995 lines
25 KiB
C++
995 lines
25 KiB
C++
/*
|
|
* Copyright (c) 2005-2021 Stephen Williams (steve@icarus.com)
|
|
*
|
|
* (This is a rewrite of code that was ...
|
|
* Copyright (c) 2001 Stephan Boettcher <stephan@nevis.columbia.edu>)
|
|
*
|
|
* This source code is free software; you can redistribute it
|
|
* and/or modify it in source code form under the terms of the GNU
|
|
* General Public License as published by the Free Software
|
|
* Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
|
|
*/
|
|
|
|
#include "udp.h"
|
|
#include "schedule.h"
|
|
#include "symbols.h"
|
|
#include "compile.h"
|
|
#include "config.h"
|
|
#include <cassert>
|
|
#include <cstdlib>
|
|
#include <cstring>
|
|
#include <cstdio>
|
|
#include <iostream>
|
|
#ifdef CHECK_WITH_VALGRIND
|
|
#include "vvp_cleanup.h"
|
|
#include "ivl_alloc.h"
|
|
#endif
|
|
|
|
using namespace std;
|
|
|
|
// We may need these later when we build the VPI interface to
|
|
// UDP definitions.
|
|
#ifdef CHECK_WITH_VALGRIND
|
|
static vvp_udp_s **udp_defns = 0;
|
|
static unsigned udp_defns_count = 0;
|
|
|
|
void udp_defns_delete()
|
|
{
|
|
for (unsigned idx = 0; idx < udp_defns_count; idx += 1) {
|
|
if (udp_defns[idx]->is_sequential()) {
|
|
vvp_udp_seq_s *obj = static_cast<vvp_udp_seq_s *>
|
|
(udp_defns[idx]);
|
|
delete obj;
|
|
} else {
|
|
vvp_udp_comb_s *obj = static_cast<vvp_udp_comb_s *>
|
|
(udp_defns[idx]);
|
|
delete obj;
|
|
}
|
|
}
|
|
free(udp_defns);
|
|
udp_defns = 0;
|
|
udp_defns_count = 0;
|
|
}
|
|
#endif
|
|
|
|
static symbol_table_t udp_table;
|
|
|
|
void delete_udp_symbols()
|
|
{
|
|
delete_symbol_table(udp_table);
|
|
udp_table = 0;
|
|
}
|
|
|
|
struct vvp_udp_s *udp_find(const char *label)
|
|
{
|
|
symbol_value_t v = sym_get_value(udp_table, label);
|
|
return (struct vvp_udp_s *)v.ptr;
|
|
}
|
|
|
|
ostream& operator <<(ostream&o, const struct udp_levels_table&table)
|
|
{
|
|
o << "[" << hex << table.mask0
|
|
<< "/" << hex << table.mask1
|
|
<< "/" << hex << table.maskx << "]";
|
|
return o;
|
|
}
|
|
|
|
vvp_udp_s::vvp_udp_s(char*label, char*name__, unsigned ports,
|
|
vvp_bit4_t init, bool type)
|
|
: name_(name__), ports_(ports), init_(init), seq_(type)
|
|
{
|
|
if (!udp_table)
|
|
udp_table = new_symbol_table();
|
|
|
|
assert( !udp_find(label) );
|
|
|
|
symbol_value_t v;
|
|
v.ptr = this;
|
|
sym_set_value(udp_table, label, v);
|
|
|
|
#ifdef CHECK_WITH_VALGRIND
|
|
udp_defns_count += 1;
|
|
udp_defns = (vvp_udp_s **) realloc(udp_defns,
|
|
udp_defns_count*sizeof(vvp_udp_s **));
|
|
udp_defns[udp_defns_count-1] = this;
|
|
#endif
|
|
}
|
|
|
|
vvp_udp_s::~vvp_udp_s()
|
|
{
|
|
delete[] name_;
|
|
}
|
|
|
|
unsigned vvp_udp_s::port_count() const
|
|
{
|
|
return ports_;
|
|
}
|
|
|
|
vvp_bit4_t vvp_udp_s::get_init() const
|
|
{
|
|
return init_;
|
|
}
|
|
|
|
vvp_udp_comb_s::vvp_udp_comb_s(char*label, char*name__, unsigned ports)
|
|
: vvp_udp_s(label, name__, ports, BIT4_X, false)
|
|
{
|
|
levels0_ = 0;
|
|
levels1_ = 0;
|
|
nlevels0_ = 0;
|
|
nlevels1_ = 0;
|
|
}
|
|
|
|
vvp_udp_comb_s::~vvp_udp_comb_s()
|
|
{
|
|
delete[] levels0_;
|
|
delete[] levels1_;
|
|
}
|
|
|
|
/*
|
|
* The cur table that is passed in must have for every valid bit
|
|
* position exactly one of the three mask bits set. This represents an
|
|
* actual vector of inputs to be tested.
|
|
*
|
|
* The levels0_ and levels1_ tables have levels_table objects that
|
|
* each represent a single row. For the row to match the input vector,
|
|
* all the bits that are set in the cur table must also be set in the
|
|
* row being tested.
|
|
*
|
|
* It is possible for a row to match multiple different vectors. This
|
|
* is seen from the compile_table function, where bit positions for
|
|
* multiple masks can be test for certain row positions. For example,
|
|
* if the row bit position is '?', then mask 0/1/x are all set in the
|
|
* row for that bit position. This means it doesn't matter which of
|
|
* the three bit positions is set in the cur input table, the bit
|
|
* position will generate a match.
|
|
*/
|
|
vvp_bit4_t vvp_udp_comb_s::test_levels(const udp_levels_table&cur)
|
|
{
|
|
/* To test for a row match, test that the mask0, mask1 and
|
|
maskx vectors all have bits set where the matching
|
|
cur.mask0/1/x vectors have bits set. It is possible that a
|
|
levels0_[idx] vector has more bits set then the cur mask,
|
|
but this is OK and these bits are to be ignored. */
|
|
|
|
for (unsigned idx = 0 ; idx < nlevels0_ ; idx += 1) {
|
|
if (cur.mask0 != (cur.mask0 & levels0_[idx].mask0))
|
|
continue;
|
|
if (cur.mask1 != (cur.mask1 & levels0_[idx].mask1))
|
|
continue;
|
|
if (cur.maskx != (cur.maskx & levels0_[idx].maskx))
|
|
continue;
|
|
|
|
return BIT4_0;
|
|
}
|
|
|
|
for (unsigned idx = 0 ; idx < nlevels1_ ; idx += 1) {
|
|
if (cur.mask0 != (cur.mask0 & levels1_[idx].mask0))
|
|
continue;
|
|
if (cur.mask1 != (cur.mask1 & levels1_[idx].mask1))
|
|
continue;
|
|
if (cur.maskx != (cur.maskx & levels1_[idx].maskx))
|
|
continue;
|
|
|
|
return BIT4_1;
|
|
}
|
|
|
|
return BIT4_X;
|
|
}
|
|
|
|
vvp_bit4_t vvp_udp_comb_s::calculate_output(const udp_levels_table&cur,
|
|
const udp_levels_table&,
|
|
vvp_bit4_t)
|
|
{
|
|
return test_levels(cur);
|
|
}
|
|
|
|
static void or_based_on_char(udp_levels_table&cur, char flag,
|
|
unsigned long mask_bit)
|
|
{
|
|
switch (flag) {
|
|
case '0':
|
|
cur.mask0 |= mask_bit;
|
|
break;
|
|
case '1':
|
|
cur.mask1 |= mask_bit;
|
|
break;
|
|
case 'x':
|
|
cur.maskx |= mask_bit;
|
|
break;
|
|
case 'b':
|
|
cur.mask0 |= mask_bit;
|
|
cur.mask1 |= mask_bit;
|
|
break;
|
|
case 'l':
|
|
cur.mask0 |= mask_bit;
|
|
cur.maskx |= mask_bit;
|
|
break;
|
|
case 'h':
|
|
cur.maskx |= mask_bit;
|
|
cur.mask1 |= mask_bit;
|
|
break;
|
|
case '?':
|
|
cur.mask0 |= mask_bit;
|
|
cur.maskx |= mask_bit;
|
|
cur.mask1 |= mask_bit;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Unsupported flag %c(%d).\n", flag, flag);
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
void vvp_udp_comb_s::compile_table(char**tab)
|
|
{
|
|
unsigned nrows0 = 0, nrows1 = 0;
|
|
|
|
/* First run through the table to figure out the number of
|
|
rows I need for each kind of table. */
|
|
for (unsigned idx = 0 ; tab[idx] ; idx += 1) {
|
|
assert(strlen(tab[idx]) == port_count() + 1);
|
|
switch (tab[idx][port_count()]) {
|
|
case '0':
|
|
nrows0 += 1;
|
|
break;
|
|
case '1':
|
|
nrows1 += 1;
|
|
break;
|
|
case 'x':
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Unsupported entry %c(%d).\n",
|
|
tab[idx][port_count()], tab[idx][port_count()]);
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
nlevels0_ = nrows0;
|
|
levels0_ = new udp_levels_table[nlevels0_];
|
|
|
|
nlevels1_ = nrows1;
|
|
levels1_ = new udp_levels_table[nlevels1_];
|
|
|
|
nrows0 = 0;
|
|
nrows1 = 0;
|
|
for (unsigned idx = 0 ; tab[idx] ; idx += 1) {
|
|
struct udp_levels_table cur;
|
|
cur.mask0 = 0;
|
|
cur.mask1 = 0;
|
|
cur.maskx = 0;
|
|
if (port_count() > 8*sizeof(cur.mask0)) {
|
|
fprintf(stderr, "internal error: primitive port count=%u "
|
|
" > %zu\n", port_count(), sizeof(cur.mask0));
|
|
assert(port_count() <= 8*sizeof(cur.mask0));
|
|
}
|
|
for (unsigned pp = 0 ; pp < port_count() ; pp += 1) {
|
|
unsigned long mask_bit = 1UL << pp;
|
|
or_based_on_char(cur, tab[idx][pp], mask_bit);
|
|
}
|
|
|
|
switch (tab[idx][port_count()]) {
|
|
case '0':
|
|
levels0_[nrows0++] = cur;
|
|
break;
|
|
case '1':
|
|
levels1_[nrows1++] = cur;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
delete[] tab[idx];
|
|
}
|
|
free(tab);
|
|
|
|
assert(nrows0 == nlevels0_);
|
|
assert(nrows1 == nlevels1_);
|
|
}
|
|
|
|
vvp_udp_seq_s::vvp_udp_seq_s(char*label, char*name__,
|
|
unsigned ports, vvp_bit4_t init)
|
|
: vvp_udp_s(label, name__, ports, init, true)
|
|
{
|
|
levels0_ = 0;
|
|
levels1_ = 0;
|
|
levelsx_ = 0;
|
|
levelsL_ = 0;
|
|
|
|
nlevels0_ = 0;
|
|
nlevels1_ = 0;
|
|
nlevelsx_ = 0;
|
|
nlevelsL_ = 0;
|
|
|
|
edges0_ = 0;
|
|
edges1_ = 0;
|
|
edgesL_ = 0;
|
|
|
|
nedges0_ = 0;
|
|
nedges1_ = 0;
|
|
nedgesL_ = 0;
|
|
}
|
|
|
|
vvp_udp_seq_s::~vvp_udp_seq_s()
|
|
{
|
|
delete[] levels0_;
|
|
delete[] levels1_;
|
|
delete[] levelsx_;
|
|
delete[] levelsL_;
|
|
delete[] edges0_;
|
|
delete[] edges1_;
|
|
delete[] edgesL_;
|
|
}
|
|
|
|
void edge_based_on_char(struct udp_edges_table&cur, char chr, unsigned pos)
|
|
{
|
|
unsigned long mask_bit = 1 << pos;
|
|
|
|
switch (chr) {
|
|
case '0':
|
|
cur.mask0 |= mask_bit;
|
|
break;
|
|
case '1':
|
|
cur.mask1 |= mask_bit;
|
|
break;
|
|
case 'x':
|
|
cur.maskx |= mask_bit;
|
|
break;
|
|
case 'b':
|
|
cur.mask0 |= mask_bit;
|
|
cur.mask1 |= mask_bit;
|
|
break;
|
|
case 'l':
|
|
cur.mask0 |= mask_bit;
|
|
cur.maskx |= mask_bit;
|
|
break;
|
|
case 'h':
|
|
cur.maskx |= mask_bit;
|
|
cur.mask1 |= mask_bit;
|
|
break;
|
|
case '?':
|
|
cur.mask0 |= mask_bit;
|
|
cur.maskx |= mask_bit;
|
|
cur.mask1 |= mask_bit;
|
|
break;
|
|
|
|
case 'B': // (x?) edge
|
|
cur.mask0 |= mask_bit;
|
|
cur.mask1 |= mask_bit;
|
|
cur.edge_position = pos;
|
|
cur.edge_mask0 = 0;
|
|
cur.edge_maskx = 1;
|
|
cur.edge_mask1 = 0;
|
|
break;
|
|
case 'f': // (10) edge
|
|
cur.mask0 |= mask_bit;
|
|
cur.edge_position = pos;
|
|
cur.edge_mask0 = 0;
|
|
cur.edge_maskx = 0;
|
|
cur.edge_mask1 = 1;
|
|
break;
|
|
case 'F': // (x0) edge
|
|
cur.mask0 |= mask_bit;
|
|
cur.edge_position = pos;
|
|
cur.edge_mask0 = 0;
|
|
cur.edge_maskx = 1;
|
|
cur.edge_mask1 = 0;
|
|
break;
|
|
case 'M': // (1x) edge
|
|
cur.maskx |= mask_bit;
|
|
cur.edge_position = pos;
|
|
cur.edge_mask0 = 0;
|
|
cur.edge_maskx = 0;
|
|
cur.edge_mask1 = 1;
|
|
break;
|
|
case 'N': // (1x) and (10) edge
|
|
cur.mask0 |= mask_bit;
|
|
cur.maskx |= mask_bit;
|
|
cur.edge_position = pos;
|
|
cur.edge_mask0 = 0;
|
|
cur.edge_maskx = 0;
|
|
cur.edge_mask1 = 1;
|
|
break;
|
|
case 'P': // (0x) and (01) edge
|
|
cur.maskx |= mask_bit;
|
|
cur.mask1 |= mask_bit;
|
|
cur.edge_position = pos;
|
|
cur.edge_mask0 = 1;
|
|
cur.edge_maskx = 0;
|
|
cur.edge_mask1 = 0;
|
|
break;
|
|
case 'q': // (bx) edge
|
|
cur.maskx |= mask_bit;
|
|
cur.edge_position = pos;
|
|
cur.edge_mask0 = 1;
|
|
cur.edge_maskx = 0;
|
|
cur.edge_mask1 = 1;
|
|
break;
|
|
case 'Q': // (0x) edge
|
|
cur.maskx |= mask_bit;
|
|
cur.edge_position = pos;
|
|
cur.edge_mask0 = 1;
|
|
cur.edge_maskx = 0;
|
|
cur.edge_mask1 = 0;
|
|
break;
|
|
case 'r': // (01) edge
|
|
cur.mask1 |= mask_bit;
|
|
cur.edge_position = pos;
|
|
cur.edge_mask0 = 1;
|
|
cur.edge_maskx = 0;
|
|
cur.edge_mask1 = 0;
|
|
break;
|
|
case 'R': // (x1) edge
|
|
cur.mask1 |= mask_bit;
|
|
cur.edge_position = pos;
|
|
cur.edge_mask0 = 0;
|
|
cur.edge_maskx = 1;
|
|
cur.edge_mask1 = 0;
|
|
break;
|
|
case '%': // (?x) edge
|
|
cur.maskx |= mask_bit;
|
|
cur.edge_position = pos;
|
|
cur.edge_mask0 = 1;
|
|
cur.edge_maskx = 0;
|
|
cur.edge_mask1 = 1;
|
|
break;
|
|
case '+': // (?1) edge
|
|
cur.mask1 |= mask_bit;
|
|
cur.edge_position = pos;
|
|
cur.edge_mask0 = 1;
|
|
cur.edge_maskx = 1;
|
|
cur.edge_mask1 = 0;
|
|
break;
|
|
case '_': // (?0) edge
|
|
cur.mask0 |= mask_bit;
|
|
cur.edge_position = pos;
|
|
cur.edge_mask0 = 0;
|
|
cur.edge_maskx = 1;
|
|
cur.edge_mask1 = 1;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "internal error: unknown edge code: %c\n", chr);
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
void vvp_udp_seq_s::compile_table(char**tab)
|
|
{
|
|
|
|
for (unsigned idx = 0 ; tab[idx] ; idx += 1) {
|
|
const char*row = tab[idx];
|
|
assert(strlen(row) == port_count() + 2);
|
|
|
|
if (strspn(row, "01xblh?") >= port_count()+1) {
|
|
|
|
switch (row[port_count()+1]) {
|
|
case '0':
|
|
nlevels0_ += 1;
|
|
break;
|
|
case '1':
|
|
nlevels1_ += 1;
|
|
break;
|
|
case 'x':
|
|
nlevelsx_ += 1;
|
|
break;
|
|
case '-':
|
|
nlevelsL_ += 1;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Unsupported entry %c(%d).\n",
|
|
row[port_count()+1], row[port_count()+1]);
|
|
assert(0);
|
|
break;
|
|
}
|
|
|
|
} else {
|
|
/* Rows that have n or p edges will need to be
|
|
expanded into 2 rows. */
|
|
unsigned extra = 0;
|
|
if (strchr(row,'n'))
|
|
extra = 1;
|
|
if (strchr(row,'p'))
|
|
extra = 1;
|
|
if (strchr(row,'*'))
|
|
extra = 2;
|
|
|
|
switch (row[port_count()+1]) {
|
|
case '0':
|
|
nedges0_ += 1 + extra;
|
|
break;
|
|
case '1':
|
|
nedges1_ += 1 + extra;
|
|
break;
|
|
case 'x':
|
|
break;
|
|
case '-':
|
|
nedgesL_ += 1 + extra;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Unsupported entry %c(%d).\n",
|
|
row[port_count()+1], row[port_count()+1]);
|
|
assert(0);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
levels0_ = new udp_levels_table[nlevels0_];
|
|
levels1_ = new udp_levels_table[nlevels1_];
|
|
levelsx_ = new udp_levels_table[nlevelsx_];
|
|
levelsL_ = new udp_levels_table[nlevelsL_];
|
|
edges0_ = new udp_edges_table[nedges0_];
|
|
edges1_ = new udp_edges_table[nedges1_];
|
|
edgesL_ = new udp_edges_table[nedgesL_];
|
|
|
|
unsigned idx_lev0 = 0;
|
|
unsigned idx_lev1 = 0;
|
|
unsigned idx_levx = 0;
|
|
unsigned idx_levL = 0;
|
|
unsigned idx_edg0 = 0;
|
|
unsigned idx_edg1 = 0;
|
|
unsigned idx_edgL = 0;
|
|
|
|
for (unsigned idx = 0 ; tab[idx] ; idx += 1) {
|
|
const char*row = tab[idx];
|
|
|
|
if (strspn(row, "01xblh?") >= port_count()+1) {
|
|
struct udp_levels_table cur;
|
|
cur.mask0 = 0;
|
|
cur.mask1 = 0;
|
|
cur.maskx = 0;
|
|
for (unsigned pp = 0 ; pp < port_count() ; pp += 1) {
|
|
unsigned long mask_bit = 1UL << pp;
|
|
or_based_on_char(cur, row[pp+1], mask_bit);
|
|
}
|
|
|
|
or_based_on_char(cur, row[0], 1UL << port_count());
|
|
|
|
switch (row[port_count()+1]) {
|
|
case '0':
|
|
levels0_[idx_lev0++] = cur;
|
|
break;
|
|
case '1':
|
|
levels1_[idx_lev1++] = cur;
|
|
break;
|
|
case 'x':
|
|
levelsx_[idx_levx++] = cur;
|
|
break;
|
|
case '-':
|
|
levelsL_[idx_levL++] = cur;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Unsupported entry %c(%d).\n",
|
|
row[port_count()+1], row[port_count()+1]);
|
|
assert(0);
|
|
break;
|
|
}
|
|
|
|
} else {
|
|
struct udp_edges_table cur;
|
|
cur.mask0 = 0;
|
|
cur.mask1 = 0;
|
|
cur.maskx = 0;
|
|
cur.edge_position = 0;
|
|
cur.edge_mask0 = 0;
|
|
cur.edge_mask1 = 0;
|
|
cur.edge_maskx = 0;
|
|
|
|
bool need_ext0_table = false;
|
|
struct udp_edges_table ext0;
|
|
ext0.mask0 = 0;
|
|
ext0.mask1 = 0;
|
|
ext0.maskx = 0;
|
|
ext0.edge_position = 0;
|
|
ext0.edge_mask0 = 0;
|
|
ext0.edge_mask1 = 0;
|
|
ext0.edge_maskx = 0;
|
|
|
|
bool need_ext1_table = false;
|
|
struct udp_edges_table ext1;
|
|
ext1.mask0 = 0;
|
|
ext1.mask1 = 0;
|
|
ext1.maskx = 0;
|
|
ext1.edge_position = 0;
|
|
ext1.edge_mask0 = 0;
|
|
ext1.edge_mask1 = 0;
|
|
ext1.edge_maskx = 0;
|
|
|
|
for (unsigned pp = 0 ; pp < port_count() ; pp += 1) {
|
|
switch (row[pp+1]) {
|
|
case 'n':
|
|
edge_based_on_char(cur, 'N', pp);
|
|
edge_based_on_char(ext0, '_', pp);
|
|
need_ext0_table = true;
|
|
break;
|
|
case 'p':
|
|
edge_based_on_char(cur, 'P', pp);
|
|
edge_based_on_char(ext0, '+', pp);
|
|
need_ext0_table = true;
|
|
break;
|
|
case '*':
|
|
edge_based_on_char(cur, 'P', pp);
|
|
edge_based_on_char(ext0, 'N', pp);
|
|
edge_based_on_char(ext1, 'B', pp);
|
|
need_ext0_table = true;
|
|
need_ext1_table = true;
|
|
break;
|
|
default:
|
|
edge_based_on_char(cur, row[pp+1], pp);
|
|
edge_based_on_char(ext0, row[pp+1], pp);
|
|
edge_based_on_char(ext1, row[pp+1], pp);
|
|
break;
|
|
}
|
|
}
|
|
edge_based_on_char(cur, row[0], port_count());
|
|
edge_based_on_char(ext0, row[0], port_count());
|
|
edge_based_on_char(ext1, row[0], port_count());
|
|
|
|
switch (row[port_count()+1]) {
|
|
case '0':
|
|
edges0_[idx_edg0++] = cur;
|
|
if (need_ext0_table)
|
|
edges0_[idx_edg0++] = ext0;
|
|
if (need_ext1_table)
|
|
edges0_[idx_edg0++] = ext1;
|
|
break;
|
|
case '1':
|
|
edges1_[idx_edg1++] = cur;
|
|
if (need_ext0_table)
|
|
edges1_[idx_edg1++] = ext0;
|
|
if (need_ext1_table)
|
|
edges1_[idx_edg1++] = ext1;
|
|
break;
|
|
case 'x':
|
|
break;
|
|
case '-':
|
|
edgesL_[idx_edgL++] = cur;
|
|
if (need_ext0_table)
|
|
edgesL_[idx_edgL++] = ext0;
|
|
if (need_ext1_table)
|
|
edgesL_[idx_edgL++] = ext1;
|
|
break;
|
|
default:
|
|
fprintf(stderr, "Unsupported entry %c(%d).\n",
|
|
row[port_count()+1], row[port_count()+1]);
|
|
assert(0);
|
|
break;
|
|
}
|
|
|
|
}
|
|
delete[] tab[idx];
|
|
}
|
|
free(tab);
|
|
|
|
assert(idx_edg0 == nedges0_);
|
|
assert(idx_edg1 == nedges1_);
|
|
assert(idx_edgL == nedgesL_);
|
|
|
|
}
|
|
|
|
bool operator == (const udp_levels_table&a, const udp_levels_table&b)
|
|
{
|
|
if (a.mask0 != b.mask0)
|
|
return false;
|
|
if (a.mask1 != b.mask1)
|
|
return false;
|
|
if (a.maskx != b.maskx)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
vvp_bit4_t vvp_udp_seq_s::calculate_output(const udp_levels_table&cur,
|
|
const udp_levels_table&prev,
|
|
vvp_bit4_t cur_out)
|
|
{
|
|
if (cur == prev)
|
|
return cur_out;
|
|
|
|
udp_levels_table cur_tmp = cur;
|
|
|
|
unsigned long mask_out = 1UL << port_count();
|
|
switch (cur_out) {
|
|
case BIT4_0:
|
|
cur_tmp.mask0 |= mask_out;
|
|
break;
|
|
case BIT4_1:
|
|
cur_tmp.mask1 |= mask_out;
|
|
break;
|
|
default:
|
|
cur_tmp.maskx |= mask_out;
|
|
break;
|
|
}
|
|
|
|
vvp_bit4_t lev = test_levels_(cur_tmp);
|
|
if (lev == BIT4_Z) {
|
|
lev = test_edges_(cur_tmp, prev);
|
|
}
|
|
|
|
return lev;
|
|
}
|
|
|
|
/*
|
|
* This function tests the levels of the input with the additional
|
|
* check match for the current output. It uses this to calculate a
|
|
* next output, or Z if there was no match. (This is different from
|
|
* the combinational version of this function, which returns X for the
|
|
* cases that don't match.) This method assumes that the caller has
|
|
* set the mask bit in bit position [port_count()] to reflect the
|
|
* current output.
|
|
*/
|
|
vvp_bit4_t vvp_udp_seq_s::test_levels_(const udp_levels_table&cur)
|
|
{
|
|
for (unsigned idx = 0 ; idx < nlevels0_ ; idx += 1) {
|
|
if (cur.mask0 != (cur.mask0 & levels0_[idx].mask0))
|
|
continue;
|
|
if (cur.mask1 != (cur.mask1 & levels0_[idx].mask1))
|
|
continue;
|
|
if (cur.maskx != (cur.maskx & levels0_[idx].maskx))
|
|
continue;
|
|
|
|
return BIT4_0;
|
|
}
|
|
|
|
for (unsigned idx = 0 ; idx < nlevels1_ ; idx += 1) {
|
|
if (cur.mask0 != (cur.mask0 & levels1_[idx].mask0))
|
|
continue;
|
|
if (cur.mask1 != (cur.mask1 & levels1_[idx].mask1))
|
|
continue;
|
|
if (cur.maskx != (cur.maskx & levels1_[idx].maskx))
|
|
continue;
|
|
|
|
return BIT4_1;
|
|
}
|
|
|
|
/* We need to test against an explicit X-output table, since
|
|
we need to distinguish from an X output and no match. */
|
|
for (unsigned idx = 0 ; idx < nlevelsx_ ; idx += 1) {
|
|
if (cur.mask0 != (cur.mask0 & levelsx_[idx].mask0))
|
|
continue;
|
|
if (cur.mask1 != (cur.mask1 & levelsx_[idx].mask1))
|
|
continue;
|
|
if (cur.maskx != (cur.maskx & levelsx_[idx].maskx))
|
|
continue;
|
|
|
|
return BIT4_X;
|
|
}
|
|
|
|
/* Test the table that requests the next output be the same as
|
|
the current output. This gets the current output from the
|
|
levels table that was passed in. */
|
|
for (unsigned idx = 0 ; idx < nlevelsL_ ; idx += 1) {
|
|
if (cur.mask0 != (cur.mask0 & levelsL_[idx].mask0))
|
|
continue;
|
|
if (cur.mask1 != (cur.mask1 & levelsL_[idx].mask1))
|
|
continue;
|
|
if (cur.maskx != (cur.maskx & levelsL_[idx].maskx))
|
|
continue;
|
|
|
|
if (cur.mask0 & (1 << port_count()))
|
|
return BIT4_0;
|
|
if (cur.mask1 & (1 << port_count()))
|
|
return BIT4_1;
|
|
if (cur.maskx & (1 << port_count()))
|
|
return BIT4_X;
|
|
|
|
assert(0);
|
|
return BIT4_X;
|
|
}
|
|
|
|
/* No explicit levels entry match. Return a Z to signal that
|
|
further testing is needed. */
|
|
return BIT4_Z;
|
|
}
|
|
|
|
vvp_bit4_t vvp_udp_seq_s::test_edges_(const udp_levels_table&cur,
|
|
const udp_levels_table&prev)
|
|
{
|
|
/* The edge_mask is true for all bits that are different in
|
|
the cur and prev tables. */
|
|
unsigned long edge0_mask = cur.mask0 ^ prev.mask0;
|
|
unsigned long edgex_mask = cur.maskx ^ prev.maskx;
|
|
unsigned long edge1_mask = cur.mask1 ^ prev.mask1;
|
|
|
|
unsigned long edge_mask = edge0_mask|edgex_mask|edge1_mask;
|
|
edge_mask &= ~ (-1UL << port_count());
|
|
|
|
/* If there are no differences, then there are no edges. Give
|
|
up now. */
|
|
if (edge_mask == 0)
|
|
return BIT4_X;
|
|
|
|
unsigned edge_position = 0;
|
|
while ((edge_mask&1) == 0) {
|
|
edge_mask >>= 1;
|
|
edge_position += 1;
|
|
}
|
|
|
|
/* We expect that there is exactly one edge in here. */
|
|
assert(edge_mask == 1);
|
|
|
|
edge_mask = 1UL << edge_position;
|
|
|
|
unsigned edge_mask0 = (prev.mask0&edge_mask)? 1 : 0;
|
|
unsigned edge_maskx = (prev.maskx&edge_mask)? 1 : 0;
|
|
unsigned edge_mask1 = (prev.mask1&edge_mask)? 1 : 0;
|
|
|
|
|
|
/* Now the edge_position and edge_mask* variables have the
|
|
values we use to test the applicability of the edge_table
|
|
entries. */
|
|
|
|
for (unsigned idx = 0 ; idx < nedges0_ ; idx += 1) {
|
|
struct udp_edges_table*row = edges0_ + idx;
|
|
|
|
if (row->edge_position != edge_position)
|
|
continue;
|
|
if (edge_mask0 && !row->edge_mask0)
|
|
continue;
|
|
if (edge_maskx && !row->edge_maskx)
|
|
continue;
|
|
if (edge_mask1 && !row->edge_mask1)
|
|
continue;
|
|
if (cur.mask0 != (cur.mask0 & row->mask0))
|
|
continue;
|
|
if (cur.maskx != (cur.maskx & row->maskx))
|
|
continue;
|
|
if (cur.mask1 != (cur.mask1 & row->mask1))
|
|
continue;
|
|
|
|
return BIT4_0;
|
|
}
|
|
|
|
for (unsigned idx = 0 ; idx < nedges1_ ; idx += 1) {
|
|
struct udp_edges_table*row = edges1_ + idx;
|
|
|
|
if (row->edge_position != edge_position)
|
|
continue;
|
|
if (edge_mask0 && !row->edge_mask0)
|
|
continue;
|
|
if (edge_maskx && !row->edge_maskx)
|
|
continue;
|
|
if (edge_mask1 && !row->edge_mask1)
|
|
continue;
|
|
if (cur.mask0 != (cur.mask0 & row->mask0))
|
|
continue;
|
|
if (cur.maskx != (cur.maskx & row->maskx))
|
|
continue;
|
|
if (cur.mask1 != (cur.mask1 & row->mask1))
|
|
continue;
|
|
|
|
return BIT4_1;
|
|
}
|
|
|
|
for (unsigned idx = 0 ; idx < nedgesL_ ; idx += 1) {
|
|
struct udp_edges_table*row = edgesL_ + idx;
|
|
|
|
if (row->edge_position != edge_position)
|
|
continue;
|
|
if (edge_mask0 && !row->edge_mask0)
|
|
continue;
|
|
if (edge_maskx && !row->edge_maskx)
|
|
continue;
|
|
if (edge_mask1 && !row->edge_mask1)
|
|
continue;
|
|
if (cur.mask0 != (cur.mask0 & row->mask0))
|
|
continue;
|
|
if (cur.maskx != (cur.maskx & row->maskx))
|
|
continue;
|
|
if (cur.mask1 != (cur.mask1 & row->mask1))
|
|
continue;
|
|
|
|
if (cur.mask0 & (1 << port_count()))
|
|
return BIT4_0;
|
|
if (cur.mask1 & (1 << port_count()))
|
|
return BIT4_1;
|
|
if (cur.maskx & (1 << port_count()))
|
|
return BIT4_X;
|
|
|
|
assert(0);
|
|
return BIT4_X;
|
|
}
|
|
|
|
return BIT4_X;
|
|
}
|
|
|
|
vvp_udp_fun_core::vvp_udp_fun_core(vvp_net_t*net, vvp_udp_s*def)
|
|
: vvp_wide_fun_core(net, def->port_count())
|
|
{
|
|
def_ = def;
|
|
cur_out_ = def_->get_init();
|
|
// Assume initially that all the inputs are 1'bx
|
|
current_.mask0 = 0;
|
|
current_.mask1 = 0;
|
|
current_.maskx = ~ ((-1UL) << port_count());
|
|
|
|
// If the initial value is 0 or 1, schedule the initial assignment
|
|
// normally, so that any sensitive always processes can be started
|
|
// first.
|
|
if (cur_out_ != BIT4_X)
|
|
schedule_generic(this, 0, false);
|
|
else
|
|
schedule_functor(this);
|
|
}
|
|
|
|
vvp_udp_fun_core::~vvp_udp_fun_core()
|
|
{
|
|
}
|
|
|
|
/*
|
|
* This method is used to propagate the initial value on startup.
|
|
*/
|
|
void vvp_udp_fun_core::run_run()
|
|
{
|
|
vvp_vector4_t tmp (1);
|
|
tmp.set_bit(0, cur_out_);
|
|
propagate_vec4(tmp);
|
|
}
|
|
|
|
void vvp_udp_fun_core::recv_vec4_from_inputs(unsigned port)
|
|
{
|
|
/* For now, assume udps are 1-bit wide. */
|
|
assert(value(port).size() == 1);
|
|
|
|
unsigned long mask = 1UL << port;
|
|
|
|
udp_levels_table prev = current_;
|
|
|
|
switch (value(port).value(0)) {
|
|
|
|
case BIT4_0:
|
|
current_.mask0 |= mask;
|
|
current_.mask1 &= ~mask;
|
|
current_.maskx &= ~mask;
|
|
break;
|
|
case BIT4_1:
|
|
current_.mask0 &= ~mask;
|
|
current_.mask1 |= mask;
|
|
current_.maskx &= ~mask;
|
|
break;
|
|
default:
|
|
current_.mask0 &= ~mask;
|
|
current_.mask1 &= ~mask;
|
|
current_.maskx |= mask;
|
|
break;
|
|
}
|
|
|
|
vvp_bit4_t out_bit = def_->calculate_output(current_, prev, cur_out_);
|
|
|
|
if (out_bit == cur_out_)
|
|
return;
|
|
|
|
cur_out_ = out_bit;
|
|
schedule_functor(this);
|
|
}
|
|
|
|
|
|
/*
|
|
* This function is called by the parser in response to a .udp
|
|
* node. We create the nodes needed to integrate the UDP into the
|
|
* netlist. The definition should be parsed already.
|
|
*/
|
|
void compile_udp_functor(char*label, char*type,
|
|
unsigned argc, struct symb_s*argv)
|
|
{
|
|
struct vvp_udp_s *def = udp_find(type);
|
|
assert(def);
|
|
free(type);
|
|
|
|
vvp_net_t*ptr = new vvp_net_t;
|
|
vvp_udp_fun_core*core = new vvp_udp_fun_core(ptr, def);
|
|
ptr->fun = core;
|
|
|
|
define_functor_symbol(label, ptr);
|
|
free(label);
|
|
|
|
wide_inputs_connect(core, argc, argv);
|
|
free(argv);
|
|
}
|