iverilog/vvp/vpi_signal.cc

827 lines
20 KiB
C++

/*
* Copyright (c) 2001-2010 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
/*
* vpiReg handles are handled here. These objects represent vectors of
* .var objects that can be manipulated by the VPI module.
*/
# include "vpi_priv.h"
# include "functor.h"
# include "schedule.h"
# include "statistics.h"
# include <math.h>
# include <stdio.h>
#ifdef HAVE_MALLOC_H
# include <malloc.h>
#endif
# include <stdlib.h>
# include <string.h>
# include <assert.h>
/*
* Hex digits that represent 4-value bits of Verilog are not as
* trivially obvious to display as if the bits were the usual 2-value
* bits. So, although it is possible to write a function that
* generates a correct character for 4*4-value bits, it is easier to
* just perform the lookup in a table. This only takes 256 bytes,
* which is not many executable instructions:-)
*
* The table is calculated as compile time, therefore, by the
* draw_tt.c program.
*/
extern const char hex_digits[256];
extern const char oct_digits[256];
/*
* The string values need a result buf to hold the results. This
* buffer can be reused for that purpose. Whenever I have a need, the
* need_result_buf function makes sure that need can be met.
*/
char *need_result_buf(unsigned cnt, vpi_rbuf_t type)
{
cnt = (cnt + 0x0fff) & ~0x0fff;
static char*result_buf[2] = {0, 0};
static size_t result_buf_size[2] = {0, 0};
if (result_buf_size[type] == 0) {
result_buf[type] = (char*)malloc(cnt);
result_buf_size[type] = cnt;
} else if (result_buf_size[type] < cnt) {
result_buf[type] = (char*)realloc(result_buf[type], cnt);
result_buf_size[type] = cnt;
}
return result_buf[type];
}
/*
* implement vpi_get for vpiReg objects.
*/
static int signal_get(int code, vpiHandle ref)
{
assert((ref->vpi_type->type_code==vpiNet)
|| (ref->vpi_type->type_code==vpiReg));
struct __vpiSignal*rfp = (struct __vpiSignal*)ref;
switch (code) {
case vpiSigned:
return rfp->signed_flag != 0;
case vpiSize:
if (rfp->msb >= rfp->lsb)
return rfp->msb - rfp->lsb + 1;
else
return rfp->lsb - rfp->msb + 1;
case vpiNetType:
if (ref->vpi_type->type_code==vpiNet)
return vpiWire;
else
return 0;
case vpiLeftRange: return rfp->msb;
case vpiRightRange: return rfp->lsb;
case _vpiNexusId:
if (rfp->msb == rfp->lsb)
return vvp_fvector_get(rfp->bits, 0);
else
return 0;
default:
vpi_printf("signal_get: property %d is unknown\n", code);
return 0;
}
}
static char* signal_get_str(int code, vpiHandle ref)
{
assert((ref->vpi_type->type_code==vpiNet)
|| (ref->vpi_type->type_code==vpiReg));
struct __vpiSignal*rfp = (struct __vpiSignal*)ref;
char *bn = strdup(vpi_get_str(vpiFullName, &rfp->scope->base));
char *nm = (char*)rfp->name;
char *rbuf = need_result_buf(strlen(bn) + strlen(nm) + 2, RBUF_STR);
switch (code) {
case vpiFullName:
sprintf(rbuf, "%s.%s", bn, nm);
free(bn);
return rbuf;
case vpiName:
strcpy(rbuf, nm);
free(bn);
return rbuf;
}
free(bn);
return 0;
}
static vpiHandle signal_get_handle(int code, vpiHandle ref)
{
assert((ref->vpi_type->type_code==vpiNet)
|| (ref->vpi_type->type_code==vpiReg));
struct __vpiSignal*rfp = (struct __vpiSignal*)ref;
switch (code) {
case vpiScope:
return &rfp->scope->base;
case vpiModule:
{ struct __vpiScope*scope = rfp->scope;
while (scope && scope->base.vpi_type->type_code != vpiModule)
scope = scope->scope;
assert(scope);
return &scope->base;
}
}
return 0;
}
static char *signal_vpiDecStrVal(struct __vpiSignal*rfp, s_vpi_value*vp)
{
unsigned wid = (rfp->msb >= rfp->lsb)
? (rfp->msb - rfp->lsb + 1)
: (rfp->lsb - rfp->msb + 1);
unsigned char*bits = new unsigned char[wid];
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
vvp_ipoint_t fptr = vvp_fvector_get(rfp->bits, idx);
bits[idx] = functor_get(fptr);
}
unsigned hwid = (wid+2) / 3 + 1;
char *rbuf = need_result_buf(hwid, RBUF_VAL);
vpip_bits_to_dec_str(bits, wid, rbuf, hwid, rfp->signed_flag);
delete[]bits;
return rbuf;
}
static char *signal_vpiStringVal(struct __vpiSignal*rfp, s_vpi_value*vp)
{
unsigned wid = (rfp->msb >= rfp->lsb)
? (rfp->msb - rfp->lsb + 1)
: (rfp->lsb - rfp->msb + 1);
/* The result will use a character for each 8 bits of the
vector. Add one extra character for the highest bits that
don't form an 8 bit group. */
char *rbuf = need_result_buf(wid/8 + ((wid&7)!=0) + 1, RBUF_VAL);
char *cp = rbuf;
char tmp = 0;
int bitnr;
for(bitnr=wid-1; bitnr>=0; bitnr--){
vvp_ipoint_t fptr = vvp_fvector_get(rfp->bits, bitnr);
tmp <<= 1;
switch (functor_get(fptr)) {
case 0:
break;
case 1:
tmp |= 1;
break;
default:
break;
}
if ((bitnr&7)==0){
/* Skip leading nulls. */
if (tmp == 0 && cp == rbuf)
continue;
/* Nulls in the middle get turned into spaces. */
*cp++ = tmp? tmp : ' ';
tmp = 0;
}
}
*cp++ = 0;
return rbuf;
}
/*
* The get_value method reads the values of the functors and returns
* the vector to the caller. This causes no side-effect, and reads the
* variables like a %load would.
*/
static void signal_get_value(vpiHandle ref, s_vpi_value*vp)
{
assert((ref->vpi_type->type_code==vpiNet)
|| (ref->vpi_type->type_code==vpiReg));
struct __vpiSignal*rfp = (struct __vpiSignal*)ref;
unsigned wid = (rfp->msb >= rfp->lsb)
? (rfp->msb - rfp->lsb + 1)
: (rfp->lsb - rfp->msb + 1);
char *rbuf = 0;
switch (vp->format) {
case vpiIntVal:
assert(wid <= 8 * sizeof vp->value.integer);
vp->value.integer = 0;
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
vvp_ipoint_t fptr = vvp_fvector_get(rfp->bits, idx);
switch (functor_get(fptr)) {
case 0:
break;
case 1:
vp->value.integer |= 1<<idx;
break;
default:
/* vpi_get_value of vpiIntVal treats x and z
values as 0. */
break;
}
}
break;
case vpiScalarVal: {
vvp_ipoint_t fptr = vvp_fvector_get(rfp->bits, 0);
switch (functor_get(fptr)) {
case 0:
vp->value.scalar = vpi0;
break;
case 1:
vp->value.scalar = vpi1;
break;
case 2:
vp->value.scalar = vpiX;
break;
case 3:
vp->value.scalar = vpiZ;
break;
}
break;
}
case vpiBinStrVal:
rbuf = need_result_buf(wid+1, RBUF_VAL);
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
vvp_ipoint_t fptr = vvp_fvector_get(rfp->bits, idx);
rbuf[wid-idx-1] = "01xz"[functor_get(fptr)];
}
rbuf[wid] = 0;
vp->value.str = rbuf;
break;
case vpiHexStrVal: {
unsigned hval, hwid;
hwid = (wid + 3) / 4;
rbuf = need_result_buf(hwid+1, RBUF_VAL);
rbuf[hwid] = 0;
hval = 0;
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
vvp_ipoint_t fptr = vvp_fvector_get(rfp->bits, idx);
hval = hval | (functor_get(fptr) << 2*(idx % 4));
if (idx%4 == 3) {
hwid -= 1;
rbuf[hwid] = hex_digits[hval];
hval = 0;
}
}
if (hwid > 0) {
hwid -= 1;
rbuf[hwid] = hex_digits[hval];
unsigned padd = 0;
switch(rbuf[hwid]) {
case 'X': padd = 2; break;
case 'Z': padd = 3; break;
}
if (padd) {
for (unsigned idx = wid % 4; idx < 4; idx += 1) {
hval = hval | padd << 2*idx;
}
rbuf[hwid] = hex_digits[hval];
}
}
vp->value.str = rbuf;
break;
}
case vpiOctStrVal: {
unsigned hval, hwid;
hwid = (wid + 2) / 3;
rbuf = need_result_buf(hwid+1, RBUF_VAL);
rbuf[hwid] = 0;
hval = 0;
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
vvp_ipoint_t fptr = vvp_fvector_get(rfp->bits, idx);
hval = hval | (functor_get(fptr) << 2*(idx % 3));
if (idx%3 == 2) {
hwid -= 1;
rbuf[hwid] = oct_digits[hval];
hval = 0;
}
}
if (hwid > 0) {
hwid -= 1;
rbuf[hwid] = oct_digits[hval];
unsigned padd = 0;
switch(rbuf[hwid]) {
case 'X': padd = 2; break;
case 'Z': padd = 3; break;
}
if (padd) {
for (unsigned idx = wid % 3; idx < 3; idx += 1) {
hval = hval | padd << 2*idx;
}
rbuf[hwid] = oct_digits[hval];
}
}
vp->value.str = rbuf;
break;
}
case vpiDecStrVal:
vp->value.str = signal_vpiDecStrVal(rfp, vp);
break;
case vpiStringVal:
vp->value.str = signal_vpiStringVal(rfp, vp);
break;
case vpiVectorVal: {
unsigned int obit = 0;
unsigned hwid = (wid - 1)/32 + 1;
rbuf = need_result_buf(hwid * sizeof(s_vpi_vecval), RBUF_VAL);
s_vpi_vecval *op = (p_vpi_vecval)rbuf;
vp->value.vector = op;
op->aval = op->bval = 0;
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
vvp_ipoint_t fptr = vvp_fvector_get(rfp->bits, idx);
switch (functor_get(fptr)) {
case 0:
op->aval &= ~(1 << obit);
op->bval &= ~(1 << obit);
break;
case 1:
op->aval |= (1 << obit);
op->bval &= ~(1 << obit);
break;
case 2:
op->aval |= (1 << obit);
op->bval |= (1 << obit);
break;
case 3:
op->aval &= ~(1 << obit);
op->bval |= (1 << obit);
break;
}
obit++;
if (!(obit % 32)) {
op += 1;
if ((op - vp->value.vector) < (ptrdiff_t)hwid)
op->aval = op->bval = 0;
obit = 0;
}
}
break;
}
case vpiStrengthVal: {
s_vpi_strengthval*op = (s_vpi_strengthval*)
need_result_buf(wid * sizeof(s_vpi_strengthval),
RBUF_VAL);
vp->value.strength = op;
/* Convert the internal strength values of each
functor in the vector to a PLI2.0 version. */
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
vvp_ipoint_t fptr = vvp_fvector_get(rfp->bits, idx);
functor_t fp = functor_index(fptr);
unsigned str = fp->get_ostr();
unsigned s0 = 1 << (str&0x07);
unsigned s1 = 1 << ((str>>4) & 0x07);
switch (fp->get()) {
case 0:
op[idx].logic = vpi0;
op[idx].s0 = s0|s1;
op[idx].s1 = 0;
break;
case 1:
op[idx].logic = vpi1;
op[idx].s0 = 0;
op[idx].s1 = s0|s1;
break;
case 2:
op[idx].logic = vpiX;
op[idx].s0 = s0;
op[idx].s1 = s1;
break;
case 3:
op[idx].logic = vpiZ;
op[idx].s0 = vpiHiZ;
op[idx].s1 = vpiHiZ;
break;
default:
assert(0);
}
}
break;
}
case vpiRealVal: {
fprintf(stderr, "Sorry: V0.8 cannot convert a bit based signal to a real value.\n");
assert(0);
}
default:
fprintf(stderr, "vvp internal error: get_value: "
"value type %u not implemented."
" Signal is %s in scope %s\n",
vp->format, rfp->name, rfp->scope->name);
assert(0);
}
}
/*
* The put_value method writes the value into the vector, and returns
* the affected ref. This operation works much like the %set or
* %assign instructions and causes all the side-effects that the
* equivalent instruction would cause.
*/
static void functor_poke(struct __vpiSignal*rfp, unsigned idx,
unsigned val, unsigned str, unsigned long dly =0)
{
vvp_ipoint_t ptr = vvp_fvector_get(rfp->bits,idx);
if (dly > 0) {
schedule_assign(ptr, val, dly);
} else {
functor_t fu = functor_index(ptr);
fu->put_ostr(val, str, true);
}
}
static void signal_put_stringval(struct __vpiSignal*rfp, unsigned wid,
const char*str)
{
unsigned idx;
const char*cp;
cp = str + strlen(str);
idx = 0;
while ((idx < wid) && (cp > str)) {
unsigned byte = *--cp;
int bit;
for (bit = 0 ; bit < 8 ; bit += 1) {
if (byte & 1)
functor_poke(rfp, idx, 1, St1);
else
functor_poke(rfp, idx, 0, St0);
byte >>= 1;
idx += 1;
}
}
while (idx < wid) {
functor_poke(rfp, idx, 0, St0);
idx += 1;
}
}
static vpiHandle signal_put_value(vpiHandle ref, s_vpi_value*vp)
{
unsigned wid;
struct __vpiSignal*rfp;
assert((ref->vpi_type->type_code==vpiNet)
|| (ref->vpi_type->type_code==vpiReg));
rfp = (struct __vpiSignal*)ref;
wid = (rfp->msb >= rfp->lsb)
? (rfp->msb - rfp->lsb + 1)
: (rfp->lsb - rfp->msb + 1);
switch (vp->format) {
case vpiIntVal: {
if (wid > 8*sizeof(long)) {
fprintf(stderr, "internal error: wid(%u) "
"too large.\n", wid);
assert(0);
}
long val = vp->value.integer;
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
functor_poke(rfp, idx, val&1, (val&1)? St1 : St0, 0);
val >>= 1;
}
break;
}
case vpiScalarVal:
switch (vp->value.scalar) {
case vpi0:
functor_poke(rfp, 0, 0, St0, 0);
break;
case vpi1:
functor_poke(rfp, 0, 1, St1, 0);
break;
case vpiX:
functor_poke(rfp, 0, 2, StX, 0);
break;
case vpiZ:
functor_poke(rfp, 0, 3, HiZ, 0);
break;
default:
assert(0);
}
break;
case vpiVectorVal:
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
unsigned long aval = vp->value.vector[idx/32].aval;
unsigned long bval = vp->value.vector[idx/32].bval;
aval >>= idx%32;
bval >>= idx%32;
int bit = (aval&1) | ((bval<<1)&2);
switch (bit) {
case 0: /* zero */
functor_poke(rfp,idx, 0, St0, 0);
break;
case 1: /* one */
functor_poke(rfp,idx, 1, St1, 0);
break;
case 2: /* z */
functor_poke(rfp,idx, 3, HiZ, 0);
break;
case 3: /* x */
functor_poke(rfp,idx, 2, StX, 0);
break;
}
}
break;
case vpiBinStrVal: {
unsigned char*bits = new unsigned char[(wid+3) / 4];
vpip_bin_str_to_bits(bits, wid, vp->value.str, false);
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
unsigned bb = idx / 4;
unsigned bs = (idx % 4) * 2;
unsigned val = (bits[bb] >> bs) & 0x03;
switch (val) {
case 0: /* zero */
functor_poke(rfp,idx, 0, St0, 0);
break;
case 1: /* one */
functor_poke(rfp,idx, 1, St1, 0);
break;
case 2: /* x */
functor_poke(rfp,idx, 2, StX, 0);
break;
case 3: /* z */
functor_poke(rfp,idx, 3, HiZ, 0);
break;
}
}
delete[]bits;
break;
}
case vpiOctStrVal: {
unsigned char*bits = new unsigned char[(wid+3) / 4];
vpip_oct_str_to_bits(bits, wid, vp->value.str, false);
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
unsigned bb = idx / 4;
unsigned bs = (idx % 4) * 2;
unsigned val = (bits[bb] >> bs) & 0x03;
switch (val) {
case 0: /* zero */
functor_poke(rfp,idx, 0, St0, 0);
break;
case 1: /* one */
functor_poke(rfp,idx, 1, St1, 0);
break;
case 2: /* x */
functor_poke(rfp,idx, 2, StX, 0);
break;
case 3: /* z */
functor_poke(rfp,idx, 3, HiZ, 0);
break;
}
}
delete[]bits;
break;
}
case vpiHexStrVal: {
unsigned char*bits = new unsigned char[(wid+3) / 4];
vpip_hex_str_to_bits(bits, wid, vp->value.str, false);
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
unsigned bb = idx / 4;
unsigned bs = (idx % 4) * 2;
unsigned val = (bits[bb] >> bs) & 0x03;
switch (val) {
case 0: /* zero */
functor_poke(rfp,idx, 0, St0, 0);
break;
case 1: /* one */
functor_poke(rfp,idx, 1, St1, 0);
break;
case 2: /* x */
functor_poke(rfp,idx, 2, StX, 0);
break;
case 3: /* z */
functor_poke(rfp,idx, 3, HiZ, 0);
break;
}
}
delete[]bits;
break;
}
case vpiDecStrVal: {
unsigned char*bits = new unsigned char[wid];
vpip_dec_str_to_bits(bits, wid, vp->value.str, false);
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
switch (bits[idx]) {
case 0: /* zero */
functor_poke(rfp,idx, 0, St0, 0);
break;
case 1: /* one */
functor_poke(rfp,idx, 1, St1, 0);
break;
case 2: /* x */
functor_poke(rfp,idx, 2, StX, 0);
break;
case 3: /* z */
functor_poke(rfp,idx, 3, HiZ, 0);
break;
}
}
delete[]bits;
break;
}
case vpiStringVal:
signal_put_stringval(rfp, wid, vp->value.str);
break;
default:
fprintf(stderr, "vvp internal error: put_value: "
"value type %u not implemented."
" Signal is %s in scope %s\n",
vp->format, rfp->name, rfp->scope->name);
assert(0);
}
return ref;
}
static const struct __vpirt vpip_reg_rt = {
vpiReg,
signal_get,
signal_get_str,
signal_get_value,
signal_put_value,
signal_get_handle,
0
};
static const struct __vpirt vpip_net_rt = {
vpiNet,
signal_get,
signal_get_str,
signal_get_value,
signal_put_value,
signal_get_handle,
0
};
/*
* Construct a vpiIntegetVar object. Indicate the type using a flag
* to minimize the code modifications. Icarus implements integers
* as 'reg signed [31:0]'.
*/
vpiHandle vpip_make_int(const char*name, int msb, int lsb, vvp_fvector_t vec)
{
vpiHandle obj = vpip_make_net(name, msb,lsb, true, vec);
struct __vpiSignal*rfp = (struct __vpiSignal*)obj;
obj->vpi_type = &vpip_reg_rt;
rfp->isint_ = true;
return obj;
}
/*
* Construct a vpiReg object. It's like a net, except for the type.
*/
vpiHandle vpip_make_reg(const char*name, int msb, int lsb,
bool signed_flag, vvp_fvector_t vec)
{
vpiHandle obj = vpip_make_net(name, msb,lsb, signed_flag, vec);
obj->vpi_type = &vpip_reg_rt;
return obj;
}
static struct __vpiSignal* allocate_vpiSignal(void)
{
static struct __vpiSignal*alloc_array = 0;
static unsigned alloc_index = 0;
const unsigned alloc_count = 512;
if ((alloc_array == 0) || (alloc_index == alloc_count)) {
alloc_array = (struct __vpiSignal*)
calloc(alloc_count, sizeof(struct __vpiSignal));
alloc_index = 0;
}
struct __vpiSignal*cur = alloc_array + alloc_index;
alloc_index += 1;
return cur;
}
/*
* Construct a vpiNet object. Give the object specified dimensions,
* and point to the specified functor for the lsb.
*/
vpiHandle vpip_make_net(const char*name, int msb, int lsb,
bool signed_flag, vvp_fvector_t vec)
{
struct __vpiSignal*obj = allocate_vpiSignal();
obj->base.vpi_type = &vpip_net_rt;
obj->name = vpip_name_string(name);
obj->msb = msb;
obj->lsb = lsb;
obj->signed_flag = signed_flag? 1 : 0;
obj->isint_ = false;
obj->bits = vec;
obj->callback = 0;
obj->scope = vpip_peek_current_scope();
count_vpi_nets += 1;
return &obj->base;
}