
{
char* use_dump_path = vcd_get_dump_path("lxt");
dump_file = lt_init(use_dump_path);
if (dump_file == 0) {
vpi_printf("LXT Error: %s:%d: ", vpi_get_str(vpiFile, callh),
(int)vpi_get(vpiLineNo, callh));
vpi_printf("Unable to open %s for output.\n", use_dump_path);
vpip_set_return_value(1);
vpi_control(vpiFinish, 1);
vcd_free_dump_path();
return;
} else {
int prec = vpi_get(vpiTimePrecision, 0);
vpi_printf("LXT info: dumpfile %s opened for output.\n",
use_dump_path);
assert(prec >= -15);
lt_set_timescale(dump_file, prec);
lt_set_initial_value(dump_file, 'x');
lt_set_clock_compress(dump_file);
atexit((void(*)(void))close_dumpfile);
}
}
static PLI_INT32 sys_dumpfile_calltf(ICARUS_VPI_CONST PLI_BYTE8*name)
{
(void)name;
return sys_dumpfile_common("LXT", "lxt");
}
/*
* The LXT1 format has no concept of file flushing.
*/
static PLI_INT32 sys_dumpflush_calltf(ICARUS_VPI_CONST PLI_BYTE8*name)
{
(void)name; /* Parameter is not used. */
return 0;
}
static PLI_INT32 sys_dumplimit_calltf(ICARUS_VPI_CONST PLI_BYTE8 *name)
{
vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
vpiHandle argv = vpi_iterate(vpiArgument, callh);
s_vpi_value val;
(void)name; /* Parameter is not used. */
/* Get the value and set the dump limit. */
val.format = vpiIntVal;
vpi_get_value(vpi_scan(argv), &val);
dump_limit = val.value.integer;
vpi_free_object(argv);
return 0;
}
static void scan_item(unsigned depth, vpiHandle item, int skip)
{
struct t_cb_data cb;
struct vcd_info* info;
const char* name;
const char* ident;
int nexus_id;
switch (vpi_get(vpiType, item)) {
case vpiMemoryWord:
if (vpi_get(vpiConstantSelect, item) == 0) {
/* Turn a non-constant array word select into a
* constant word select. */
vpiHandle array = vpi_handle(vpiParent, item);
PLI_INT32 idx = vpi_get(vpiIndex, item);
item = vpi_handle_by_index(array, idx);
}
// fallthrough
case vpiIntegerVar:
case vpiBitVar:
case vpiByteVar:
case vpiShortIntVar:
case vpiIntVar:
case vpiLongIntVar:
case vpiTimeVar:
case vpiReg:
case vpiNet:
/* An array word is implicitly escaped so look for an
* escaped identifier that this could conflict with. */
if (vpi_get(vpiType, item) == vpiMemoryWord &&
vpi_handle_by_name(vpi_get_str(vpiFullName, item), 0)) {
vpi_printf("LXT warning: dumping array word %s will "
"conflict with an escaped identifier.\n",
vpi_get_str(vpiFullName, item));
}
if (skip || vpi_get(vpiAutomatic, item)) break;
name = vpi_get_str(vpiName, item);
nexus_id = vpi_get(_vpiNexusId, item);
if (nexus_id) {
ident = find_nexus_ident(nexus_id);
} else {
ident = 0;
}
if (!ident) {
char*tmp = create_full_name(name);
ident = strdup_sh(&name_heap, tmp);
free(tmp);
if (nexus_id) set_nexus_ident(nexus_id, ident);
info = malloc(sizeof(*info));
info->time.type = vpiSimTime;
info->item = item;
info->sym = lt_symbol_add(dump_file, ident,
0 /* array rows */,
vpi_get(vpiLeftRange, item),
vpi_get(vpiRightRange, item),
LT_SYM_F_BITS);
info->scheduled = 0;
cb.time = &info->time;
cb.user_data = (char*)info;
cb.value = NULL;
cb.obj = item;
cb.reason = cbValueChange;
cb.cb_rtn = variable_cb_1;
info->next = vcd_list;
vcd_list = info;
info->cb = vpi_register_cb(&cb);
} else {
char *n = create_full_name(name);
lt_symbol_alias(dump_file, ident, n,
vpi_get(vpiSize, item)-1, 0);
free(n);
}
break;
case vpiRealVar:
if (skip || vpi_get(vpiAutomatic, item)) break;
name = vpi_get_str(vpiName, item);
{ char*tmp = create_full_name(name);
ident = strdup_sh(&name_heap, tmp);
free(tmp);
}
info = malloc(sizeof(*info));
info->time.type = vpiSimTime;
info->item = item;
info->sym = lt_symbol_add(dump_file, ident,
0 /* array rows */,
vpi_get(vpiSize, item)-1,
0, LT_SYM_F_DOUBLE);
info->scheduled = 0;
cb.time = &info->time;
cb.user_data = (char*)info;
cb.value = NULL;
cb.obj = item;
cb.reason = cbValueChange;
cb.cb_rtn = variable_cb_1;
info->next = vcd_list;
vcd_list = info;
info->cb = vpi_register_cb(&cb);
break;
case vpiModule:
case vpiGenScope:
case vpiFunction:
case vpiTask:
case vpiNamedBegin:
case vpiNamedFork:
if (depth > 0) {
const char* fullname = vpi_get_str(vpiFullName, item);
/* list of types to iterate upon */
static int types[] = {
/* Value */
/* vpiNamedEvent, */
vpiNet,
/* vpiParameter, */
vpiReg,
vpiVariables,
/* Scope */
vpiFunction,
vpiGenScope,
vpiModule,
vpiNamedBegin,
vpiNamedFork,
vpiTask,
-1
};
int i;
int nskip = (vcd_names_search(&lxt_tab, fullname) != 0);
#if 0
vpi_printf("LXT info: scanning scope %s, %u levels\n",
fullname, depth);
#endif
if (nskip) {
vpi_printf("LXT warning: ignoring signals in "
"previously scanned scope %s\n", fullname);
} else {
vcd_names_add(&lxt_tab, fullname);
}
name = vpi_get_str(vpiName, item);
push_scope(name);
for (i=0; types[i]>0; i++) {
vpiHandle hand;
vpiHandle argv = vpi_iterate(types[i], item);
while (argv && (hand = vpi_scan(argv))) {
scan_item(depth-1, hand, nskip);
}
}
pop_scope();
}
break;
case vpiPackage: /* Skipped */
vpi_printf("LXT warning: $dumpvars: Package (%s) is not dumpable "
"with LXT.\n", vpi_get_str(vpiFullName, item));
break;
default:
vpi_printf("LXT warning: $dumpvars: Unsupported parameter "
"type (%s).\n", vpi_get_str(vpiType, item));
}
}
static int draw_scope(vpiHandle item)
{
int depth;
const char *name;
vpiHandle scope = vpi_handle(vpiScope, item);
if (!scope) return 0;
depth = 1 + draw_scope(scope);
name = vpi_get_str(vpiName, scope);
push_scope(name);
return depth;
}
static PLI_INT32 sys_dumpvars_calltf(ICARUS_VPI_CONST PLI_BYTE8*name)
{
vpiHandle callh = vpi_handle(vpiSysTfCall, 0);
vpiHandle argv = vpi_iterate(vpiArgument, callh);
vpiHandle item;
s_vpi_value value;
unsigned depth = 0;
(void)name; /* Parameter is not used. */
if (dump_file == 0) {
open_dumpfile(callh);
if (dump_file == 0) {
if (argv) vpi_free_object(argv);
return 0;
}
}
if (install_dumpvars_callback()) {
if (argv) vpi_free_object(argv);
return 0;
}
/* Get the depth if it exists. */
if (argv) {
value.format = vpiIntVal;
vpi_get_value(vpi_scan(argv), &value);
depth = value.value.integer;
}
if (!depth) depth = 10000;
/* This dumps all the instances in the design if none are given. */
if (!argv || !(item = vpi_scan(argv))) {
argv = vpi_iterate(vpiInstance, 0x0);
assert(argv); /* There must be at least one top level instance. */
item = vpi_scan(argv);
}
for ( ; item; item = vpi_scan(argv)) {
int dep = draw_scope(item);
scan_item(depth, item, 0);
/* The scope list must be sorted after we scan an item. */
vcd_names_sort(&lxt_tab);
while (dep--) pop_scope();
}
/* Most effective compression. */
if (lxm_optimum_mode == LXM_SPACE) {
lt_set_no_interlace(dump_file);
}
return 0;
}
void sys_lxt_register(void)
{
int idx;
struct t_vpi_vlog_info vlog_info;
s_vpi_systf_data tf_data;
vpiHandle res;
/* Scan the extended arguments, looking for lxt optimization flags. */
vpi_get_vlog_info(&vlog_info);
/* The "speed" option is not used in this dumper. */
for (idx = 0 ; idx < vlog_info.argc ; idx += 1) {
if (strcmp(vlog_info.argv[idx],"-lxt-space") == 0) {
lxm_optimum_mode = LXM_SPACE;
} else if (strcmp(vlog_info.argv[idx],"-lxt-speed") == 0) {
lxm_optimum_mode = LXM_SPEED;
}
}
/* All the compiletf routines are located in vcd_priv.c. */
tf_data.type = vpiSysTask;
tf_data.tfname = "$dumpall";
tf_data.calltf = sys_dumpall_calltf;
tf_data.compiletf = sys_no_arg_compiletf;
tf_data.sizetf = 0;
tf_data.user_data = "$dumpall";
res = vpi_register_systf(&tf_data);
vpip_make_systf_system_defined(res);
tf_data.type = vpiSysTask;
tf_data.tfname = "$dumpfile";
tf_data.calltf = sys_dumpfile_calltf;
tf_data.compiletf = sys_one_string_arg_compiletf;
tf_data.sizetf = 0;
tf_data.user_data = "$dumpfile";
res = vpi_register_systf(&tf_data);
vpip_make_systf_system_defined(res);
tf_data.type = vpiSysTask;
tf_data.tfname = "$dumpflush";
tf_data.calltf = sys_dumpflush_calltf;
tf_data.compiletf = sys_no_arg_compiletf;
tf_data.sizetf = 0;
tf_data.user_data = "$dumpflush";
res = vpi_register_systf(&tf_data);
vpip_make_systf_system_defined(res);
tf_data.type = vpiSysTask;
tf_data.tfname = "$dumplimit";
tf_data.calltf = sys_dumplimit_calltf;
tf_data.compiletf = sys_one_numeric_arg_compiletf;
tf_data.sizetf = 0;
tf_data.user_data = "$dumplimit";
res = vpi_register_systf(&tf_data);
vpip_make_systf_system_defined(res);
tf_data.type = vpiSysTask;
tf_data.tfname = "$dumpoff";
tf_data.calltf = sys_dumpoff_calltf;
tf_data.compiletf = sys_no_arg_compiletf;
tf_data.sizetf = 0;
tf_data.user_data = "$dumpoff";
res = vpi_register_systf(&tf_data);
vpip_make_systf_system_defined(res);
tf_data.type = vpiSysTask;
tf_data.tfname = "$dumpon";
tf_data.calltf = sys_dumpon_calltf;
tf_data.compiletf = sys_no_arg_compiletf;
tf_data.sizetf = 0;
tf_data.user_data = "$dumpon";
res = vpi_register_systf(&tf_data);
vpip_make_systf_system_defined(res);
tf_data.type = vpiSysTask;
tf_data.tfname = "$dumpvars";
tf_data.calltf = sys_dumpvars_calltf;
tf_data.compiletf = sys_dumpvars_compiletf;
tf_data.sizetf = 0;
tf_data.user_data = "$dumpvars";
res = vpi_register_systf(&tf_data);
vpip_make_systf_system_defined(res);
}