1331 lines
37 KiB
C++
1331 lines
37 KiB
C++
/*
|
|
* Copyright (c) 1998-2010 Stephen Williams (steve@icarus.com)
|
|
*
|
|
* This source code is free software; you can redistribute it
|
|
* and/or modify it in source code form under the terms of the GNU
|
|
* General Public License as published by the Free Software
|
|
* Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
|
|
*/
|
|
|
|
# include "config.h"
|
|
|
|
# include "netlist.h"
|
|
# include "netmisc.h"
|
|
# include "functor.h"
|
|
# include "compiler.h"
|
|
# include <assert.h>
|
|
|
|
|
|
|
|
/*
|
|
* The cprop function below invokes constant propagation where
|
|
* possible. The elaboration generates NetConst objects. I can remove
|
|
* these and replace the gates connected to it with simpler ones. I
|
|
* may even be able to replace nets with a new constant.
|
|
*/
|
|
|
|
struct cprop_functor : public functor_t {
|
|
|
|
unsigned count;
|
|
|
|
virtual void signal(Design*des, NetNet*obj);
|
|
virtual void lpm_add_sub(Design*des, NetAddSub*obj);
|
|
virtual void lpm_compare(Design*des, NetCompare*obj);
|
|
virtual void lpm_compare_eq_(Design*des, NetCompare*obj);
|
|
virtual void lpm_ff(Design*des, NetFF*obj);
|
|
virtual void lpm_logic(Design*des, NetLogic*obj);
|
|
virtual void lpm_mux(Design*des, NetMux*obj);
|
|
virtual void lpm_mux_large(Design*des, NetMux*obj);
|
|
virtual void lpm_ram_dq(Design*des, NetRamDq*obj);
|
|
bool lpm_ram_dq_const_address_(Design*des, NetRamDq*obj);
|
|
};
|
|
|
|
void cprop_functor::signal(Design*des, NetNet*obj)
|
|
{
|
|
}
|
|
|
|
void cprop_functor::lpm_add_sub(Design*des, NetAddSub*obj)
|
|
{
|
|
// For now, only additions are handled.
|
|
if (obj->attribute(perm_string::literal("LPM_Direction")) != verinum("ADD"))
|
|
return;
|
|
|
|
// If the low bit on the A side is 0, then eliminate it from
|
|
// the adder, and pass the B side directly to the
|
|
// result. Don't reduce the adder smaller then a 1-bit
|
|
// adder. These will be eliminated later.
|
|
while ((obj->width() > 1)
|
|
&& obj->pin_DataA(0).nexus()->drivers_constant()
|
|
&& (obj->pin_DataA(0).nexus()->driven_value() == verinum::V0)) {
|
|
|
|
NetAddSub*tmp = 0;
|
|
tmp = new NetAddSub(obj->scope(), obj->name(), obj->width()-1);
|
|
//connect(tmp->pin_Aclr(), obj->pin_Aclr());
|
|
//connect(tmp->pin_Add_Sub(), obj->pin_Add_Sub());
|
|
//connect(tmp->pin_Clock(), obj->pin_Clock());
|
|
//connect(tmp->pin_Cin(), obj->pin_Cin());
|
|
connect(tmp->pin_Cout(), obj->pin_Cout());
|
|
//connect(tmp->pin_Overflow(), obj->pin_Overflow());
|
|
for (unsigned idx = 0 ; idx < tmp->width() ; idx += 1) {
|
|
connect(tmp->pin_DataA(idx), obj->pin_DataA(idx+1));
|
|
connect(tmp->pin_DataB(idx), obj->pin_DataB(idx+1));
|
|
connect(tmp->pin_Result(idx), obj->pin_Result(idx+1));
|
|
}
|
|
connect(obj->pin_Result(0), obj->pin_DataB(0));
|
|
delete obj;
|
|
des->add_node(tmp);
|
|
obj = tmp;
|
|
count += 1;
|
|
}
|
|
|
|
// Now do the same thing on the B side.
|
|
while ((obj->width() > 1)
|
|
&& obj->pin_DataB(0).nexus()->drivers_constant()
|
|
&& (obj->pin_DataB(0).nexus()->driven_value() == verinum::V0)) {
|
|
|
|
NetAddSub*tmp = 0;
|
|
tmp = new NetAddSub(obj->scope(), obj->name(), obj->width()-1);
|
|
//connect(tmp->pin_Aclr(), obj->pin_Aclr());
|
|
//connect(tmp->pin_Add_Sub(), obj->pin_Add_Sub());
|
|
//connect(tmp->pin_Clock(), obj->pin_Clock());
|
|
//connect(tmp->pin_Cin(), obj->pin_Cin());
|
|
connect(tmp->pin_Cout(), obj->pin_Cout());
|
|
//connect(tmp->pin_Overflow(), obj->pin_Overflow());
|
|
for (unsigned idx = 0 ; idx < tmp->width() ; idx += 1) {
|
|
connect(tmp->pin_DataA(idx), obj->pin_DataA(idx+1));
|
|
connect(tmp->pin_DataB(idx), obj->pin_DataB(idx+1));
|
|
connect(tmp->pin_Result(idx), obj->pin_Result(idx+1));
|
|
}
|
|
connect(obj->pin_Result(0), obj->pin_DataA(0));
|
|
delete obj;
|
|
des->add_node(tmp);
|
|
obj = tmp;
|
|
count += 1;
|
|
}
|
|
|
|
// If the adder is only 1 bit wide, then replace it with the
|
|
// simple logic gate.
|
|
if (obj->width() == 1) {
|
|
NetLogic*tmp;
|
|
if (obj->pin_Cout().is_linked()) {
|
|
tmp = new NetLogic(obj->scope(),
|
|
obj->scope()->local_symbol(),
|
|
3, NetLogic::AND);
|
|
connect(tmp->pin(0), obj->pin_Cout());
|
|
connect(tmp->pin(1), obj->pin_DataA(0));
|
|
connect(tmp->pin(2), obj->pin_DataB(0));
|
|
des->add_node(tmp);
|
|
}
|
|
tmp = new NetLogic(obj->scope(), obj->name(), 3, NetLogic::XOR);
|
|
connect(tmp->pin(0), obj->pin_Result(0));
|
|
connect(tmp->pin(1), obj->pin_DataA(0));
|
|
connect(tmp->pin(2), obj->pin_DataB(0));
|
|
delete obj;
|
|
des->add_node(tmp);
|
|
count += 1;
|
|
return;
|
|
}
|
|
|
|
}
|
|
|
|
void cprop_functor::lpm_compare(Design*des, NetCompare*obj)
|
|
{
|
|
if (obj->pin_AEB().is_linked()) {
|
|
assert( ! obj->pin_AGB().is_linked() );
|
|
assert( ! obj->pin_AGEB().is_linked() );
|
|
assert( ! obj->pin_ALB().is_linked() );
|
|
assert( ! obj->pin_ALEB().is_linked() );
|
|
assert( ! obj->pin_AGB().is_linked() );
|
|
assert( ! obj->pin_ANEB().is_linked() );
|
|
lpm_compare_eq_(des, obj);
|
|
return;
|
|
}
|
|
}
|
|
|
|
void cprop_functor::lpm_compare_eq_(Design*des, NetCompare*obj)
|
|
{
|
|
NetScope*scope = obj->scope();
|
|
|
|
unsigned const_count = 0;
|
|
bool unknown_flag = false;
|
|
|
|
/* First, look for the case where constant bits on matching A
|
|
and B inputs are different. This this is so, the device can
|
|
be completely eliminated and replaced with a constant 0. */
|
|
|
|
for (unsigned idx = 0 ; idx < obj->width() ; idx += 1) {
|
|
if (! obj->pin_DataA(idx).nexus()->drivers_constant())
|
|
continue;
|
|
if (! obj->pin_DataB(idx).nexus()->drivers_constant())
|
|
continue;
|
|
|
|
const_count += 1;
|
|
|
|
verinum::V abit = obj->pin_DataA(idx).nexus()->driven_value();
|
|
verinum::V bbit = obj->pin_DataB(idx).nexus()->driven_value();
|
|
|
|
if ((abit == verinum::V0) && (bbit == verinum::V0))
|
|
continue;
|
|
if ((abit == verinum::V1) && (bbit == verinum::V1))
|
|
continue;
|
|
|
|
unknown_flag = true;
|
|
if ((abit == verinum::Vz) || (abit == verinum::Vx))
|
|
continue;
|
|
if ((bbit == verinum::Vz) || (bbit == verinum::Vx))
|
|
continue;
|
|
|
|
NetConst*zero = new NetConst(scope, obj->name(), verinum::V0);
|
|
connect(zero->pin(0), obj->pin_AEB());
|
|
delete obj;
|
|
des->add_node(zero);
|
|
count += 1;
|
|
return;
|
|
}
|
|
|
|
/* If all the inputs are constant, then at this point the
|
|
result is either V1 or Vx. */
|
|
if (const_count == obj->width()) {
|
|
|
|
NetConst*val = new NetConst(scope, obj->name(),
|
|
unknown_flag
|
|
? verinum::Vx
|
|
: verinum::V1);
|
|
connect(val->pin(0), obj->pin_AEB());
|
|
delete obj;
|
|
des->add_node(val);
|
|
count += 1;
|
|
return;
|
|
}
|
|
|
|
/* Still may need the gate. Run through the inputs again, and
|
|
look for pairs of constants. Those inputs can be removed. */
|
|
|
|
unsigned top = obj->width();
|
|
for (unsigned idx = 0 ; idx < top ; ) {
|
|
if (! obj->pin_DataA(idx).nexus()->drivers_constant()) {
|
|
idx += 1;
|
|
continue;
|
|
}
|
|
if (! obj->pin_DataB(idx).nexus()->drivers_constant()) {
|
|
idx += 1;
|
|
continue;
|
|
}
|
|
|
|
obj->pin_DataA(idx).unlink();
|
|
obj->pin_DataB(idx).unlink();
|
|
|
|
top -= 1;
|
|
for (unsigned jj = idx ; jj < top ; jj += 1) {
|
|
connect(obj->pin_DataA(jj), obj->pin_DataA(jj+1));
|
|
connect(obj->pin_DataB(jj), obj->pin_DataB(jj+1));
|
|
obj->pin_DataA(jj+1).unlink();
|
|
obj->pin_DataB(jj+1).unlink();
|
|
}
|
|
}
|
|
|
|
/* If we wound up disconnecting all the inputs, then remove
|
|
the device and replace it with a constant. */
|
|
if (top == 0) {
|
|
NetConst*one = new NetConst(scope, obj->name(), verinum::V1);
|
|
connect(one->pin(0), obj->pin_AEB());
|
|
delete obj;
|
|
des->add_node(one);
|
|
count += 1;
|
|
return;
|
|
}
|
|
|
|
/* If there is only one bit left, then replace the comparator
|
|
with a simple XOR gate. */
|
|
if (top == 1) {
|
|
NetLogic*tmp = new NetLogic(scope, obj->name(), 3,
|
|
NetLogic::XNOR);
|
|
connect(tmp->pin(0), obj->pin_AEB());
|
|
connect(tmp->pin(1), obj->pin_DataA(0));
|
|
connect(tmp->pin(2), obj->pin_DataB(0));
|
|
delete obj;
|
|
des->add_node(tmp);
|
|
count += 1;
|
|
return;
|
|
}
|
|
|
|
|
|
if (top == obj->width())
|
|
return;
|
|
|
|
NetCompare*tmp = new NetCompare(scope, obj->name(), top);
|
|
connect(tmp->pin_AEB(), obj->pin_AEB());
|
|
for (unsigned idx = 0 ; idx < top ; idx += 1) {
|
|
connect(tmp->pin_DataA(idx), obj->pin_DataA(idx));
|
|
connect(tmp->pin_DataB(idx), obj->pin_DataB(idx));
|
|
}
|
|
delete obj;
|
|
des->add_node(tmp);
|
|
count += 1;
|
|
}
|
|
|
|
void cprop_functor::lpm_ff(Design*des, NetFF*obj)
|
|
{
|
|
// Look for and count unlinked FF outputs. Note that if the
|
|
// Data and Q pins are connected together, they can be removed
|
|
// from the circuit, since it doesn't do anything.
|
|
unsigned unlinked_count = 0;
|
|
for (unsigned idx = 0 ; idx < obj->width() ; idx += 1) {
|
|
if (connected(obj->pin_Data(idx), obj->pin_Q(idx))
|
|
&& (! obj->pin_Sclr().is_linked())
|
|
&& (! obj->pin_Sset().is_linked())
|
|
&& (! obj->pin_Aclr().is_linked())
|
|
&& (! obj->pin_Aset().is_linked())) {
|
|
obj->pin_Data(idx).unlink();
|
|
obj->pin_Q(idx).unlink();
|
|
}
|
|
if (! obj->pin_Q(idx).is_linked())
|
|
unlinked_count += 1;
|
|
}
|
|
|
|
// If the entire FF is unlinked, remove the whole thing.
|
|
if (unlinked_count == obj->width()) {
|
|
delete obj;
|
|
count += 1;
|
|
return;
|
|
}
|
|
|
|
// If some of the FFs are unconnected, make a new FF array
|
|
// that does not include the useless FF devices.
|
|
if (unlinked_count > 0) {
|
|
NetFF*tmp = new NetFF(obj->scope(), obj->name(),
|
|
obj->width()-unlinked_count);
|
|
connect(tmp->pin_Clock(), obj->pin_Clock());
|
|
connect(tmp->pin_Enable(), obj->pin_Enable());
|
|
connect(tmp->pin_Aset(), obj->pin_Aset());
|
|
connect(tmp->pin_Aclr(), obj->pin_Aclr());
|
|
connect(tmp->pin_Sset(), obj->pin_Sset());
|
|
connect(tmp->pin_Sclr(), obj->pin_Sclr());
|
|
|
|
unsigned tidx = 0;
|
|
for (unsigned idx = 0 ; idx < obj->width() ; idx += 1)
|
|
if (obj->pin_Q(idx).is_linked()) {
|
|
connect(tmp->pin_Data(tidx), obj->pin_Data(idx));
|
|
connect(tmp->pin_Q(tidx), obj->pin_Q(idx));
|
|
tidx += 1;
|
|
}
|
|
|
|
assert(tidx == obj->width() - unlinked_count);
|
|
delete obj;
|
|
des->add_node(tmp);
|
|
count += 1;
|
|
return;
|
|
}
|
|
}
|
|
|
|
void cprop_functor::lpm_logic(Design*des, NetLogic*obj)
|
|
{
|
|
NetScope*scope = obj->scope();
|
|
|
|
switch (obj->type()) {
|
|
|
|
case NetLogic::NAND:
|
|
case NetLogic::AND: {
|
|
unsigned top = obj->pin_count();
|
|
unsigned idx = 1;
|
|
unsigned xs = 0;
|
|
|
|
/* Eliminate all the 1 inputs. They have no effect
|
|
on the output of an AND gate. */
|
|
|
|
while (idx < top) {
|
|
if (! obj->pin(idx).nexus()->drivers_constant()) {
|
|
idx += 1;
|
|
continue;
|
|
}
|
|
|
|
if (obj->pin(idx).nexus()->driven_value()==verinum::V1) {
|
|
obj->pin(idx).unlink();
|
|
top -= 1;
|
|
if (idx < top) {
|
|
connect(obj->pin(idx), obj->pin(top));
|
|
obj->pin(top).unlink();
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
if (obj->pin(idx).nexus()->driven_value() != verinum::V0) {
|
|
idx += 1;
|
|
xs += 1;
|
|
continue;
|
|
}
|
|
|
|
/* Oops! We just stumbled on a driven-0 input
|
|
to the AND gate. That means we can replace
|
|
the whole bloody thing with a constant
|
|
driver and exit now. */
|
|
NetConst*tmp;
|
|
switch (obj->type()) {
|
|
case NetLogic::AND:
|
|
tmp = new NetConst(scope, obj->name(), verinum::V0);
|
|
break;
|
|
case NetLogic::NAND:
|
|
tmp = new NetConst(scope, obj->name(), verinum::V1);
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
|
|
tmp->rise_time(obj->rise_time());
|
|
tmp->fall_time(obj->fall_time());
|
|
tmp->decay_time(obj->decay_time());
|
|
|
|
des->add_node(tmp);
|
|
tmp->pin(0).drive0(obj->pin(0).drive0());
|
|
tmp->pin(0).drive1(obj->pin(0).drive1());
|
|
connect(obj->pin(0), tmp->pin(0));
|
|
|
|
delete obj;
|
|
count += 1;
|
|
return;
|
|
}
|
|
|
|
/* If all the inputs were eliminated, then replace
|
|
the gate with a constant 1 and I am done. */
|
|
if (top == 1) {
|
|
NetConst*tmp;
|
|
switch (obj->type()) {
|
|
case NetLogic::AND:
|
|
tmp = new NetConst(scope, obj->name(), verinum::V1);
|
|
break;
|
|
case NetLogic::NAND:
|
|
tmp = new NetConst(scope, obj->name(), verinum::V0);
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
|
|
tmp->rise_time(obj->rise_time());
|
|
tmp->fall_time(obj->fall_time());
|
|
tmp->decay_time(obj->decay_time());
|
|
|
|
des->add_node(tmp);
|
|
tmp->pin(0).drive0(obj->pin(0).drive0());
|
|
tmp->pin(0).drive1(obj->pin(0).drive1());
|
|
connect(obj->pin(0), tmp->pin(0));
|
|
|
|
delete obj;
|
|
count += 1;
|
|
return;
|
|
}
|
|
|
|
/* If all the inputs are unknowns, then replace the
|
|
gate with a Vx. */
|
|
if (xs == (top-1)) {
|
|
NetConst*tmp;
|
|
tmp = new NetConst(scope, obj->name(), verinum::Vx);
|
|
des->add_node(tmp);
|
|
tmp->pin(0).drive0(obj->pin(0).drive0());
|
|
tmp->pin(0).drive1(obj->pin(0).drive1());
|
|
connect(obj->pin(0), tmp->pin(0));
|
|
|
|
delete obj;
|
|
count += 1;
|
|
return;
|
|
}
|
|
|
|
/* If we are down to only one input, then replace
|
|
the AND with a BUF and exit now. */
|
|
if (top == 2) {
|
|
NetLogic*tmp;
|
|
switch (obj->type()) {
|
|
case NetLogic::AND:
|
|
tmp = new NetLogic(scope,
|
|
obj->name(), 2,
|
|
NetLogic::BUF);
|
|
break;
|
|
case NetLogic::NAND:
|
|
tmp = new NetLogic(scope,
|
|
obj->name(), 2,
|
|
NetLogic::NOT);
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
|
|
tmp->rise_time(obj->rise_time());
|
|
tmp->fall_time(obj->fall_time());
|
|
tmp->decay_time(obj->decay_time());
|
|
|
|
des->add_node(tmp);
|
|
tmp->pin(0).drive0(obj->pin(0).drive0());
|
|
tmp->pin(0).drive1(obj->pin(0).drive1());
|
|
connect(obj->pin(0), tmp->pin(0));
|
|
connect(obj->pin(1), tmp->pin(1));
|
|
delete obj;
|
|
count += 1;
|
|
return;
|
|
}
|
|
|
|
/* Finally, this cleans up the gate by creating a
|
|
new [N]AND gate that has the right number of
|
|
inputs, connected in the right place. */
|
|
if (top < obj->pin_count()) {
|
|
NetLogic*tmp = new NetLogic(scope,
|
|
obj->name(), top,
|
|
obj->type());
|
|
tmp->rise_time(obj->rise_time());
|
|
tmp->fall_time(obj->fall_time());
|
|
tmp->decay_time(obj->decay_time());
|
|
|
|
des->add_node(tmp);
|
|
tmp->pin(0).drive0(obj->pin(0).drive0());
|
|
tmp->pin(0).drive1(obj->pin(0).drive1());
|
|
for (unsigned idx = 0 ; idx < top ; idx += 1)
|
|
connect(tmp->pin(idx), obj->pin(idx));
|
|
|
|
delete obj;
|
|
count += 1;
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
|
|
case NetLogic::NOR:
|
|
case NetLogic::OR: {
|
|
unsigned top = obj->pin_count();
|
|
unsigned idx = 1;
|
|
|
|
|
|
/* Eliminate all the 0 inputs. They have no effect
|
|
on the output of an OR gate. */
|
|
|
|
while (idx < top) {
|
|
if (! obj->pin(idx).nexus()->drivers_constant()) {
|
|
idx += 1;
|
|
continue;
|
|
}
|
|
|
|
if (obj->pin(idx).nexus()->driven_value() == verinum::V0) {
|
|
obj->pin(idx).unlink();
|
|
top -= 1;
|
|
if (idx < top) {
|
|
connect(obj->pin(idx), obj->pin(top));
|
|
obj->pin(top).unlink();
|
|
}
|
|
|
|
continue;
|
|
}
|
|
|
|
if (obj->pin(idx).nexus()->driven_value() != verinum::V1) {
|
|
idx += 1;
|
|
continue;
|
|
}
|
|
|
|
/* Oops! We just stumbled on a driven-1 input
|
|
to the OR gate. That means we can replace
|
|
the whole bloody thing with a constant
|
|
driver and exit now. */
|
|
NetConst*tmp;
|
|
switch (obj->type()) {
|
|
case NetLogic::OR:
|
|
tmp = new NetConst(scope, obj->name(), verinum::V1);
|
|
break;
|
|
case NetLogic::NOR:
|
|
tmp = new NetConst(scope, obj->name(), verinum::V0);
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
|
|
tmp->rise_time(obj->rise_time());
|
|
tmp->fall_time(obj->fall_time());
|
|
tmp->decay_time(obj->decay_time());
|
|
|
|
des->add_node(tmp);
|
|
tmp->pin(0).drive0(obj->pin(0).drive0());
|
|
tmp->pin(0).drive1(obj->pin(0).drive1());
|
|
connect(obj->pin(0), tmp->pin(0));
|
|
|
|
delete obj;
|
|
count += 1;
|
|
return;
|
|
}
|
|
|
|
/* If all the inputs were eliminated, then replace
|
|
the gate with a constant 0 and I am done. */
|
|
if (top == 1) {
|
|
NetConst*tmp;
|
|
switch (obj->type()) {
|
|
case NetLogic::OR:
|
|
tmp = new NetConst(scope, obj->name(), verinum::V0);
|
|
break;
|
|
case NetLogic::NOR:
|
|
tmp = new NetConst(scope, obj->name(), verinum::V1);
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
|
|
tmp->rise_time(obj->rise_time());
|
|
tmp->fall_time(obj->fall_time());
|
|
tmp->decay_time(obj->decay_time());
|
|
|
|
des->add_node(tmp);
|
|
tmp->pin(0).drive0(obj->pin(0).drive0());
|
|
tmp->pin(0).drive1(obj->pin(0).drive1());
|
|
connect(obj->pin(0), tmp->pin(0));
|
|
|
|
delete obj;
|
|
count += 1;
|
|
return;
|
|
}
|
|
|
|
/* If we are down to only one input, then replace
|
|
the OR with a BUF and exit now. */
|
|
if (top == 2) {
|
|
NetLogic*tmp;
|
|
switch (obj->type()) {
|
|
case NetLogic::OR:
|
|
tmp = new NetLogic(scope,
|
|
obj->name(), 2,
|
|
NetLogic::BUF);
|
|
break;
|
|
case NetLogic::NOR:
|
|
tmp = new NetLogic(scope,
|
|
obj->name(), 2,
|
|
NetLogic::NOT);
|
|
break;
|
|
default:
|
|
assert(0);
|
|
}
|
|
tmp->rise_time(obj->rise_time());
|
|
tmp->fall_time(obj->fall_time());
|
|
tmp->decay_time(obj->decay_time());
|
|
|
|
des->add_node(tmp);
|
|
tmp->pin(0).drive0(obj->pin(0).drive0());
|
|
tmp->pin(0).drive1(obj->pin(0).drive1());
|
|
connect(obj->pin(0), tmp->pin(0));
|
|
connect(obj->pin(1), tmp->pin(1));
|
|
delete obj;
|
|
count += 1;
|
|
return;
|
|
}
|
|
|
|
/* Finally, this cleans up the gate by creating a
|
|
new [N]OR gate that has the right number of
|
|
inputs, connected in the right place. */
|
|
if (top < obj->pin_count()) {
|
|
NetLogic*tmp = new NetLogic(scope,
|
|
obj->name(), top,
|
|
obj->type());
|
|
tmp->rise_time(obj->rise_time());
|
|
tmp->fall_time(obj->fall_time());
|
|
tmp->decay_time(obj->decay_time());
|
|
|
|
des->add_node(tmp);
|
|
tmp->pin(0).drive0(obj->pin(0).drive0());
|
|
tmp->pin(0).drive1(obj->pin(0).drive1());
|
|
for (unsigned idx = 0 ; idx < top ; idx += 1)
|
|
connect(tmp->pin(idx), obj->pin(idx));
|
|
|
|
delete obj;
|
|
count += 1;
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
case NetLogic::XNOR:
|
|
case NetLogic::XOR: {
|
|
unsigned top = obj->pin_count();
|
|
unsigned idx = 1;
|
|
|
|
/* Eliminate all the 0 inputs. They have no effect
|
|
on the output of an XOR gate. The eliminate works
|
|
by unlinking the current input and relinking the
|
|
last input to this position. It's like bubbling
|
|
all the 0 inputs to the end. */
|
|
while (idx < top) {
|
|
if (! obj->pin(idx).nexus()->drivers_constant()) {
|
|
idx += 1;
|
|
continue;
|
|
}
|
|
|
|
if (obj->pin(idx).nexus()->driven_value() == verinum::V0) {
|
|
obj->pin(idx).unlink();
|
|
top -= 1;
|
|
if (idx < top) {
|
|
connect(obj->pin(idx), obj->pin(top));
|
|
obj->pin(top).unlink();
|
|
}
|
|
|
|
} else {
|
|
idx += 1;
|
|
}
|
|
}
|
|
|
|
/* Look for pairs of constant 1 inputs. If I find a
|
|
pair, then eliminate both. Each iteration through
|
|
the loop, the `one' variable holds the index to
|
|
the previous V1, or 0 if there is none.
|
|
|
|
The `ones' variable counts the number of V1
|
|
inputs. After this loop completes, `ones' will be
|
|
0 or 1. */
|
|
|
|
unsigned one = 0, ones = 0;
|
|
idx = 1;
|
|
while (idx < top) {
|
|
if (! obj->pin(idx).nexus()->drivers_constant()) {
|
|
idx += 1;
|
|
continue;
|
|
}
|
|
|
|
if (obj->pin(idx).nexus()->driven_value() == verinum::V1) {
|
|
if (one == 0) {
|
|
one = idx;
|
|
ones += 1;
|
|
idx += 1;
|
|
continue;
|
|
}
|
|
|
|
/* Here we found two constant V1
|
|
inputs. Unlink both. */
|
|
obj->pin(idx).unlink();
|
|
top -= 1;
|
|
if (idx < top) {
|
|
connect(obj->pin(idx), obj->pin(top));
|
|
obj->pin(top).unlink();
|
|
}
|
|
|
|
obj->pin(one).unlink();
|
|
top -= 1;
|
|
if (one < top) {
|
|
connect(obj->pin(one), obj->pin(top));
|
|
obj->pin(top).unlink();
|
|
}
|
|
|
|
/* Reset ones counter and one index,
|
|
start looking for the next pair. */
|
|
assert(ones == 1);
|
|
ones = 0;
|
|
one = 0;
|
|
continue;
|
|
}
|
|
|
|
idx += 1;
|
|
}
|
|
|
|
/* If all the inputs were eliminated, then replace
|
|
the gate with a constant value and I am done. */
|
|
if (top == 1) {
|
|
verinum::V out = obj->type()==NetLogic::XNOR
|
|
? verinum::V1
|
|
: verinum::V0;
|
|
NetConst*tmp = new NetConst(scope, obj->name(), out);
|
|
|
|
tmp->rise_time(obj->rise_time());
|
|
tmp->fall_time(obj->fall_time());
|
|
tmp->decay_time(obj->decay_time());
|
|
|
|
des->add_node(tmp);
|
|
tmp->pin(0).drive0(obj->pin(0).drive0());
|
|
tmp->pin(0).drive1(obj->pin(0).drive1());
|
|
connect(obj->pin(0), tmp->pin(0));
|
|
|
|
delete obj;
|
|
count += 1;
|
|
return;
|
|
}
|
|
|
|
/* If there is a stray V1 input and only one other
|
|
input, then replace the gate with an inverter and
|
|
we are done. */
|
|
|
|
if ((top == 3) && (ones == 1)) {
|
|
unsigned save;
|
|
if (! obj->pin(1).nexus()->drivers_constant())
|
|
save = 1;
|
|
else if (obj->pin(1).nexus()->driven_value() != verinum::V1)
|
|
save = 1;
|
|
else
|
|
save = 2;
|
|
|
|
NetLogic*tmp;
|
|
|
|
if (obj->type() == NetLogic::XOR)
|
|
tmp = new NetLogic(scope,
|
|
obj->name(), 2,
|
|
NetLogic::NOT);
|
|
else
|
|
tmp = new NetLogic(scope,
|
|
obj->name(), 2,
|
|
NetLogic::BUF);
|
|
|
|
tmp->rise_time(obj->rise_time());
|
|
tmp->fall_time(obj->fall_time());
|
|
tmp->decay_time(obj->decay_time());
|
|
|
|
des->add_node(tmp);
|
|
tmp->pin(0).drive0(obj->pin(0).drive0());
|
|
tmp->pin(0).drive1(obj->pin(0).drive1());
|
|
connect(obj->pin(0), tmp->pin(0));
|
|
connect(obj->pin(save), tmp->pin(1));
|
|
|
|
delete obj;
|
|
count += 1;
|
|
return;
|
|
}
|
|
|
|
/* If we are down to only one input, then replace
|
|
the XOR with a BUF and exit now. */
|
|
if (top == 2) {
|
|
NetLogic*tmp;
|
|
|
|
if (obj->type() == NetLogic::XOR)
|
|
tmp = new NetLogic(scope,
|
|
obj->name(), 2,
|
|
NetLogic::BUF);
|
|
else
|
|
tmp = new NetLogic(scope,
|
|
obj->name(), 2,
|
|
NetLogic::NOT);
|
|
|
|
tmp->rise_time(obj->rise_time());
|
|
tmp->fall_time(obj->fall_time());
|
|
tmp->decay_time(obj->decay_time());
|
|
|
|
des->add_node(tmp);
|
|
tmp->pin(0).drive0(obj->pin(0).drive0());
|
|
tmp->pin(0).drive1(obj->pin(0).drive1());
|
|
connect(obj->pin(0), tmp->pin(0));
|
|
connect(obj->pin(1), tmp->pin(1));
|
|
delete obj;
|
|
count += 1;
|
|
return;
|
|
}
|
|
|
|
/* Finally, this cleans up the gate by creating a
|
|
new XOR gate that has the right number of
|
|
inputs, connected in the right place. */
|
|
if (top < obj->pin_count()) {
|
|
NetLogic*tmp = new NetLogic(scope,
|
|
obj->name(), top,
|
|
obj->type());
|
|
des->add_node(tmp);
|
|
tmp->pin(0).drive0(obj->pin(0).drive0());
|
|
tmp->pin(0).drive1(obj->pin(0).drive1());
|
|
for (unsigned idx = 0 ; idx < top ; idx += 1)
|
|
connect(tmp->pin(idx), obj->pin(idx));
|
|
|
|
delete obj;
|
|
count += 1;
|
|
return;
|
|
}
|
|
break;
|
|
}
|
|
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* This detects the case where the mux selects between a value and
|
|
* Vz. In this case, replace the device with a MOS with the sel
|
|
* input used to enable the output.
|
|
*/
|
|
void cprop_functor::lpm_mux(Design*des, NetMux*obj)
|
|
{
|
|
if (obj->size() > 2) {
|
|
lpm_mux_large(des, obj);
|
|
return;
|
|
}
|
|
if (obj->size() != 2)
|
|
return;
|
|
if (obj->sel_width() != 1)
|
|
return;
|
|
|
|
NetScope*scope = obj->scope();
|
|
|
|
bool flag = true;
|
|
for (unsigned idx = 0 ; idx < obj->width() ; idx += 1) {
|
|
bool cflag_a = obj->pin_Data(idx, 0).nexus()->drivers_constant();
|
|
bool cflag_b = obj->pin_Data(idx, 1).nexus()->drivers_constant();
|
|
|
|
/* If both data inputs are constant, we'll be able to do
|
|
a substitution. */
|
|
if (cflag_a && cflag_b)
|
|
continue;
|
|
|
|
verinum::V va = cflag_a
|
|
? obj->pin_Data(idx, 0).nexus()->driven_value()
|
|
: verinum::Vx;
|
|
verinum::V vb = cflag_b
|
|
? obj->pin_Data(idx, 1).nexus()->driven_value()
|
|
: verinum::Vx;
|
|
|
|
/* If only one Data input is constant, but a constant
|
|
HiZ, then we will be able to do a MOS
|
|
substitution. */
|
|
if (cflag_a && va==verinum::Vz)
|
|
continue;
|
|
|
|
if (cflag_b && vb==verinum::Vz)
|
|
continue;
|
|
|
|
/* Otherwise, we cannot accurately do a substitution. If
|
|
one input is non-constant, then that input may have a
|
|
HiZ value, and there is no Verilog logic other than a
|
|
MUX that can pass a HiZ value. */
|
|
flag = false;
|
|
}
|
|
|
|
if (! flag) {
|
|
return;
|
|
}
|
|
|
|
/* Create a temporary net to hold the result value that we
|
|
build up. When we are done, we will connect this to the
|
|
Result pins of the mux, then delete the mux *and* this
|
|
net. That will cause all the proper connectivity to
|
|
happen. */
|
|
NetNet result_tmp(scope, scope->local_symbol(),
|
|
NetNet::WIRE, obj->width());
|
|
|
|
/* We know that every slice has at least one constant. Run
|
|
through the slices again, creating boolean devices to
|
|
replace the MUX slice. */
|
|
|
|
for (unsigned idx = 0 ; idx < obj->width() ; idx += 1) {
|
|
|
|
/* If the Sel==0 input is constant Z, make a NMOS. */
|
|
if (obj->pin_Data(idx, 0).nexus()->drivers_constant()
|
|
&& obj->pin_Data(idx, 0).nexus()->driven_value()==verinum::Vz) {
|
|
|
|
NetLogic*tmp = new NetLogic(scope,
|
|
scope->local_symbol(),
|
|
3, NetLogic::NMOS);
|
|
connect(result_tmp.pin(idx), tmp->pin(0));
|
|
connect(obj->pin_Data(idx,1), tmp->pin(1));
|
|
connect(obj->pin_Sel(0), tmp->pin(2));
|
|
des->add_node(tmp);
|
|
continue;
|
|
}
|
|
|
|
/* If the Sel==1 input is constant Z, make a PMOS. */
|
|
if (obj->pin_Data(idx, 1).nexus()->drivers_constant()
|
|
&& obj->pin_Data(idx, 1).nexus()->driven_value()==verinum::Vz) {
|
|
|
|
NetLogic*tmp = new NetLogic(scope,
|
|
scope->local_symbol(),
|
|
3, NetLogic::PMOS);
|
|
connect(result_tmp.pin(idx), tmp->pin(0));
|
|
connect(obj->pin_Data(idx,0), tmp->pin(1));
|
|
connect(obj->pin_Sel(0), tmp->pin(2));
|
|
des->add_node(tmp);
|
|
continue;
|
|
}
|
|
|
|
/* At this point, the only cases that are left are where
|
|
the data inputs are both constant, and neither are
|
|
HiZ. From this we know how to generate the output
|
|
from only the S input. */
|
|
if (! (obj->pin_Data(idx, 0).nexus()->drivers_constant()
|
|
&& obj->pin_Data(idx, 1).nexus()->drivers_constant())) {
|
|
cerr << obj->get_line() << ": internal error: "
|
|
<< "Drivers not constant where expected?"
|
|
<< " obj->width()=" << obj->width()
|
|
<< " idx=" << idx
|
|
<< endl;
|
|
obj->dump_node(cerr, 4);
|
|
}
|
|
assert(obj->pin_Data(idx, 0).nexus()->drivers_constant()
|
|
&& obj->pin_Data(idx, 1).nexus()->drivers_constant());
|
|
|
|
|
|
verinum::V a = obj->pin_Data(idx, 0).nexus()->driven_value();
|
|
verinum::V b = obj->pin_Data(idx, 1).nexus()->driven_value();
|
|
|
|
if (a == b) {
|
|
connect(result_tmp.pin(idx), obj->pin_Data(idx,0));
|
|
continue;
|
|
}
|
|
|
|
if (a == verinum::V0 && b == verinum::V1) {
|
|
connect(result_tmp.pin(idx), obj->pin_Sel(0));
|
|
continue;
|
|
}
|
|
|
|
if (a == verinum::V1 && b == verinum::V0) {
|
|
NetLogic*tmp = new NetLogic(scope,
|
|
scope->local_symbol(),
|
|
2, NetLogic::NOT);
|
|
connect(result_tmp.pin(idx), tmp->pin(0));
|
|
connect(obj->pin_Sel(0), tmp->pin(1));
|
|
des->add_node(tmp);
|
|
continue;
|
|
}
|
|
|
|
/* A==0: Q = B & S */
|
|
if (a == verinum::V0) {
|
|
NetLogic*tmp = new NetLogic(scope,
|
|
scope->local_symbol(),
|
|
3, NetLogic::AND);
|
|
connect(result_tmp.pin(idx), tmp->pin(0));
|
|
connect(obj->pin_Data(idx,1), tmp->pin(1));
|
|
connect(obj->pin_Sel(0), tmp->pin(2));
|
|
des->add_node(tmp);
|
|
continue;
|
|
}
|
|
|
|
/* B==1: Q = A | S */
|
|
if (b == verinum::V1) {
|
|
NetLogic*tmp = new NetLogic(scope,
|
|
scope->local_symbol(),
|
|
3, NetLogic::OR);
|
|
connect(result_tmp.pin(idx), tmp->pin(0));
|
|
connect(obj->pin_Data(idx,0), tmp->pin(1));
|
|
connect(obj->pin_Sel(0), tmp->pin(2));
|
|
des->add_node(tmp);
|
|
continue;
|
|
}
|
|
/* A==1: Q = B | ~S */
|
|
if (a == verinum::V1) {
|
|
NetLogic*inv = new NetLogic(scope,
|
|
scope->local_symbol(),
|
|
2, NetLogic::NOT);
|
|
NetNet*invs = new NetNet(scope,
|
|
scope->local_symbol(),
|
|
NetNet::TRI, 1);
|
|
invs->local_flag(true);
|
|
connect(inv->pin(0), invs->pin(0));
|
|
connect(inv->pin(1), obj->pin_Sel(0));
|
|
des->add_node(inv);
|
|
|
|
NetLogic*tmp = new NetLogic(scope,
|
|
scope->local_symbol(),
|
|
3, NetLogic::OR);
|
|
connect(result_tmp.pin(idx), tmp->pin(0));
|
|
connect(obj->pin_Data(idx,1), tmp->pin(1));
|
|
connect(inv->pin(0), tmp->pin(2));
|
|
des->add_node(tmp);
|
|
continue;
|
|
}
|
|
/* B==0: Q = A & ~S */
|
|
if (b == verinum::V0) {
|
|
NetLogic*inv = new NetLogic(scope,
|
|
scope->local_symbol(),
|
|
2, NetLogic::NOT);
|
|
NetNet*invs = new NetNet(scope,
|
|
scope->local_symbol(),
|
|
NetNet::TRI, 1);
|
|
invs->local_flag(true);
|
|
connect(inv->pin(0), invs->pin(0));
|
|
connect(inv->pin(1), obj->pin_Sel(0));
|
|
des->add_node(inv);
|
|
|
|
NetLogic*tmp = new NetLogic(scope,
|
|
scope->local_symbol(),
|
|
3, NetLogic::AND);
|
|
connect(result_tmp.pin(idx), tmp->pin(0));
|
|
connect(obj->pin_Data(idx,0), tmp->pin(1));
|
|
connect(inv->pin(0), tmp->pin(2));
|
|
des->add_node(tmp);
|
|
continue;
|
|
}
|
|
|
|
assert(0);
|
|
|
|
}
|
|
|
|
for (unsigned idx = 0 ; idx < obj->width() ; idx += 1)
|
|
connect(result_tmp.pin(idx), obj->pin_Result(idx));
|
|
|
|
delete obj;
|
|
count += 1;
|
|
}
|
|
|
|
void cprop_functor::lpm_mux_large(Design*des, NetMux*obj)
|
|
{
|
|
NetScope*scope = obj->scope();
|
|
unsigned width = obj->width();
|
|
unsigned size = obj->size();
|
|
|
|
/* This test looks for bit slices that are constant
|
|
throughout. If we find any, we can reduce the width of the
|
|
MUX to eliminate the fixed value. */
|
|
|
|
/* After the following for loop, this array of bools will
|
|
contain "true" for each bit slice that is constant and
|
|
identical, and "false" otherwise. The reduce_width will
|
|
count the number of true entries in the flags array. */
|
|
bool*flags = new bool[width];
|
|
unsigned reduce_width = 0;
|
|
|
|
for (unsigned bit = 0 ; bit < width ; bit += 1) {
|
|
|
|
flags[bit] = true;
|
|
|
|
/* If not even the first selection is constant, then the
|
|
slice cannot be reduced. */
|
|
if (! obj->pin_Data(bit, 0).nexus()->drivers_constant()) {
|
|
flags[bit] = false;
|
|
continue;
|
|
}
|
|
|
|
/* If any of the remaining selections in non-consant, or
|
|
constant with a different value, then this slice
|
|
cannot be reduced. */
|
|
verinum::V val = obj->pin_Data(bit, 0).nexus()->driven_value();
|
|
|
|
for (unsigned idx = 1; flags[bit] && idx < size ; idx += 1) {
|
|
|
|
if (!obj->pin_Data(bit,idx).nexus()->drivers_constant()) {
|
|
flags[bit] = false;
|
|
break;
|
|
}
|
|
|
|
if (val != obj->pin_Data(bit,idx).nexus()->driven_value()) {
|
|
flags[bit] = false;
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (! flags[bit]) {
|
|
/* This bit slice is too complex. Go on. */
|
|
continue;
|
|
}
|
|
|
|
reduce_width += 1;
|
|
}
|
|
|
|
/* If no slices can be reduced, then we are finished. */
|
|
if (reduce_width == 0) {
|
|
delete[]flags;
|
|
return;
|
|
}
|
|
|
|
/* Handle the very special case that all the slices can be
|
|
reduced. We don't need a MUX at all! */
|
|
if (reduce_width == width) {
|
|
for (unsigned idx = 0 ; idx < width ; idx += 1)
|
|
connect(obj->pin_Result(idx), obj->pin_Data(idx,0));
|
|
|
|
delete obj;
|
|
count += 1;
|
|
delete[]flags;
|
|
return;
|
|
}
|
|
|
|
/* Create a reduced mux with the same name and size, but fewer
|
|
slices. Connect all the slices that we are keeping. */
|
|
NetMux*tmp = new NetMux(scope, obj->name(),
|
|
width-reduce_width, size, obj->sel_width());
|
|
tmp->set_line(*obj);
|
|
|
|
for (unsigned idx = 0 ; idx < obj->sel_width() ; idx += 1)
|
|
connect(obj->pin_Sel(idx), tmp->pin_Sel(idx));
|
|
|
|
unsigned dst_bit = 0;
|
|
|
|
for (unsigned bit = 0 ; bit < width ; bit += 1) {
|
|
if (flags[bit]) {
|
|
connect(obj->pin_Result(bit), obj->pin_Data(bit,0));
|
|
continue;
|
|
}
|
|
|
|
connect(obj->pin_Result(bit), tmp->pin_Result(dst_bit));
|
|
|
|
for (unsigned idx = 0 ; idx < size ; idx += 1)
|
|
connect(obj->pin_Data(bit,idx), tmp->pin_Data(dst_bit,idx));
|
|
|
|
dst_bit += 1;
|
|
}
|
|
|
|
/* Add the new node. Delete the old node. Signal that we
|
|
change the design and may use a rescan. */
|
|
des->add_node(tmp);
|
|
delete obj;
|
|
delete[]flags;
|
|
count += 1;
|
|
}
|
|
|
|
void cprop_functor::lpm_ram_dq(Design*des, NetRamDq*obj)
|
|
{
|
|
if (lpm_ram_dq_const_address_(des,obj))
|
|
return;
|
|
|
|
}
|
|
|
|
/*
|
|
* Try to evaluate a constant address input. If we find it, then
|
|
* replace the NetRamDq with a direct link to the addressed word.
|
|
*/
|
|
bool cprop_functor::lpm_ram_dq_const_address_(Design*des, NetRamDq*obj)
|
|
{
|
|
NetMemory*mem = obj->mem();
|
|
NetNet* reg = mem->reg_from_explode();
|
|
|
|
/* I only know how to do this on exploded memories. */
|
|
if (reg == 0)
|
|
return false;
|
|
|
|
verinum sel (0UL, obj->awidth());
|
|
for (unsigned idx = 0 ; idx < obj->awidth() ; idx += 1) {
|
|
if (! obj->pin_Address(idx).nexus()->drivers_constant())
|
|
return false;
|
|
|
|
sel.set(idx, obj->pin_Address(idx).nexus()->driven_value());
|
|
}
|
|
|
|
unsigned long address = sel.as_ulong();
|
|
|
|
/* If the address is outside the ram, then leave this to the
|
|
code generator to figure out. */
|
|
if (address >= obj->size())
|
|
return false;
|
|
|
|
|
|
unsigned base = address * obj->width();
|
|
assert(base+obj->width() <= reg->pin_count());
|
|
|
|
for (unsigned idx = 0 ; idx < obj->width() ; idx += 1)
|
|
connect(reg->pin(base+idx), obj->pin_Q(idx));
|
|
|
|
if (debug_cprop) {
|
|
cerr << obj->get_line() << ": debug: Replace read port with"
|
|
<< " fixed link to word " << address << "." << endl;
|
|
}
|
|
|
|
delete obj;
|
|
count += 1;
|
|
return true;
|
|
}
|
|
|
|
|
|
/*
|
|
* This functor looks to see if the constant is connected to nothing
|
|
* but signals. If that is the case, delete the dangling constant and
|
|
* the now useless signals. This functor is applied after the regular
|
|
* functor to clean up dangling constants that might be left behind.
|
|
*/
|
|
struct cprop_dc_functor : public functor_t {
|
|
|
|
virtual void lpm_const(Design*des, NetConst*obj);
|
|
};
|
|
|
|
void cprop_dc_functor::lpm_const(Design*des, NetConst*obj)
|
|
{
|
|
// 'bz constant values drive high impedance to whatever is
|
|
// connected to it. In other words, it is a noop.
|
|
{ unsigned tmp = 0;
|
|
for (unsigned idx = 0 ; idx < obj->pin_count() ; idx += 1)
|
|
if (obj->value(idx) == verinum::Vz) {
|
|
obj->pin(idx).unlink();
|
|
tmp += 1;
|
|
}
|
|
|
|
if (tmp == obj->pin_count()) {
|
|
delete obj;
|
|
return;
|
|
}
|
|
}
|
|
|
|
// For each bit, if this is the only driver, then set the
|
|
// initial value of all the signals to this value.
|
|
for (unsigned idx = 0 ; idx < obj->pin_count() ; idx += 1) {
|
|
if (count_outputs(obj->pin(idx)) > 1)
|
|
continue;
|
|
|
|
Nexus*nex = obj->pin(idx).nexus();
|
|
for (Link*clnk = nex->first_nlink()
|
|
; clnk ; clnk = clnk->next_nlink()) {
|
|
|
|
NetObj*cur;
|
|
unsigned pin;
|
|
clnk->cur_link(cur, pin);
|
|
|
|
NetNet*tmp = dynamic_cast<NetNet*>(cur);
|
|
if (tmp == 0)
|
|
continue;
|
|
|
|
tmp->pin(pin).set_init(obj->value(idx));
|
|
}
|
|
}
|
|
|
|
// If there are any links that take input, the constant is
|
|
// used structurally somewhere.
|
|
for (unsigned idx = 0 ; idx < obj->pin_count() ; idx += 1)
|
|
if (count_inputs(obj->pin(idx)) > 0)
|
|
return;
|
|
|
|
// Look for signals that have NetESignal nodes attached to
|
|
// them. If I find any, then this constant is used by a
|
|
// behavioral expression somewhere.
|
|
for (unsigned idx = 0 ; idx < obj->pin_count() ; idx += 1) {
|
|
Nexus*nex = obj->pin(idx).nexus();
|
|
for (Link*clnk = nex->first_nlink()
|
|
; clnk ; clnk = clnk->next_nlink()) {
|
|
|
|
NetObj*cur;
|
|
unsigned pin;
|
|
clnk->cur_link(cur, pin);
|
|
|
|
NetNet*tmp = dynamic_cast<NetNet*>(cur);
|
|
if (tmp == 0)
|
|
continue;
|
|
|
|
assert(tmp->scope());
|
|
|
|
// If the net is a signal name from the source,
|
|
// then users will probably want to see it in the
|
|
// waveform dump, so unhooking the constant will
|
|
// make it look wrong.
|
|
if (! tmp->local_flag())
|
|
return;
|
|
|
|
// If the net has an eref, then there is an
|
|
// expression somewhere that reads this signal. So
|
|
// the constant does get read.
|
|
if (tmp->peek_eref() > 0)
|
|
return;
|
|
|
|
// If the net is a port of the root module, then
|
|
// the constant may be driving something outside
|
|
// the design, so do not eliminate it.
|
|
if ((tmp->port_type() != NetNet::NOT_A_PORT)
|
|
&& (tmp->scope()->parent() == 0))
|
|
return;
|
|
|
|
}
|
|
}
|
|
|
|
// Done. Delete me.
|
|
delete obj;
|
|
}
|
|
|
|
|
|
void cprop(Design*des)
|
|
{
|
|
// Continually propagate constants until a scan finds nothing
|
|
// to do.
|
|
cprop_functor prop;
|
|
do {
|
|
prop.count = 0;
|
|
des->functor(&prop);
|
|
} while (prop.count > 0);
|
|
|
|
cprop_dc_functor dc;
|
|
des->functor(&dc);
|
|
}
|