iverilog/vvp/array.cc

1698 lines
45 KiB
C++

/*
* Copyright (c) 2007-2010 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
# include "array.h"
#include "symbols.h"
#include "schedule.h"
#include "vpi_priv.h"
#include "config.h"
#ifdef CHECK_WITH_VALGRIND
#include "vvp_cleanup.h"
#endif
# include <cstdlib>
# include <cstring>
# include <climits>
# include <iostream>
# include "compile.h"
# include <cassert>
unsigned long count_net_arrays = 0;
unsigned long count_net_array_words = 0;
unsigned long count_var_arrays = 0;
unsigned long count_var_array_words = 0;
unsigned long count_real_arrays = 0;
unsigned long count_real_array_words = 0;
static symbol_map_s<struct __vpiArray>* array_table =0;
class vvp_fun_arrayport;
static void array_attach_port(vvp_array_t, vvp_fun_arrayport*);
vvp_array_t array_find(const char*label)
{
if (array_table == 0)
return 0;
vvp_array_t v = array_table->sym_get_value(label);
return v;
}
/*
* The vpiArray object holds an array of vpi objects that themselves
* represent the words of the array. The vpi_array_t is a pointer to
* a struct __vpiArray.
*
* The details of the implementation depends on what this is an array
* of. The easiest case is if this is an array of nets.
*
* - Array of Nets:
* If this represents an array of nets, then the nets member points to
* an array of vpiHandle objects. Each vpiHandle is a word. This is
* done because typically each word of a net array is simultaneously
* driven and accessed by other means, so there is no advantage to
* compacting the array in any other way.
*
* - Array of vector4 words.
* In this case, the nets pointer is nil, and the vals4 member points
* to a vvl_vector4array_t object that is a compact representation of
* an array of vvp_vector4_t vectors.
*
* - Array of real variables
* The valsr member points to a vvp_realarray_t objects that has an
* array of double variables. This is very much line the way the
* vector4 array works.
*/
struct __vpiArray {
__vpiArray() { }
struct __vpiHandle base;
struct __vpiScope*scope;
const char*name; /* Permanently allocated string */
unsigned array_count;
struct __vpiDecConst first_addr;
struct __vpiDecConst last_addr;
struct __vpiDecConst msb;
struct __vpiDecConst lsb;
unsigned vals_width;
// If this is a net array, nets lists the handles.
vpiHandle*nets;
// If this is a var array, then these are used instead of nets.
vvp_vector4array_t *vals4;
vvp_realarray_t *valsr;
struct __vpiArrayWord*vals_words;
class vvp_fun_arrayport*ports_;
struct __vpiCallback *vpi_callbacks;
bool signed_flag;
bool swap_addr;
};
struct __vpiArrayIterator {
struct __vpiHandle base;
struct __vpiArray*array;
unsigned next;
};
struct __vpiArrayIndex {
struct __vpiHandle base;
struct __vpiDecConst *index;
unsigned done;
};
struct __vpiArrayVthrA {
struct __vpiHandle base;
struct __vpiArray*array;
// If this is set, then use it to get the index value.
vpiHandle address_handle;
// If wid==0, then address is the address into the array.
unsigned address;
// If wid >0, then the address is the base and wid the vector
// width of the index to pull from the thread.
unsigned wid;
unsigned get_address() const
{
if (address_handle) {
s_vpi_value vp;
/* Check to see if the value is defined. */
vp.format = vpiVectorVal;
vpi_get_value(address_handle, &vp);
int words = (vpi_get(vpiSize, address_handle)-1)/32 + 1;
for(int idx = 0; idx < words; idx += 1) {
/* Return UINT_MAX to indicate an X base. */
if (vp.value.vector[idx].bval != 0) return UINT_MAX;
}
/* The value is defined so get and return it. */
vp.format = vpiIntVal;
vpi_get_value(address_handle, &vp);
return vp.value.integer;
}
if (wid == 0)
return address;
vvp_vector4_t tmp (wid);
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
vvp_bit4_t bit = vthread_get_bit(vpip_current_vthread, address+idx);
tmp.set_bit(idx, bit);
}
unsigned long val = ULONG_MAX;
vector4_to_value(tmp, val);
return val;
}
};
/* Get the array word size. */
unsigned get_array_word_size(vvp_array_t array)
{
unsigned width;
assert(array->array_count > 0);
/* For a net array we need to get the width from the first element. */
if (array->nets) {
assert(array->vals4 == 0 && array->valsr == 0);
struct __vpiSignal*vsig = vpip_signal_from_handle(array->nets[0]);
assert(vsig);
width = vpip_size(vsig);
/* For a variable array we can get the width from vals_width. */
} else {
assert(array->vals4 || array->valsr);
width = array->vals_width;
}
return width;
}
bool is_net_array(vpiHandle obj)
{
assert(obj->vpi_type->type_code == vpiMemory);
struct __vpiArray*rfp = (struct __vpiArray*) obj;
if (rfp->nets != 0) return true;
return false;
}
/*
* The vpiArrayWord is magic. It is used as the handle to return when
* vpi code tries to index or scan an array of variable words. The
* array word handle contains no actual data. It is just a hook for
* the vpi methods and to point to the parent.
*
* How the point to the parent works is tricky. The vpiArrayWord
* objects for an array are themselves allocated as an array. All the
* ArrayWord objects in the array have a word0 that points to the base
* of the array. Thus, the position into the array (and the index into
* the memory) is calculated by subtracting word0 from the ArrayWord
* pointer.
*
* To then get to the parent, use word0[-1].parent.
*
* The vpiArrayWord is also used as a handle for the index (vpiIndex)
* for the word. To make that work, return the pointer to the as_index
* member instead of the as_word member. The result is a different set
* of vpi functions is bound to the same structure. All the details
* for the word also apply when treating this as an index.
*/
struct __vpiArrayWord {
struct __vpiHandle as_word;
struct __vpiHandle as_index;
union {
struct __vpiArray*parent;
struct __vpiArrayWord*word0;
};
};
static int vpi_array_get(int code, vpiHandle ref);
static char*vpi_array_get_str(int code, vpiHandle ref);
static vpiHandle vpi_array_get_handle(int code, vpiHandle ref);
static vpiHandle vpi_array_iterate(int code, vpiHandle ref);
static vpiHandle vpi_array_index(vpiHandle ref, int index);
static vpiHandle array_iterator_scan(vpiHandle ref, int);
static int array_iterator_free_object(vpiHandle ref);
static vpiHandle array_index_scan(vpiHandle ref, int);
static int array_index_free_object(vpiHandle ref);
static int vpi_array_var_word_get(int code, vpiHandle);
static char*vpi_array_var_word_get_str(int code, vpiHandle);
static void vpi_array_var_word_get_value(vpiHandle, p_vpi_value);
static vpiHandle vpi_array_var_word_put_value(vpiHandle, p_vpi_value, int);
static vpiHandle vpi_array_var_word_get_handle(int code, vpiHandle ref);
static void vpi_array_var_index_get_value(vpiHandle, p_vpi_value);
static int vpi_array_vthr_A_get(int code, vpiHandle);
static char*vpi_array_vthr_A_get_str(int code, vpiHandle);
static void vpi_array_vthr_A_get_value(vpiHandle, p_vpi_value);
static vpiHandle vpi_array_vthr_A_put_value(vpiHandle, p_vpi_value, int);
static vpiHandle vpi_array_vthr_A_get_handle(int code, vpiHandle ref);
static const struct __vpirt vpip_arraymem_rt = {
vpiMemory,
vpi_array_get,
vpi_array_get_str,
0,
0,
vpi_array_get_handle,
vpi_array_iterate,
vpi_array_index,
};
static const struct __vpirt vpip_array_iterator_rt = {
vpiIterator,
0,
0,
0,
0,
0,
0,
array_iterator_scan,
&array_iterator_free_object
};
/* This should look a bit odd since it provides a fake iteration on
* this object. This trickery is used to implement the two forms of
* index access, simple handle access and iteration access. */
static const struct __vpirt vpip_array_index_rt = {
vpiIterator,
0,
0,
0,
0,
0,
array_index_iterate,
array_index_scan,
array_index_free_object
};
static const struct __vpirt vpip_array_var_word_rt = {
vpiMemoryWord,
&vpi_array_var_word_get,
&vpi_array_var_word_get_str,
&vpi_array_var_word_get_value,
&vpi_array_var_word_put_value,
&vpi_array_var_word_get_handle,
0,
0,
0
};
static const struct __vpirt vpip_array_var_index_rt = {
vpiIndex,
0,
0,
&vpi_array_var_index_get_value,
0,
0,
0,
0,
0
};
static const struct __vpirt vpip_array_vthr_A_rt = {
vpiMemoryWord,
&vpi_array_vthr_A_get,
&vpi_array_vthr_A_get_str,
&vpi_array_vthr_A_get_value,
&vpi_array_vthr_A_put_value,
&vpi_array_vthr_A_get_handle,
0,
0,
0
};
# define ARRAY_HANDLE(ref) (assert(ref->vpi_type->type_code==vpiMemory), \
(struct __vpiArray*)ref)
static struct __vpiArrayWord* array_var_word_from_handle(vpiHandle ref)
{
if (ref == 0)
return 0;
if (ref->vpi_type != &vpip_array_var_word_rt)
return 0;
return (struct __vpiArrayWord*) ref;
}
static struct __vpiArrayWord* array_var_index_from_handle(vpiHandle ref)
{
if (ref == 0)
return 0;
if (ref->vpi_type != &vpip_array_var_index_rt)
return 0;
return (struct __vpiArrayWord*) (ref-1);
}
static struct __vpiArrayVthrA* array_vthr_a_from_handle(vpiHandle ref)
{
if (ref == 0)
return 0;
if (ref->vpi_type != &vpip_array_vthr_A_rt)
return 0;
return (struct __vpiArrayVthrA*) ref;
}
static void array_make_vals_words(struct __vpiArray*parent)
{
assert(parent->vals_words == 0);
parent->vals_words = new struct __vpiArrayWord[parent->array_count + 1];
// Make word[-1] point to the parent.
parent->vals_words->parent = parent;
// Now point to word-0
parent->vals_words += 1;
struct __vpiArrayWord*words = parent->vals_words;
for (unsigned idx = 0 ; idx < parent->array_count ; idx += 1) {
words[idx].as_word.vpi_type = &vpip_array_var_word_rt;
words[idx].as_index.vpi_type = &vpip_array_var_index_rt;
words[idx].word0 = words;
}
}
static unsigned decode_array_word_pointer(struct __vpiArrayWord*word,
struct __vpiArray*&parent)
{
struct __vpiArrayWord*word0 = word->word0;
parent = (word0 - 1) -> parent;
return word - word0;
}
static int vpi_array_get(int code, vpiHandle ref)
{
struct __vpiArray*obj = ARRAY_HANDLE(ref);
switch (code) {
case vpiLineNo:
return 0; // Not implemented for now!
case vpiSize:
return (int) obj->array_count;
case vpiAutomatic:
return (int) obj->scope->is_automatic;
default:
return 0;
}
}
static char*vpi_array_get_str(int code, vpiHandle ref)
{
struct __vpiArray*obj = ARRAY_HANDLE(ref);
if (code == vpiFile) { // Not implemented for now!
return simple_set_rbuf_str(file_names[0]);
}
return generic_get_str(code, &obj->scope->base, obj->name, NULL);
}
static vpiHandle vpi_array_get_handle(int code, vpiHandle ref)
{
struct __vpiArray*obj = ARRAY_HANDLE(ref);
switch (code) {
case vpiLeftRange:
if (obj->swap_addr) return &(obj->last_addr.base);
else return &(obj->first_addr.base);
case vpiRightRange:
if (obj->swap_addr) return &(obj->first_addr.base);
else return &(obj->last_addr.base);
case vpiScope:
return &obj->scope->base;
case vpiModule:
return vpip_module(obj->scope);
}
return 0;
}
static vpiHandle vpi_array_iterate(int code, vpiHandle ref)
{
struct __vpiArray*obj = ARRAY_HANDLE(ref);
switch (code) {
case vpiMemoryWord: {
struct __vpiArrayIterator*res;
res = (struct __vpiArrayIterator*) calloc(1, sizeof (*res));
res->base.vpi_type = &vpip_array_iterator_rt;
res->array = obj;
res->next = 0;
return &res->base;
}
}
return 0;
}
/*
* VPI code passes indices that are not yet converted to canonical
* form, so this index function does it here.
*/
static vpiHandle vpi_array_index(vpiHandle ref, int index)
{
struct __vpiArray*obj = ARRAY_HANDLE(ref);
index -= obj->first_addr.value;
if (index >= (long)obj->array_count)
return 0;
if (index < 0)
return 0;
if (obj->nets != 0) {
return obj->nets[index];
}
if (obj->vals_words == 0)
array_make_vals_words(obj);
return &(obj->vals_words[index].as_word);
}
static int vpi_array_var_word_get(int code, vpiHandle ref)
{
struct __vpiArrayWord*obj = array_var_word_from_handle(ref);
struct __vpiArray*parent;
assert(obj);
decode_array_word_pointer(obj, parent);
assert(parent->nets == 0);
switch (code) {
case vpiLineNo:
return 0; // Not implemented for now!
case vpiSize:
if (parent->vals4) {
assert(parent->valsr == 0);
return (int) parent->vals4->width();
} else {
assert(parent->vals4 == 0);
return 1;
}
case vpiLeftRange:
return parent->msb.value;
case vpiRightRange:
return parent->lsb.value;
case vpiAutomatic:
return (int) parent->scope->is_automatic;
#ifdef CHECK_WITH_VALGRIND
case _vpiFromThr:
return _vpiNoThr;
#endif
default:
return 0;
}
}
static char*vpi_array_var_word_get_str(int code, vpiHandle ref)
{
struct __vpiArrayWord*obj = array_var_word_from_handle(ref);
struct __vpiArray*parent;
assert(obj);
unsigned index = decode_array_word_pointer(obj, parent);
if (code == vpiFile) { // Not implemented for now!
return simple_set_rbuf_str(file_names[0]);
}
char sidx [64];
snprintf(sidx, 63, "%d", (int)index + parent->first_addr.value);
return generic_get_str(code, &parent->scope->base, parent->name, sidx);
}
static void vpi_array_var_word_get_value(vpiHandle ref, p_vpi_value value)
{
struct __vpiArrayWord*obj = array_var_word_from_handle(ref);
struct __vpiArray*parent;
assert(obj);
unsigned index = decode_array_word_pointer(obj, parent);
unsigned width = parent->vals4->width();
vpip_vec4_get_value(parent->vals4->get_word(index), width,
parent->signed_flag, value);
}
static vpiHandle vpi_array_var_word_put_value(vpiHandle ref, p_vpi_value vp, int flags)
{
struct __vpiArrayWord*obj = array_var_word_from_handle(ref);
struct __vpiArray*parent;
assert(obj);
unsigned index = decode_array_word_pointer(obj, parent);
vvp_vector4_t val = vec4_from_vpi_value(vp, parent->vals_width);
array_set_word(parent, index, 0, val);
return ref;
}
static vpiHandle vpi_array_var_word_get_handle(int code, vpiHandle ref)
{
struct __vpiArrayWord*obj = array_var_word_from_handle(ref);
struct __vpiArray*parent;
assert(obj);
decode_array_word_pointer(obj, parent);
switch (code) {
case vpiIndex:
return &(obj->as_index);
case vpiLeftRange:
return &parent->msb.base;
case vpiRightRange:
return &parent->lsb.base;
case vpiParent:
return &parent->base;
case vpiScope:
return &parent->scope->base;
case vpiModule:
return vpip_module(parent->scope);
}
return 0;
}
static void vpi_array_var_index_get_value(vpiHandle ref, p_vpi_value value)
{
struct __vpiArrayWord*obj = array_var_index_from_handle(ref);
struct __vpiArray*parent;
assert(obj);
unsigned index = decode_array_word_pointer(obj, parent);
assert(value->format == vpiIntVal);
value->value.integer = index;
}
# define ARRAY_ITERATOR(ref) (assert(ref->vpi_type->type_code==vpiIterator), \
(struct __vpiArrayIterator*)ref)
static vpiHandle array_iterator_scan(vpiHandle ref, int)
{
struct __vpiArrayIterator*obj = ARRAY_ITERATOR(ref);
if (obj->next >= obj->array->array_count) {
vpi_free_object(ref);
return 0;
}
unsigned use_index = obj->next;
obj->next += 1;
if (obj->array->nets) return obj->array->nets[use_index];
assert(obj->array->vals4 || obj->array->valsr);
if (obj->array->vals_words == 0) array_make_vals_words(obj->array);
return &(obj->array->vals_words[use_index].as_word);
}
static int array_iterator_free_object(vpiHandle ref)
{
struct __vpiArrayIterator*obj = ARRAY_ITERATOR(ref);
free(obj);
return 1;
}
# define ARRAY_INDEX(ref) (assert(ref->vpi_type->type_code==vpiIterator), \
(struct __vpiArrayIndex*)ref)
vpiHandle array_index_iterate(int code, vpiHandle ref)
{
assert(ref->vpi_type->type_code == vpiConstant);
struct __vpiDecConst*obj = (struct __vpiDecConst*)ref;
if (code == vpiIndex) {
struct __vpiArrayIndex*res;
res = (struct __vpiArrayIndex*) calloc(1, sizeof (*res));
res->base.vpi_type = &vpip_array_index_rt;
res->index = obj;
res->done = 0;
return &res->base;
}
return 0;
}
static vpiHandle array_index_scan(vpiHandle ref, int)
{
struct __vpiArrayIndex*obj = ARRAY_INDEX(ref);
if (obj->done == 0) {
obj->done = 1;
return &obj->index->base;
}
vpi_free_object(ref);
return 0;
}
static int array_index_free_object(vpiHandle ref)
{
struct __vpiArrayIndex*obj = ARRAY_INDEX(ref);
free(obj);
return 1;
}
static int vpi_array_vthr_A_get(int code, vpiHandle ref)
{
struct __vpiArrayVthrA*obj = array_vthr_a_from_handle(ref);
assert(obj);
struct __vpiArray*parent = obj->array;
switch (code) {
case vpiLineNo:
return 0; // Not implemented for now!
case vpiSize:
return get_array_word_size(parent);
case vpiLeftRange:
return parent->msb.value;
case vpiRightRange:
return parent->lsb.value;
case vpiIndex:
return (int)obj->get_address() + parent->first_addr.value;
case vpiAutomatic:
return (int) parent->scope->is_automatic;
#ifdef CHECK_WITH_VALGRIND
case _vpiFromThr:
return _vpi_at_A;
#endif
// If address_handle is not zero we definitely have a
// variable. If the wid is not zero we have a calculation
// from thread space which probably includes a variable.
// This assumes that the compiler is squashing all the
// constant expressions down to a single value.
case vpiConstantSelect:
return obj->address_handle == 0 && obj->wid == 0;
default:
return 0;
}
}
static char*vpi_array_vthr_A_get_str(int code, vpiHandle ref)
{
struct __vpiArrayVthrA*obj = array_vthr_a_from_handle(ref);
assert(obj);
struct __vpiArray*parent = obj->array;
if (code == vpiFile) { // Not implemented for now!
return simple_set_rbuf_str(file_names[0]);
}
char sidx [64];
snprintf(sidx, 63, "%d", (int)obj->get_address() + parent->first_addr.value);
return generic_get_str(code, &parent->scope->base, parent->name, sidx);
}
// This function return true if the underlying array words are real.
static unsigned vpi_array_is_real(vvp_array_t arr)
{
// Check to see if this is a variable/register array.
if (arr->valsr != 0) return 1U; // A real variable array.
if (arr->vals4 != 0) return 0U; // A bit based variable/register array.
// This must be a net array so look at element 0 to find the type.
assert(arr->nets != 0);
assert(arr->array_count > 0);
struct __vpiRealVar*rsig = vpip_realvar_from_handle(arr->nets[0]);
if (rsig) {
struct __vpiSignal*vsig = vpip_signal_from_handle(arr->nets[0]);
assert(vsig == 0);
return 1U;
}
return 0U;
}
static void vpi_array_vthr_A_get_value(vpiHandle ref, p_vpi_value value)
{
struct __vpiArrayVthrA*obj = array_vthr_a_from_handle(ref);
assert(obj);
struct __vpiArray*parent = obj->array;
assert(parent);
unsigned index = obj->get_address();
if (vpi_array_is_real(parent)) {
double tmp = array_get_word_r(parent, index);
vpip_real_get_value(tmp, value);
} else {
vvp_vector4_t tmp = array_get_word(parent, index);
unsigned width = get_array_word_size(parent);
vpip_vec4_get_value(tmp, width, parent->signed_flag, value);
}
}
static vpiHandle vpi_array_vthr_A_put_value(vpiHandle ref, p_vpi_value vp, int)
{
struct __vpiArrayVthrA*obj = array_vthr_a_from_handle(ref);
assert(obj);
struct __vpiArray*parent = obj->array;
unsigned index = obj->get_address();
assert(parent);
assert(index < parent->array_count);
if (vpi_array_is_real(parent)) {
double val = real_from_vpi_value(vp);
array_set_word(parent, index, val);
} else {
unsigned width = get_array_word_size(parent);
vvp_vector4_t val = vec4_from_vpi_value(vp, width);
array_set_word(parent, index, 0, val);
}
return ref;
}
static vpiHandle vpi_array_vthr_A_get_handle(int code, vpiHandle ref)
{
struct __vpiArrayVthrA*obj = array_vthr_a_from_handle(ref);
assert(obj);
struct __vpiArray*parent = obj->array;
switch (code) {
case vpiIndex:
break; // Not implemented!
case vpiLeftRange:
return &parent->msb.base;
case vpiRightRange:
return &parent->lsb.base;
case vpiParent:
return &parent->base;
case vpiScope:
return &parent->scope->base;
case vpiModule:
return vpip_module(parent->scope);
}
return 0;
}
void array_set_word(vvp_array_t arr,
unsigned address,
unsigned part_off,
vvp_vector4_t val)
{
if (address >= arr->array_count)
return;
if (arr->vals4) {
assert(arr->nets == 0);
if (part_off != 0 || val.size() != arr->vals_width) {
vvp_vector4_t tmp = arr->vals4->get_word(address);
if ((part_off + val.size()) > tmp.size()) {
cerr << "part_off=" << part_off
<< " val.size()=" << val.size()
<< " arr->vals[address].size()=" << tmp.size()
<< " arr->vals_width=" << arr->vals_width << endl;
assert(0);
}
tmp.set_vec(part_off, val);
arr->vals4->set_word(address, tmp);
} else {
arr->vals4->set_word(address, val);
}
array_word_change(arr, address);
return;
}
assert(arr->nets != 0);
// Select the word of the array that we affect.
vpiHandle word = arr->nets[address];
struct __vpiSignal*vsig = vpip_signal_from_handle(word);
assert(vsig);
vvp_net_ptr_t ptr (vsig->node, 0);
vvp_send_vec4_pv(ptr, val, part_off, val.size(), vpip_size(vsig), 0);
array_word_change(arr, address);
}
void array_set_word(vvp_array_t arr, unsigned address, double val)
{
assert(arr->valsr!= 0);
assert(arr->nets == 0);
arr->valsr->set_word(address, val);
array_word_change(arr, address);
}
vvp_vector4_t array_get_word(vvp_array_t arr, unsigned address)
{
if (arr->vals4) {
assert(arr->nets == 0);
assert(arr->valsr == 0);
return arr->vals4->get_word(address);
}
assert(arr->vals4 == 0);
assert(arr->valsr == 0);
assert(arr->nets != 0);
if (address >= arr->array_count) {
// Reading outside the array. Return X's but get the
// width by looking at a word that we know is present.
assert(arr->array_count > 0);
vpiHandle word = arr->nets[0];
struct __vpiSignal*vsig = vpip_signal_from_handle(word);
assert(vsig);
vvp_fun_signal_vec*sig = dynamic_cast<vvp_fun_signal_vec*> (vsig->node->fun);
assert(sig);
return vvp_vector4_t(sig->size(), BIT4_X);
}
vpiHandle word = arr->nets[address];
struct __vpiSignal*vsig = vpip_signal_from_handle(word);
assert(vsig);
vvp_fun_signal_vec*sig = dynamic_cast<vvp_fun_signal_vec*> (vsig->node->fun);
assert(sig);
vvp_vector4_t val = sig->vec4_value();
return val;
}
double array_get_word_r(vvp_array_t arr, unsigned address)
{
if (arr->valsr) {
assert(arr->vals4 == 0);
assert(arr->nets == 0);
return arr->valsr->get_word(address);
}
assert(arr->nets);
vpiHandle word = arr->nets[address];
struct __vpiRealVar*vsig = vpip_realvar_from_handle(word);
assert(vsig);
vvp_fun_signal_real*sig = dynamic_cast<vvp_fun_signal_real*> (vsig->net->fun);
assert(sig);
double val = sig->real_value();
return val;
}
static vpiHandle vpip_make_array(char*label, const char*name,
int first_addr, int last_addr,
bool signed_flag)
{
struct __vpiArray*obj = (struct __vpiArray*)
malloc(sizeof(struct __vpiArray));
obj->signed_flag = signed_flag;
// Assume increasing addresses.
if (last_addr >= first_addr) {
obj->swap_addr = false;
} else {
obj->swap_addr = true;
int tmp = last_addr;
last_addr = first_addr;
first_addr = tmp;
}
assert(last_addr >= first_addr);
unsigned array_count = last_addr+1-first_addr;
// For now, treat all arrays as memories. This is not quite
// correct, as arrays are arrays with memories a special case.
obj->base.vpi_type = &vpip_arraymem_rt;
obj->scope = vpip_peek_current_scope();
obj->name = vpip_name_string(name);
obj->array_count = array_count;
vpip_make_dec_const(&obj->first_addr, first_addr);
vpip_make_dec_const(&obj->last_addr, last_addr);
// Start off now knowing if we are nets or variables.
obj->nets = 0;
obj->vals4 = 0;
obj->valsr = 0;
obj->vals_width = 0;
vpip_make_dec_const(&obj->msb, 0);
vpip_make_dec_const(&obj->lsb, 0);
obj->vals_words = 0;
// Initialize (clear) the read-ports list.
obj->ports_ = 0;
obj->vpi_callbacks = 0;
/* Add this symbol to the array_symbols table for later lookup. */
if (!array_table)
array_table = new symbol_map_s<struct __vpiArray>;
assert(!array_find(label));
array_table->sym_set_value(label, obj);
/* Add this into the table of VPI objects. This is used for
contexts that try to look up VPI objects in
general. (i.e. arguments to vpi_task calls.) */
compile_vpi_symbol(label, &(obj->base));
/* Blindly attach to the scope as an object. */
vpip_attach_to_current_scope(&(obj->base));
return &(obj->base);
}
void array_alias_word(vvp_array_t array, unsigned long addr, vpiHandle word)
{
assert(addr < array->array_count);
assert(array->nets);
array->nets[addr] = word;
}
void array_attach_word(vvp_array_t array, unsigned long addr, vpiHandle word)
{
assert(addr < array->array_count);
assert(array->nets);
array->nets[addr] = word;
if (struct __vpiSignal*sig = vpip_signal_from_handle(word)) {
vvp_net_t*net = sig->node;
assert(net);
vvp_fun_signal_base*fun = dynamic_cast<vvp_fun_signal_base*>(net->fun);
assert(fun);
fun->attach_as_word(array, addr);
sig->is_netarray = 1;
sig->within.parent = &array->base;
sig->id.index = vpip_make_dec_const(addr + array->first_addr.value);
return;
}
if (struct __vpiRealVar*sig = (struct __vpiRealVar*)word) {
vvp_net_t*net = sig->net;
assert(net);
vvp_fun_signal_base*fun = dynamic_cast<vvp_fun_signal_base*>(net->fun);
assert(fun);
fun->attach_as_word(array, addr);
sig->is_netarray = 1;
sig->within.parent = &array->base;
sig->id.index = vpip_make_dec_const(addr + array->first_addr.value);
return;
}
}
void compile_var_array(char*label, char*name, int last, int first,
int msb, int lsb, char signed_flag)
{
vpiHandle obj = vpip_make_array(label, name, first, last,
signed_flag != 0);
struct __vpiArray*arr = ARRAY_HANDLE(obj);
/* Make the words. */
arr->vals_width = labs(msb-lsb) + 1;
if (vpip_peek_current_scope()->is_automatic) {
arr->vals4 = new vvp_vector4array_aa(arr->vals_width,
arr->array_count);
} else {
arr->vals4 = new vvp_vector4array_sa(arr->vals_width,
arr->array_count);
}
vpip_make_dec_const(&arr->msb, msb);
vpip_make_dec_const(&arr->lsb, lsb);
count_var_arrays += 1;
count_var_array_words += arr->array_count;
free(label);
delete[] name;
}
void compile_real_array(char*label, char*name, int last, int first,
int msb, int lsb)
{
vpiHandle obj = vpip_make_array(label, name, first, last, true);
struct __vpiArray*arr = ARRAY_HANDLE(obj);
/* Make the words. */
arr->valsr = new vvp_realarray_t(arr->array_count);
arr->vals_width = 1;
/* Do these even make sense for real arrays? These are the
part select of a vector, but the real value is not
vectorable. */
vpip_make_dec_const(&arr->msb, msb);
vpip_make_dec_const(&arr->lsb, lsb);
count_real_arrays += 1;
count_real_array_words += arr->array_count;
free(label);
delete[] name;
}
void compile_net_array(char*label, char*name, int last, int first)
{
vpiHandle obj = vpip_make_array(label, name, first, last, false);
struct __vpiArray*arr = ARRAY_HANDLE(obj);
arr->nets = (vpiHandle*)calloc(arr->array_count, sizeof(vpiHandle));
count_net_arrays += 1;
count_net_array_words += arr->array_count;
free(label);
delete[] name;
}
class vvp_fun_arrayport : public vvp_net_fun_t {
public:
explicit vvp_fun_arrayport(vvp_array_t mem, vvp_net_t*net);
explicit vvp_fun_arrayport(vvp_array_t mem, vvp_net_t*net, long addr);
~vvp_fun_arrayport();
virtual void check_word_change(unsigned long addr) = 0;
protected:
vvp_array_t arr_;
vvp_net_t *net_;
unsigned long addr_;
friend void array_attach_port(vvp_array_t, vvp_fun_arrayport*);
friend void array_word_change(vvp_array_t, unsigned long);
vvp_fun_arrayport*next_;
};
vvp_fun_arrayport::vvp_fun_arrayport(vvp_array_t mem, vvp_net_t*net)
: arr_(mem), net_(net), addr_(0)
{
next_ = 0;
}
vvp_fun_arrayport::vvp_fun_arrayport(vvp_array_t mem, vvp_net_t*net, long addr)
: arr_(mem), net_(net), addr_(addr)
{
next_ = 0;
}
vvp_fun_arrayport::~vvp_fun_arrayport()
{
}
class vvp_fun_arrayport_sa : public vvp_fun_arrayport {
public:
explicit vvp_fun_arrayport_sa(vvp_array_t mem, vvp_net_t*net);
explicit vvp_fun_arrayport_sa(vvp_array_t mem, vvp_net_t*net, long addr);
~vvp_fun_arrayport_sa();
void check_word_change(unsigned long addr);
void recv_vec4(vvp_net_ptr_t port, const vvp_vector4_t&bit,
vvp_context_t);
private:
};
vvp_fun_arrayport_sa::vvp_fun_arrayport_sa(vvp_array_t mem, vvp_net_t*net)
: vvp_fun_arrayport(mem, net)
{
}
vvp_fun_arrayport_sa::vvp_fun_arrayport_sa(vvp_array_t mem, vvp_net_t*net, long addr)
: vvp_fun_arrayport(mem, net, addr)
{
}
vvp_fun_arrayport_sa::~vvp_fun_arrayport_sa()
{
}
void vvp_fun_arrayport_sa::recv_vec4(vvp_net_ptr_t port, const vvp_vector4_t&bit,
vvp_context_t)
{
bool addr_valid_flag;
switch (port.port()) {
case 0: // Address input
addr_valid_flag = vector4_to_value(bit, addr_);
if (! addr_valid_flag) addr_ = arr_->array_count;
if (vpi_array_is_real(arr_)) {
vvp_send_real(net_->out, array_get_word_r(arr_, addr_), 0);
} else {
vvp_send_vec4(net_->out, array_get_word(arr_, addr_), 0);
}
break;
default:
fprintf(stdout, "XXXX write ports not implemented.\n");
assert(0);
}
}
void vvp_fun_arrayport_sa::check_word_change(unsigned long addr)
{
if (addr != addr_) return;
if (vpi_array_is_real(arr_)) {
vvp_send_real(net_->out, array_get_word_r(arr_, addr_), 0);
} else {
vvp_send_vec4(net_->out, array_get_word(arr_, addr_), 0);
}
}
class vvp_fun_arrayport_aa : public vvp_fun_arrayport, public automatic_hooks_s {
public:
explicit vvp_fun_arrayport_aa(vvp_array_t mem, vvp_net_t*net);
explicit vvp_fun_arrayport_aa(vvp_array_t mem, vvp_net_t*net, long addr);
~vvp_fun_arrayport_aa();
void alloc_instance(vvp_context_t context);
void reset_instance(vvp_context_t context);
#ifdef CHECK_WITH_VALGRIND
void free_instance(vvp_context_t context);
#endif
void check_word_change(unsigned long addr);
void recv_vec4(vvp_net_ptr_t port, const vvp_vector4_t&bit,
vvp_context_t context);
private:
void check_word_change_(unsigned long addr, vvp_context_t context);
struct __vpiScope*context_scope_;
unsigned context_idx_;
};
vvp_fun_arrayport_aa::vvp_fun_arrayport_aa(vvp_array_t mem, vvp_net_t*net)
: vvp_fun_arrayport(mem, net)
{
context_scope_ = vpip_peek_context_scope();
context_idx_ = vpip_add_item_to_context(this, context_scope_);
}
vvp_fun_arrayport_aa::vvp_fun_arrayport_aa(vvp_array_t mem, vvp_net_t*net, long addr)
: vvp_fun_arrayport(mem, net, addr)
{
context_scope_ = vpip_peek_context_scope();
context_idx_ = vpip_add_item_to_context(this, context_scope_);
}
vvp_fun_arrayport_aa::~vvp_fun_arrayport_aa()
{
}
void vvp_fun_arrayport_aa::alloc_instance(vvp_context_t context)
{
unsigned long*addr = new unsigned long;
vvp_set_context_item(context, context_idx_, addr);
*addr = addr_;
}
void vvp_fun_arrayport_aa::reset_instance(vvp_context_t context)
{
unsigned long*addr = static_cast<unsigned long*>
(vvp_get_context_item(context, context_idx_));
*addr = addr_;
}
#ifdef CHECK_WITH_VALGRIND
void vvp_fun_arrayport_aa::free_instance(vvp_context_t context)
{
unsigned long*addr = static_cast<unsigned long*>
(vvp_get_context_item(context, context_idx_));
delete addr;
}
#endif
void vvp_fun_arrayport_aa::recv_vec4(vvp_net_ptr_t port, const vvp_vector4_t&bit,
vvp_context_t context)
{
if (context) {
unsigned long*addr = static_cast<unsigned long*>
(vvp_get_context_item(context, context_idx_));
bool addr_valid_flag;
switch (port.port()) {
case 0: // Address input
addr_valid_flag = vector4_to_value(bit, *addr);
if (! addr_valid_flag) *addr = arr_->array_count;
if (vpi_array_is_real(arr_)) {
vvp_send_real(port.ptr()->out,
array_get_word_r(arr_, *addr),
context);
} else {
vvp_send_vec4(port.ptr()->out,
array_get_word(arr_, *addr),
context);
}
break;
default:
fprintf(stdout, "XXXX write ports not implemented.\n");
assert(0);
}
} else {
context = context_scope_->live_contexts;
while (context) {
recv_vec4(port, bit, context);
context = vvp_get_next_context(context);
}
}
}
void vvp_fun_arrayport_aa::check_word_change_(unsigned long addr,
vvp_context_t context)
{
unsigned long*port_addr = static_cast<unsigned long*>
(vvp_get_context_item(context, context_idx_));
if (addr != *port_addr)
return;
if (vpi_array_is_real(arr_)) {
vvp_send_real(net_->out, array_get_word_r(arr_, addr), context);
} else {
vvp_send_vec4(net_->out, array_get_word(arr_, addr), context);
}
}
void vvp_fun_arrayport_aa::check_word_change(unsigned long addr)
{
if (arr_->scope->is_automatic) {
assert(vthread_get_wt_context());
check_word_change_(addr, vthread_get_wt_context());
} else {
vvp_context_t context = context_scope_->live_contexts;
while (context) {
check_word_change_(addr, context);
context = vvp_get_next_context(context);
}
}
}
static void array_attach_port(vvp_array_t array, vvp_fun_arrayport*fun)
{
assert(fun->next_ == 0);
fun->next_ = array->ports_;
array->ports_ = fun;
}
void array_word_change(vvp_array_t array, unsigned long addr)
{
for (vvp_fun_arrayport*cur = array->ports_; cur; cur = cur->next_)
cur->check_word_change(addr);
// Run callbacks attached to the array itself.
struct __vpiCallback *next = array->vpi_callbacks;
struct __vpiCallback *prev = 0;
while (next) {
struct __vpiCallback*cur = next;
next = cur->next;
// Skip callbacks that are not for me. -1 is for every element.
if (cur->extra_data != (long)addr && cur->extra_data != -1) {
prev = cur;
continue;
}
// For whole array callbacks we need to set the index.
if (cur->extra_data == -1) {
cur->cb_data.index = (PLI_INT32) ((int)addr +
array->first_addr.value);
}
if (cur->cb_data.cb_rtn != 0) {
if (cur->cb_data.value) {
if (vpi_array_is_real(array)) {
vpip_real_get_value(array->valsr->get_word(addr),
cur->cb_data.value);
} else {
vpip_vec4_get_value(array->vals4->get_word(addr),
array->vals_width,
array->signed_flag,
cur->cb_data.value);
}
}
callback_execute(cur);
prev = cur;
} else if (prev == 0) {
array->vpi_callbacks = next;
cur->next = 0;
delete_vpi_callback(cur);
} else {
assert(prev->next == cur);
prev->next = next;
cur->next = 0;
delete_vpi_callback(cur);
}
}
}
class array_resolv_list_t : public resolv_list_s {
public:
explicit array_resolv_list_t(char*lab) : resolv_list_s(lab) { }
vvp_array_t*array;
bool resolve(bool mes);
private:
};
bool array_resolv_list_t::resolve(bool mes)
{
*array = array_find(label());
if (*array == 0) {
assert(!mes);
return false;
}
return true;
}
class array_port_resolv_list_t : public resolv_list_s {
public:
explicit array_port_resolv_list_t(char*lab) : resolv_list_s(lab) { }
vvp_net_t*ptr;
bool use_addr;
long addr;
bool resolve(bool mes);
private:
};
bool array_port_resolv_list_t::resolve(bool mes)
{
vvp_array_t mem = array_find(label());
if (mem == 0) {
assert(mem || !mes);
return false;
}
vvp_fun_arrayport*fun;
if (use_addr)
if (vpip_peek_current_scope()->is_automatic)
fun = new vvp_fun_arrayport_aa(mem, ptr, addr);
else
fun = new vvp_fun_arrayport_sa(mem, ptr, addr);
else
if (vpip_peek_current_scope()->is_automatic)
fun = new vvp_fun_arrayport_aa(mem, ptr);
else
fun = new vvp_fun_arrayport_sa(mem, ptr);
ptr->fun = fun;
array_attach_port(mem, fun);
return true;
}
void vpip_array_word_change(struct __vpiCallback*cb, vpiHandle obj)
{
struct __vpiArray*parent = 0;
if (struct __vpiArrayWord*word = array_var_word_from_handle(obj)) {
unsigned addr = decode_array_word_pointer(word, parent);
cb->extra_data = addr;
} else if (struct __vpiArrayVthrA*tword = array_vthr_a_from_handle(obj)) {
parent = tword->array;
cb->extra_data = tword->address;
}
assert(parent);
cb->next = parent->vpi_callbacks;
parent->vpi_callbacks = cb;
}
void vpip_array_change(struct __vpiCallback*cb, vpiHandle obj)
{
struct __vpiArray*arr = ARRAY_HANDLE(obj);
cb->extra_data = -1; // This is a callback for every element.
cb->next = arr->vpi_callbacks;
arr->vpi_callbacks = cb;
}
void compile_array_port(char*label, char*array, char*addr)
{
array_port_resolv_list_t*resolv_mem
= new array_port_resolv_list_t(array);
resolv_mem->ptr = new vvp_net_t;
resolv_mem->use_addr = false;
define_functor_symbol(label, resolv_mem->ptr);
free(label);
// Connect the port-0 input as the address.
input_connect(resolv_mem->ptr, 0, addr);
resolv_submit(resolv_mem);
}
void compile_array_port(char*label, char*array, long addr)
{
array_port_resolv_list_t*resolv_mem
= new array_port_resolv_list_t(array);
resolv_mem->ptr = new vvp_net_t;
resolv_mem->use_addr = true;
resolv_mem->addr = addr;
define_functor_symbol(label, resolv_mem->ptr);
free(label);
resolv_submit(resolv_mem);
}
void compile_array_alias(char*label, char*name, char*src)
{
vvp_array_t mem = array_find(src);
assert(mem);
struct __vpiArray*obj = (struct __vpiArray*)
malloc(sizeof (struct __vpiArray));
obj->base.vpi_type = &vpip_arraymem_rt;
obj->scope = vpip_peek_current_scope();
obj->name = vpip_name_string(name);
obj->array_count = mem->array_count;
// XXXX Need to set an accurate range of addresses.
vpip_make_dec_const(&obj->first_addr, mem->first_addr.value);
vpip_make_dec_const(&obj->last_addr, mem->last_addr.value);
// Share the words with the source array.
obj->nets = mem->nets;
obj->vals4 = mem->vals4;
obj->ports_ = 0;
assert(array_table);
assert(!array_find(label));
array_table->sym_set_value(label, obj);
compile_vpi_symbol(label, &obj->base);
vpip_attach_to_current_scope(&obj->base);
free(label);
free(name);
free(src);
}
vpiHandle vpip_make_vthr_A(char*label, unsigned addr)
{
struct __vpiArrayVthrA*obj = (struct __vpiArrayVthrA*)
malloc(sizeof (struct __vpiArrayVthrA));
obj->base.vpi_type = &vpip_array_vthr_A_rt;
array_resolv_list_t*resolv_mem
= new array_resolv_list_t(label);
resolv_mem->array = &obj->array;
resolv_submit(resolv_mem);
obj->address_handle = 0;
obj->address = addr;
obj->wid = 0;
return &(obj->base);
}
vpiHandle vpip_make_vthr_A(char*label, unsigned tbase, unsigned twid)
{
struct __vpiArrayVthrA*obj = (struct __vpiArrayVthrA*)
malloc(sizeof (struct __vpiArrayVthrA));
obj->base.vpi_type = &vpip_array_vthr_A_rt;
array_resolv_list_t*resolv_mem
= new array_resolv_list_t(label);
resolv_mem->array = &obj->array;
resolv_submit(resolv_mem);
obj->address_handle = 0;
obj->address = tbase;
obj->wid = twid;
return &(obj->base);
}
vpiHandle vpip_make_vthr_A(char*label, char*symbol)
{
struct __vpiArrayVthrA*obj = (struct __vpiArrayVthrA*)
malloc(sizeof (struct __vpiArrayVthrA));
obj->base.vpi_type = &vpip_array_vthr_A_rt;
array_resolv_list_t*resolv_mem
= new array_resolv_list_t(label);
resolv_mem->array = &obj->array;
resolv_submit(resolv_mem);
obj->address_handle = 0;
compile_vpi_lookup(&obj->address_handle, symbol);
obj->address = 0;
obj->wid = 0;
return &(obj->base);
}
vpiHandle vpip_make_vthr_A(char*label, vpiHandle handle)
{
struct __vpiArrayVthrA*obj = (struct __vpiArrayVthrA*)
malloc(sizeof (struct __vpiArrayVthrA));
obj->base.vpi_type = &vpip_array_vthr_A_rt;
array_resolv_list_t*resolv_mem
= new array_resolv_list_t(label);
resolv_mem->array = &obj->array;
resolv_submit(resolv_mem);
obj->address_handle = handle;
obj->address = 0;
obj->wid = 0;
return &(obj->base);
}
void compile_array_cleanup(void)
{
if (array_table) {
delete array_table;
array_table = 0;
}
}
#ifdef CHECK_WITH_VALGRIND
void memory_delete(vpiHandle item)
{
struct __vpiArray*arr = ARRAY_HANDLE(item);
if (arr->vals_words) delete [] (arr->vals_words-1);
if (arr->vals4) {
// Delete the individual words?
// constant_delete(handle)?
delete arr->vals4;
}
if (arr->valsr) {
// Delete the individual words?
// constant_delete(handle)?
delete arr->valsr;
}
if (arr->nets) {
for (unsigned idx = 0; idx < arr->array_count; idx += 1) {
if (struct __vpiSignal*sig =
vpip_signal_from_handle(arr->nets[idx])) {
// Delete the individual words?
constant_delete(sig->id.index);
/* These should only be the real words. */
} else {
assert(arr->nets[idx]->vpi_type->type_code ==
vpiRealVar);
struct __vpiRealVar *sig = (struct __vpiRealVar *)
arr->nets[idx];
constant_delete(sig->id.index);
// Why are only the real words still here?
free(arr->nets[idx]);
}
}
free(arr->nets);
}
while (arr->vpi_callbacks) {
struct __vpiCallback*tmp = arr->vpi_callbacks->next;
delete_vpi_callback(arr->vpi_callbacks);
arr->vpi_callbacks = tmp;
}
free(arr);
}
void A_delete(vpiHandle item)
{
struct __vpiArrayVthrA*obj = (struct __vpiArrayVthrA*) item;
if (obj->address_handle) {
switch (obj->address_handle->vpi_type->type_code) {
case vpiMemoryWord:
if (vpi_get(_vpiFromThr, obj->address_handle) == _vpi_at_A) {
A_delete(obj->address_handle);
}
break;
case vpiPartSelect:
assert(vpi_get(_vpiFromThr, obj->address_handle) ==
_vpi_at_PV);
PV_delete(obj->address_handle);
break;
}
}
free(obj);
}
#endif