iverilog/vvp/vpi_time.cc

386 lines
9.0 KiB
C++

/*
* Copyright (c) 2001-2018 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "config.h"
# include "vpi_priv.h"
# include "schedule.h"
# include <cstdio>
# include <cmath>
# include <cassert>
/*
* The $time system function is supported in VPI contexts (i.e. an
* argument to a system task/function) as a vpiSysFuncCall object. The
* $display function divines that this is a function call and uses a
* vpi_get_value to get the value.
*/
/*
* vpi_time_precision is the precision of the simulation clock. It is
* set by the :vpi_time_precision directive in the vvp source file.
*/
static int vpi_time_precision = 0;
static struct __vpiSystemTime global_simtime;
void vpip_time_to_timestruct(struct t_vpi_time*ts, vvp_time64_t ti)
{
ts->low = ti & 0xFFFFFFFF;
ts->high = (ti >> 32) & 0xFFFFFFFF;
}
vvp_time64_t vpip_timestruct_to_time(const struct t_vpi_time*ts)
{
vvp_time64_t ti = ts->high;
ti <<= 32;
ti += ts->low & 0xffffffff;
return ti;
}
double vpip_time_to_scaled_real(vvp_time64_t ti, struct __vpiScope*scope)
{
double val;
int scale = 0;
if (scope) scale = vpi_time_precision - scope->time_units;
if (scale >= 0) val = (double)ti * pow(10.0, scale);
else val = (double)ti / pow(10.0, -scale);
return val;
}
/*
* This routine does not currently support negative real delays and it
* does not check for overflow. It is only used for modpath delays and
* they are required to be non-negative.
*/
vvp_time64_t vpip_scaled_real_to_time64(double val, struct __vpiScope*scope)
{
int shift = 0;
if (scope) shift = scope->time_units - scope->time_precision;
assert(shift >= 0);
assert(val >= 0);
// Scale to the local precision and then round away from zero.
double scale = pow(10.0L, shift);
val *= scale;
vvp_time64_t delay = (vvp_time64_t) (val + 0.5);
// If needed now scale the value to the simulator precision.
if (scope) {
shift = scope->time_precision - vpi_time_precision;
assert(shift >= 0);
for (int lp = 0; lp < shift; lp += 1) delay *= 10;
}
return delay;
}
static void timevar_get_value(vpiHandle ref, s_vpi_value*vp, bool is_int_func,
bool is_stime)
{
/* Keep a persistent structure for passing time values back to
the caller. */
static struct t_vpi_time time_value;
struct __vpiSystemTime*rfp = dynamic_cast<__vpiSystemTime*>(ref);
unsigned long num_bits;
vvp_time64_t x, simtime = schedule_simtime();
int units = rfp->scope? rfp->scope->time_units : vpi_time_precision;
char*rbuf = (char *) need_result_buf(128, RBUF_VAL);
/* Calculate the divisor needed to scale the simulation time
(in time_precision units) to time units of the scope. */
vvp_time64_t divisor = 1;
while (units > vpi_time_precision) {
divisor *= 10;
units -= 1;
}
/* Scale the simtime, and use the modulus to round up if
appropriate. */
vvp_time64_t simtime_fraction = simtime % divisor;
simtime /= divisor;
if ((divisor >= 10) && (simtime_fraction >= (divisor/2)))
simtime += 1;
/* If this is a call to $stime only return the lower 32 bits. */
if (is_stime) simtime &= 0xffffffff;
switch (vp->format) {
case vpiObjTypeVal:
/* The default format is vpiTimeVal. */
vp->format = vpiTimeVal;
// fallthrough
case vpiTimeVal:
vp->value.time = &time_value;
vp->value.time->type = vpiSimTime;
vpip_time_to_timestruct(vp->value.time, simtime);
break;
case vpiRealVal:
/* If this is an integer based call (anything but $realtime)
* just return the value as a double. */
if (is_int_func) vp->value.real = double (simtime);
/* This is a call to $realtime to return a real value so
* scale this using the scaled real rules. */
else vp->value.real = vpip_time_to_scaled_real(schedule_simtime(),
rfp->scope);
break;
case vpiBinStrVal:
x = simtime;
num_bits = 8 * sizeof(vvp_time64_t);
rbuf[num_bits] = 0;
for (unsigned i = 1; i <= num_bits; i++) {
rbuf[num_bits-i] = (x & 1) ? '1' : '0';
x = x >> 1;
}
vp->value.str = rbuf;
break;
case vpiDecStrVal:
sprintf(rbuf, "%" TIME_FMT_U, simtime);
vp->value.str = rbuf;
break;
case vpiOctStrVal:
sprintf(rbuf, "%" TIME_FMT_O, simtime);
vp->value.str = rbuf;
break;
case vpiHexStrVal:
sprintf(rbuf, "%" TIME_FMT_X, simtime);
vp->value.str = rbuf;
break;
default:
fprintf(stderr, "vpi_time: unknown format: %d\n", (int)vp->format);
assert(0);
}
}
static void timevar_get_ivalue(vpiHandle ref, s_vpi_value*vp)
{
timevar_get_value(ref, vp, true, false);
}
static void timevar_get_svalue(vpiHandle ref, s_vpi_value*vp)
{
timevar_get_value(ref, vp, true, true);
}
static void timevar_get_rvalue(vpiHandle ref, s_vpi_value*vp)
{
timevar_get_value(ref, vp, false, false);
}
__vpiScopedTime::__vpiScopedTime()
{ }
char* __vpiScopedTime::vpi_get_str(int code)
{
switch (code) {
case vpiName:
return simple_set_rbuf_str("$time");
default:
fprintf(stderr, "Code: %d\n", code);
assert(0);
return 0;
}
}
void __vpiScopedTime::vpi_get_value(p_vpi_value val)
{ timevar_get_ivalue(this, val); }
__vpiScopedSTime::__vpiScopedSTime()
{ }
int __vpiScopedSTime::vpi_get(int code)
{
switch (code) {
case vpiSize:
return 32;
default:
return __vpiSystemTime::vpi_get(code);
}
}
char* __vpiScopedSTime::vpi_get_str(int code)
{
switch (code) {
case vpiName:
return simple_set_rbuf_str("$stime");
default:
fprintf(stderr, "Code: %d\n", code);
assert(0);
return 0;
}
}
void __vpiScopedSTime::vpi_get_value(p_vpi_value val)
{ timevar_get_svalue(this, val); }
__vpiSystemTime::__vpiSystemTime()
{
scope = 0;
}
int __vpiSystemTime::get_type_code(void) const
{ return vpiSysFuncCall; }
int __vpiSystemTime::vpi_get(int code)
{
switch (code) {
case vpiSize:
return 64;
case vpiSigned:
return 0;
case vpiFuncType:
return vpiTimeFunc;
case vpiAutomatic:
return 0;
default:
fprintf(stderr, "Code: %d\n", code);
assert(0);
return 0;
}
}
char* __vpiSystemTime::vpi_get_str(int code)
{
switch (code) {
case vpiName:
return simple_set_rbuf_str("$simtime");
default:
fprintf(stderr, "Code: %d\n", code);
assert(0);
return 0;
}
}
void __vpiSystemTime::vpi_get_value(p_vpi_value val)
{ timevar_get_ivalue(this, val); }
vpiHandle __vpiSystemTime::vpi_handle(int code)
{
switch (code) {
case vpiScope:
return scope;
default:
return 0;
}
}
__vpiScopedRealtime::__vpiScopedRealtime()
{ }
int __vpiScopedRealtime::vpi_get(int code)
{
switch (code) {
case vpiSize:
return 1;
case vpiSigned:
return 0;
case vpiFuncType:
return vpiRealFunc;
case vpiAutomatic:
return 0;
default:
fprintf(stderr, "Code: %d\n", code);
assert(0);
return 0;
}
}
char* __vpiScopedRealtime::vpi_get_str(int code)
{
switch (code) {
case vpiName:
return simple_set_rbuf_str("$realtime");
default:
fprintf(stderr, "Code: %d\n", code);
assert(0);
return 0;
}
}
void __vpiScopedRealtime::vpi_get_value(p_vpi_value val)
{ timevar_get_rvalue(this, val); }
/*
* Create a handle to represent a call to $time/$stime/$simtime. The
* $time and $stime system functions return a value scaled to a scope,
* and the $simtime returns the unscaled time.
*/
vpiHandle vpip_sim_time(struct __vpiScope*scope, bool is_stime)
{
if (scope) {
if (is_stime) {
scope->scoped_stime.scope = scope;
return &scope->scoped_stime;
} else {
scope->scoped_time.scope = scope;
return &scope->scoped_time;
}
} else {
return &global_simtime;
}
}
vpiHandle vpip_sim_realtime(struct __vpiScope*scope)
{
scope->scoped_realtime.scope = scope;
return &scope->scoped_realtime;
}
int vpip_get_time_precision(void)
{
return vpi_time_precision;
}
void vpip_set_time_precision(int pre)
{
vpi_time_precision = pre;
}