iverilog/elab_type.cc

260 lines
7.2 KiB
C++

/*
* Copyright (c) 2012-2014 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "pform_types.h"
# include "netlist.h"
# include "netclass.h"
# include "netdarray.h"
# include "netenum.h"
# include "netparray.h"
# include "netscalar.h"
# include "netstruct.h"
# include "netvector.h"
# include "netmisc.h"
# include <typeinfo>
# include "ivl_assert.h"
using namespace std;
/*
* Some types have a list of ranges that need to be elaborated. This
* function elaborates the ranges referenced by "dims" into the vector
* "ranges".
*/
static void elaborate_array_ranges(Design*des, NetScope*scope,
vector<netrange_t>&ranges,
const list<pform_range_t>*dims)
{
if (dims == 0)
return;
for (list<pform_range_t>::const_iterator cur = dims->begin()
; cur != dims->end() ; ++ cur) {
NetExpr*me = elab_and_eval(des, scope, cur->first, 0, true);
NetExpr*le = elab_and_eval(des, scope, cur->second, 0, true);
/* If elaboration failed for either expression, we
should have already reported the error, so just
skip the following evaluation to recover. */
long mnum = 0, lnum = 0;
if ( me && ! eval_as_long(mnum, me) ) {
assert(0);
des->errors += 1;
}
if ( le && ! eval_as_long(lnum, le) ) {
assert(0);
des->errors += 1;
}
ranges.push_back(netrange_t(mnum, lnum));
}
}
/*
* Elaborations of types may vary depending on the scope that it is
* done in, so keep a per-scope cache of the results.
*/
ivl_type_s* data_type_t::elaborate_type(Design*des, NetScope*scope)
{
Definitions*use_definitions = scope;
if (use_definitions == 0)
use_definitions = des;
map<Definitions*,ivl_type_s*>::iterator pos = cache_type_elaborate_.lower_bound(use_definitions);
if (pos != cache_type_elaborate_.end() && pos->first == use_definitions)
return pos->second;
ivl_type_s*tmp = elaborate_type_raw(des, scope);
cache_type_elaborate_.insert(pos, pair<NetScope*,ivl_type_s*>(scope, tmp));
return tmp;
}
ivl_type_s* data_type_t::elaborate_type_raw(Design*des, NetScope*) const
{
cerr << get_fileline() << ": internal error: "
<< "Elaborate method not implemented for " << typeid(*this).name()
<< "." << endl;
des->errors += 1;
return 0;
}
ivl_type_s* atom2_type_t::elaborate_type_raw(Design*des, NetScope*) const
{
switch (type_code) {
case 64:
if (signed_flag)
return &netvector_t::atom2s64;
else
return &netvector_t::atom2u64;
case 32:
if (signed_flag)
return &netvector_t::atom2s32;
else
return &netvector_t::atom2u32;
case 16:
if (signed_flag)
return &netvector_t::atom2s16;
else
return &netvector_t::atom2u16;
case 8:
if (signed_flag)
return &netvector_t::atom2s8;
else
return &netvector_t::atom2u8;
default:
cerr << get_fileline() << ": internal error: "
<< "atom2_type_t type_code=" << type_code << "." << endl;
des->errors += 1;
return 0;
}
}
ivl_type_s* class_type_t::elaborate_type_raw(Design*, NetScope*) const
{
ivl_assert(*this, save_elaborated_type);
return save_elaborated_type;
}
/*
* elaborate_type_raw for enumerations is actually mostly performed
* during scope elaboration so that the enumeration literals are
* available at the right time. At that time, the netenum_t* object is
* stashed in the scope so that I can retrieve it here.
*/
ivl_type_s* enum_type_t::elaborate_type_raw(Design*des, NetScope*scope) const
{
ivl_assert(*this, scope);
ivl_type_s*tmp = scope->enumeration_for_key(this);
if (tmp) return tmp;
tmp = des->enumeration_for_key(this);
return tmp;
}
ivl_type_s* vector_type_t::elaborate_type_raw(Design*des, NetScope*scope) const
{
vector<netrange_t> packed;
elaborate_array_ranges(des, scope, packed, pdims.get());
netvector_t*tmp = new netvector_t(packed, base_type);
tmp->set_signed(signed_flag);
tmp->set_isint(integer_flag);
return tmp;
}
ivl_type_s* real_type_t::elaborate_type_raw(Design*, NetScope*) const
{
switch (type_code) {
case REAL:
return &netreal_t::type_real;
case SHORTREAL:
return &netreal_t::type_shortreal;
}
return 0;
}
ivl_type_s* string_type_t::elaborate_type_raw(Design*, NetScope*) const
{
return &netstring_t::type_string;
}
ivl_type_s* parray_type_t::elaborate_type_raw(Design*des, NetScope*scope) const
{
vector<netrange_t>packed;
elaborate_array_ranges(des, scope, packed, dims.get());
ivl_type_t etype = base_type->elaborate_type(des, scope);
return new netparray_t(packed, etype);
}
netstruct_t* struct_type_t::elaborate_type_raw(Design*des, NetScope*scope) const
{
netstruct_t*res = new netstruct_t;
res->packed(packed_flag);
if (union_flag)
res->union_flag(true);
for (list<struct_member_t*>::iterator cur = members->begin()
; cur != members->end() ; ++ cur) {
// Elaborate the type of the member.
struct_member_t*curp = *cur;
ivl_type_t mem_vec = curp->type->elaborate_type(des, scope);
if (mem_vec == 0)
continue;
// There may be several names that are the same type:
// <data_type> name1, name2, ...;
// Process all the member, and give them a type.
for (list<decl_assignment_t*>::iterator name = curp->names->begin()
; name != curp->names->end() ; ++ name) {
decl_assignment_t*namep = *name;
netstruct_t::member_t memb;
memb.name = namep->name;
memb.net_type = mem_vec;
res->append_member(des, memb);
}
}
return res;
}
ivl_type_s* uarray_type_t::elaborate_type_raw(Design*des, NetScope*scope) const
{
ivl_type_t btype = base_type->elaborate_type(des, scope);
assert(dims->size() >= 1);
list<pform_range_t>::const_iterator cur = dims->begin();
// Special case: if the dimension is nil:nil, this is a
// dynamic array. Note that we only know how to handle dynamic
// arrays with 1 dimension at a time.
if (cur->first==0 && cur->second==0) {
assert(dims->size()==1);
ivl_type_s*res = new netdarray_t(btype);
return res;
}
vector<netrange_t> dimensions;
bool bad_range = evaluate_ranges(des, scope, dimensions, *dims);
if (bad_range) {
cerr << get_fileline() << " : warning: "
<< "Bad dimensions for type here." << endl;
}
ivl_assert(*this, btype);
ivl_type_s*res = new netuarray_t(dimensions, btype);
return res;
}