iverilog/emit.cc

612 lines
13 KiB
C++

/*
* Copyright (c) 1998-2005 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#ifdef HAVE_CVS_IDENT
#ident "$Id: emit.cc,v 1.88 2006/11/10 05:44:44 steve Exp $"
#endif
# include "config.h"
# include <iostream>
/*
* The emit function is called to generate the output required of the
* target.
*/
# include "target.h"
# include "netlist.h"
# include <typeinfo>
# include <cassert>
bool NetNode::emit_node(struct target_t*tgt) const
{
cerr << "EMIT: Gate type? " << typeid(*this).name() << endl;
return false;
}
bool NetLogic::emit_node(struct target_t*tgt) const
{
tgt->logic(this);
return true;
}
bool NetUDP::emit_node(struct target_t*tgt) const
{
tgt->udp(this);
return true;
}
bool NetAddSub::emit_node(struct target_t*tgt) const
{
tgt->lpm_add_sub(this);
return true;
}
bool NetCaseCmp::emit_node(struct target_t*tgt) const
{
tgt->net_case_cmp(this);
return true;
}
bool NetCLShift::emit_node(struct target_t*tgt) const
{
tgt->lpm_clshift(this);
return true;
}
bool NetCompare::emit_node(struct target_t*tgt) const
{
tgt->lpm_compare(this);
return true;
}
bool NetConcat::emit_node(struct target_t*tgt) const
{
return tgt->concat(this);
}
bool NetConst::emit_node(struct target_t*tgt) const
{
return tgt->net_const(this);
}
bool NetDivide::emit_node(struct target_t*tgt) const
{
tgt->lpm_divide(this);
return true;
}
bool NetFF::emit_node(struct target_t*tgt) const
{
tgt->lpm_ff(this);
return true;
}
bool NetLiteral::emit_node(struct target_t*tgt) const
{
return tgt->net_literal(this);
}
bool NetModulo::emit_node(struct target_t*tgt) const
{
tgt->lpm_modulo(this);
return true;
}
bool NetMult::emit_node(struct target_t*tgt) const
{
tgt->lpm_mult(this);
return true;
}
bool NetMux::emit_node(struct target_t*tgt) const
{
tgt->lpm_mux(this);
return true;
}
bool NetPartSelect::emit_node(struct target_t*tgt) const
{
return tgt->part_select(this);
}
bool NetRamDq::emit_node(struct target_t*tgt) const
{
tgt->lpm_ram_dq(this);
return true;
}
bool NetReplicate::emit_node(struct target_t*tgt) const
{
return tgt->replicate(this);
}
bool NetSignExtend::emit_node(struct target_t*tgt) const
{
return tgt->sign_extend(this);
}
bool NetUReduce::emit_node(struct target_t*tgt) const
{
return tgt->ureduce(this);
}
bool NetSysFunc::emit_node(struct target_t*tgt) const
{
return tgt->net_sysfunction(this);
}
bool NetUserFunc::emit_node(struct target_t*tgt) const
{
return tgt->net_function(this);
}
bool NetBUFZ::emit_node(struct target_t*tgt) const
{
return tgt->bufz(this);
}
bool NetProcTop::emit(struct target_t*tgt) const
{
return tgt->process(this);
}
bool NetProc::emit_proc(struct target_t*tgt) const
{
cerr << "EMIT: Proc type? " << typeid(*this).name() << endl;
return false;
}
bool NetAssign::emit_proc(struct target_t*tgt) const
{
tgt->proc_assign(this);
return true;
}
bool NetAssignNB::emit_proc(struct target_t*tgt) const
{
tgt->proc_assign_nb(this);
return true;
}
bool NetBlock::emit_proc(struct target_t*tgt) const
{
return tgt->proc_block(this);
}
bool NetCase::emit_proc(struct target_t*tgt) const
{
tgt->proc_case(this);
return true;
}
bool NetCAssign::emit_proc(struct target_t*tgt) const
{
return tgt->proc_cassign(this);
}
bool NetCondit::emit_proc(struct target_t*tgt) const
{
return tgt->proc_condit(this);
}
bool NetDeassign::emit_proc(struct target_t*tgt) const
{
return tgt->proc_deassign(this);
}
bool NetDisable::emit_proc(struct target_t*tgt) const
{
return tgt->proc_disable(this);
}
bool NetForce::emit_proc(struct target_t*tgt) const
{
return tgt->proc_force(this);
}
bool NetForever::emit_proc(struct target_t*tgt) const
{
tgt->proc_forever(this);
return true;
}
bool NetPDelay::emit_proc(struct target_t*tgt) const
{
return tgt->proc_delay(this);
}
bool NetPDelay::emit_proc_recurse(struct target_t*tgt) const
{
if (statement_) return statement_->emit_proc(tgt);
return true;
}
bool NetRelease::emit_proc(struct target_t*tgt) const
{
return tgt->proc_release(this);
}
bool NetRepeat::emit_proc(struct target_t*tgt) const
{
tgt->proc_repeat(this);
return true;
}
bool NetSTask::emit_proc(struct target_t*tgt) const
{
tgt->proc_stask(this);
return true;
}
bool NetUTask::emit_proc(struct target_t*tgt) const
{
tgt->proc_utask(this);
return true;
}
bool NetWhile::emit_proc(struct target_t*tgt) const
{
tgt->proc_while(this);
return true;
}
void NetBlock::emit_recurse(struct target_t*tgt) const
{
if (last_ == 0)
return;
NetProc*cur = last_;
do {
cur = cur->next_;
cur->emit_proc(tgt);
} while (cur != last_);
}
bool NetCondit::emit_recurse_if(struct target_t*tgt) const
{
if (if_)
return if_->emit_proc(tgt);
else
return true;
}
bool NetCondit::emit_recurse_else(struct target_t*tgt) const
{
if (else_)
return else_->emit_proc(tgt);
else
return true;
}
bool NetEvProbe::emit_node(struct target_t*tgt) const
{
tgt->net_probe(this);
return true;
}
bool NetEvTrig::emit_proc(struct target_t*tgt) const
{
return tgt->proc_trigger(this);
}
bool NetEvWait::emit_proc(struct target_t*tgt) const
{
return tgt->proc_wait(this);
}
bool NetEvWait::emit_recurse(struct target_t*tgt) const
{
if (!statement_) return true;
return statement_->emit_proc(tgt);
}
void NetForever::emit_recurse(struct target_t*tgt) const
{
if (statement_)
statement_->emit_proc(tgt);
}
void NetRepeat::emit_recurse(struct target_t*tgt) const
{
if (statement_)
statement_->emit_proc(tgt);
}
void NetScope::emit_scope(struct target_t*tgt) const
{
tgt->scope(this);
for (NetEvent*cur = events_ ; cur ; cur = cur->snext_)
tgt->event(cur);
for (NetScope*cur = sub_ ; cur ; cur = cur->sib_)
cur->emit_scope(tgt);
if (signals_) {
NetNet*cur = signals_->sig_next_;
do {
tgt->signal(cur);
cur = cur->sig_next_;
} while (cur != signals_->sig_next_);
/* Run the signals again, but this time to connect the
delay paths. This is done as a second pass because
the paths reference other signals that may be later
in the list. We can do it here becase delay paths are
always connected within the scope. */
cur = signals_->sig_next_;
do {
tgt->signal_paths(cur);
cur = cur->sig_next_;
} while (cur != signals_->sig_next_);
}
if (memories_) {
NetMemory*cur = memories_->snext_;
do {
tgt->memory(cur);
cur = cur->snext_;
} while (cur != memories_->snext_);
}
}
bool NetScope::emit_defs(struct target_t*tgt) const
{
bool flag = true;
switch (type_) {
case MODULE:
for (NetScope*cur = sub_ ; cur ; cur = cur->sib_)
flag &= cur->emit_defs(tgt);
break;
case FUNC:
flag &= tgt->func_def(this);
break;
case TASK:
tgt->task_def(this);
break;
default: /* BEGIN_END and FORK_JOIN, do nothing */
break;
}
return flag;
}
void NetWhile::emit_proc_recurse(struct target_t*tgt) const
{
proc_->emit_proc(tgt);
}
int Design::emit(struct target_t*tgt) const
{
int rc = 0;
if (tgt->start_design(this) == false)
return -2;
// enumerate the scopes
for (list<NetScope*>::const_iterator scope = root_scopes_.begin();
scope != root_scopes_.end(); scope++)
(*scope)->emit_scope(tgt);
// emit nodes
bool nodes_rc = true;
if (nodes_) {
NetNode*cur = nodes_->node_next_;
do {
nodes_rc = nodes_rc && cur->emit_node(tgt);
cur = cur->node_next_;
} while (cur != nodes_->node_next_);
}
// emit task and function definitions
bool tasks_rc = true;
for (list<NetScope*>::const_iterator scope = root_scopes_.begin();
scope != root_scopes_.end(); scope++)
tasks_rc &= (*scope)->emit_defs(tgt);
// emit the processes
bool proc_rc = true;
for (const NetProcTop*idx = procs_ ; idx ; idx = idx->next_)
proc_rc &= idx->emit(tgt);
rc = tgt->end_design(this);
if (nodes_rc == false)
return -1;
if (tasks_rc == false)
return -2;
if (proc_rc == false)
return -3;
return rc;
}
void NetEBinary::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_binary(this);
}
void NetEConcat::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_concat(this);
}
void NetEConst::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_const(this);
}
void NetEConstParam::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_param(this);
}
void NetECReal::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_creal(this);
}
void NetECRealParam::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_rparam(this);
}
void NetEMemory::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_memory(this);
}
void NetEParam::expr_scan(struct expr_scan_t*tgt) const
{
cerr << get_line() << ":internal error: unexpected NetEParam."
<< endl;
}
void NetEEvent::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_event(this);
}
void NetEScope::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_scope(this);
}
void NetESelect::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_select(this);
}
void NetESFunc::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_sfunc(this);
}
void NetEUFunc::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_ufunc(this);
}
void NetESignal::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_signal(this);
}
void NetETernary::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_ternary(this);
}
void NetEUnary::expr_scan(struct expr_scan_t*tgt) const
{
tgt->expr_unary(this);
}
int emit(const Design*des, const char*type)
{
for (unsigned idx = 0 ; target_table[idx] ; idx += 1) {
const struct target*tgt = target_table[idx];
if (strcmp(tgt->name, type) == 0)
return des->emit(tgt->meth);
}
cerr << "error: Code generator type " << type
<< " not found." << endl;
return -1;
}
/*
* $Log: emit.cc,v $
* Revision 1.88 2006/11/10 05:44:44 steve
* Process delay paths in second path over signals.
*
* Revision 1.87 2006/06/18 04:15:50 steve
* Add support for system functions in continuous assignments.
*
* Revision 1.86 2005/07/11 16:56:50 steve
* Remove NetVariable and ivl_variable_t structures.
*
* Revision 1.85 2005/07/07 16:22:49 steve
* Generalize signals to carry types.
*
* Revision 1.84 2005/05/24 01:44:27 steve
* Do sign extension of structuran nets.
*
* Revision 1.83 2005/02/08 00:12:36 steve
* Add the NetRepeat node, and code generator support.
*
* Revision 1.82 2005/02/03 04:56:20 steve
* laborate reduction gates into LPM_RED_ nodes.
*
* Revision 1.81 2005/01/24 05:28:30 steve
* Remove the NetEBitSel and combine all bit/part select
* behavior into the NetESelect node and IVL_EX_SELECT
* ivl_target expression type.
*
* Revision 1.80 2005/01/22 01:06:55 steve
* Change case compare from logic to an LPM node.
*
* Revision 1.79 2004/12/29 23:55:43 steve
* Unify elaboration of l-values for all proceedural assignments,
* including assing, cassign and force.
*
* Generate NetConcat devices for gate outputs that feed into a
* vector results. Use this to hande gate arrays. Also let gate
* arrays handle vectors of gates when the outputs allow for it.
*
* Revision 1.78 2004/12/11 02:31:26 steve
* Rework of internals to carry vectors through nexus instead
* of single bits. Make the ivl, tgt-vvp and vvp initial changes
* down this path.
*
* Revision 1.77 2004/10/04 01:10:53 steve
* Clean up spurious trailing white space.
*
* Revision 1.76 2004/05/31 23:34:37 steve
* Rewire/generalize parsing an elaboration of
* function return values to allow for better
* speed and more type support.
*
* Revision 1.75 2003/09/13 01:30:07 steve
* Missing case warnings.
*
* Revision 1.74 2003/05/30 02:55:32 steve
* Support parameters in real expressions and
* as real expressions, and fix multiply and
* divide with real results.
*
* Revision 1.73 2003/04/22 04:48:29 steve
* Support event names as expressions elements.
*
* Revision 1.72 2003/03/10 23:40:53 steve
* Keep parameter constants for the ivl_target API.
*
* Revision 1.71 2003/01/26 21:15:58 steve
* Rework expression parsing and elaboration to
* accommodate real/realtime values and expressions.
*/