iverilog/vvp/resolv.cc

346 lines
9.5 KiB
C++

/*
* Copyright (c) 2001-2021 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "resolv.h"
# include "schedule.h"
# include "compile.h"
# include "statistics.h"
# include <iostream>
# include <algorithm>
# include <cassert>
using namespace std;
/*
* The core functor for a resolver node stores all the input values
* received by that node. This provides the necessary information
* for implementing the $countdrivers system call. For efficiency,
* the resolver is implemented using a balanced quaternary tree, so
* the core functor also stores the current value for each branch
* of the tree, to eliminate the need to re-evaluate branches whose
* inputs haven't changed. The tree values are flattened into a linear
* array, with the input values stored at the start of the array, then
* the next level of branch values, and so on, down to the final array
* array element which stores the current output value.
*/
resolv_core::resolv_core(unsigned nports, vvp_net_t*net)
: nports_(nports), net_(net)
{
count_functors_resolv += 1;
}
resolv_core::~resolv_core()
{
}
void resolv_core::recv_vec4_pv_(unsigned port, const vvp_vector4_t&bit,
unsigned base, unsigned vwid)
{
unsigned wid = bit.size();
vvp_vector4_t res (vwid);
for (unsigned idx = 0 ; idx < base ; idx += 1)
res.set_bit(idx, BIT4_Z);
for (unsigned idx = 0 ; idx < wid && idx+base < vwid; idx += 1)
res.set_bit(idx+base, bit.value(idx));
for (unsigned idx = base+wid ; idx < vwid ; idx += 1)
res.set_bit(idx, BIT4_Z);
recv_vec4_(port, res);
}
void resolv_core::recv_vec8_pv_(unsigned port, const vvp_vector8_t&bit,
unsigned base, unsigned vwid)
{
unsigned wid = bit.size();
vvp_vector8_t res (vwid);
for (unsigned idx = 0 ; idx < base ; idx += 1)
res.set_bit(idx, vvp_scalar_t());
for (unsigned idx = 0 ; idx < wid && idx+base < vwid; idx += 1)
res.set_bit(idx+base, bit.value(idx));
for (unsigned idx = base+wid ; idx < vwid ; idx += 1)
res.set_bit(idx, vvp_scalar_t());
recv_vec8_(port, res);
}
resolv_extend::resolv_extend(resolv_core*core, unsigned port_base)
: core_(core), port_base_(port_base)
{
}
resolv_extend::~resolv_extend()
{
}
resolv_tri::resolv_tri(unsigned nports, vvp_net_t*net, vvp_scalar_t hiz_value)
: resolv_core(nports, net), hiz_value_(hiz_value)
{
// count the input (leaf) nodes
unsigned nnodes = nports;
// add in the intermediate branch nodes
while (nports > 4) {
nports = (nports + 3) / 4;
nnodes += nports;
}
// add one more node for storing the output value
// (not needed if there is only one input)
if (nnodes > 1)
nnodes += 1;
val_ = new vvp_vector8_t [nnodes];
}
resolv_tri::~resolv_tri()
{
delete[] val_;
}
void resolv_tri::recv_vec4_(unsigned port, const vvp_vector4_t&bit)
{
recv_vec8_(port, vvp_vector8_t(bit, 6,6 /* STRONG */));
}
void resolv_tri::recv_vec8_(unsigned port, const vvp_vector8_t&bit)
{
assert(port < nports_);
if (val_[port].eeq(bit))
return;
val_[port] = bit;
// Starting at the leaf level, work down the tree, resolving
// the changed values. base is the first node in the current
// level and span is the number of nodes at that level. ip
// is the first node in the group of four nodes at that level
// that include the node that has changed, and op is the node
// at the next level that stores the resolved value from that
// group.
unsigned base = 0;
unsigned span = nports_;
while (span > 1) {
unsigned next_base = base + span;
unsigned ip = base + (port & ~0x3);
unsigned op = next_base + (port / 4);
unsigned ll = min(ip + 4, next_base);
vvp_vector8_t out = val_[ip];
for (ip = ip + 1; ip < ll; ip += 1) {
if (val_[ip].size() == 0)
continue;
if (out.size() == 0)
out = val_[ip];
else
out = resolve(out, val_[ip]);
}
if (val_[op].eeq(out))
return;
val_[op] = out;
base = next_base;
span = (span + 3) / 4;
port = port / 4;
}
if (! hiz_value_.is_hiz()) {
for (unsigned idx = 0 ; idx < val_[base].size() ; idx += 1) {
val_[base].set_bit(idx, resolve(val_[base].value(idx),
hiz_value_));
}
}
net_->send_vec8(val_[base]);
}
void resolv_tri::count_drivers(unsigned bit_idx, unsigned counts[3])
{
for (unsigned idx = 0 ; idx < nports_ ; idx += 1) {
if (val_[idx].size() == 0)
continue;
update_driver_counts(val_[idx].value(bit_idx).value(), counts);
}
}
resolv_wired_logic::resolv_wired_logic(unsigned nports, vvp_net_t*net)
: resolv_core(nports, net)
{
// count the input (leaf) nodes
unsigned nnodes = nports;
// add in the intermediate branch nodes
while (nports > 4) {
nports = (nports + 3) / 4;
nnodes += nports;
}
// add one more node for storing the output value
// (not needed if there is only one input)
if (nnodes > 1)
nnodes += 1;
val_ = new vvp_vector4_t [nnodes];
}
resolv_wired_logic::~resolv_wired_logic()
{
delete[] val_;
}
void resolv_wired_logic::recv_vec4_(unsigned port, const vvp_vector4_t&bit)
{
assert(port < nports_);
if (val_[port].eeq(bit))
return;
val_[port] = bit;
// Starting at the leaf level, work down the tree, resolving
// the changed values. base is the first node in the current
// level and span is the number of nodes at that level. ip
// is the first node in the group of four nodes at that level
// that include the node that has changed, and op is the node
// at the next level that stores the resolved value from that
// group.
unsigned base = 0;
unsigned span = nports_;
while (span > 1) {
unsigned next_base = base + span;
unsigned ip = base + (port & ~0x3);
unsigned op = next_base + (port / 4);
unsigned ll = min(ip + 4, next_base);
vvp_vector4_t out = val_[ip];
for (ip = ip + 1; ip < ll; ip += 1) {
if (val_[ip].size() == 0)
continue;
if (out.size() == 0)
out = val_[ip];
else
out = wired_logic_math_(out, val_[ip]);
}
if (val_[op].eeq(out))
return;
val_[op] = out;
base = next_base;
span = (span + 3) / 4;
port = port / 4;
}
net_->send_vec4(val_[base], 0);
}
void resolv_wired_logic::recv_vec8_(unsigned port, const vvp_vector8_t&bit)
{
recv_vec4_(port, reduce4(bit));
}
void resolv_wired_logic::count_drivers(unsigned bit_idx, unsigned counts[3])
{
for (unsigned idx = 0 ; idx < nports_ ; idx += 1) {
if (val_[idx].size() == 0)
continue;
update_driver_counts(val_[idx].value(bit_idx), counts);
}
}
resolv_triand::resolv_triand(unsigned nports, vvp_net_t*net)
: resolv_wired_logic(nports, net)
{
}
resolv_triand::~resolv_triand()
{
}
vvp_vector4_t resolv_triand::wired_logic_math_(vvp_vector4_t&a, vvp_vector4_t&b)
{
assert(a.size() == b.size());
vvp_vector4_t out (a.size());
for (unsigned idx = 0 ; idx < out.size() ; idx += 1) {
vvp_bit4_t abit = a.value(idx);
vvp_bit4_t bbit = b.value(idx);
if (abit == BIT4_Z) {
out.set_bit(idx, bbit);
} else if (bbit == BIT4_Z) {
out.set_bit(idx, abit);
} else if (abit == BIT4_0 || bbit == BIT4_0) {
out.set_bit(idx, BIT4_0);
} else if (abit == BIT4_X || bbit == BIT4_X) {
out.set_bit(idx, BIT4_X);
} else {
out.set_bit(idx, BIT4_1);
}
}
return out;
}
resolv_trior::resolv_trior(unsigned nports, vvp_net_t*net)
: resolv_wired_logic(nports, net)
{
}
resolv_trior::~resolv_trior()
{
}
vvp_vector4_t resolv_trior::wired_logic_math_(vvp_vector4_t&a, vvp_vector4_t&b)
{
assert(a.size() == b.size());
vvp_vector4_t out (a.size());
for (unsigned idx = 0 ; idx < out.size() ; idx += 1) {
vvp_bit4_t abit = a.value(idx);
vvp_bit4_t bbit = b.value(idx);
if (abit == BIT4_Z) {
out.set_bit(idx, bbit);
} else if (bbit == BIT4_Z) {
out.set_bit(idx, abit);
} else if (abit == BIT4_1 || bbit == BIT4_1) {
out.set_bit(idx, BIT4_1);
} else if (abit == BIT4_X || bbit == BIT4_X) {
out.set_bit(idx, BIT4_X);
} else {
out.set_bit(idx, BIT4_0);
}
}
return out;
}