iverilog/vhdlpp/expression_elaborate.cc

1170 lines
34 KiB
C++

/*
* Copyright (c) 2011-2025 Stephen Williams (steve@icarus.com)
* Copyright CERN 2012-2013 / Stephen Williams (steve@icarus.com)
* Copyright CERN 2016
* @author Maciej Suminski (maciej.suminski@cern.ch)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
* Picture Elements, Inc., 777 Panoramic Way, Berkeley, CA 94704.
*/
# include "expression.h"
# include "architec.h"
# include "entity.h"
# include "vsignal.h"
# include "subprogram.h"
# include "std_types.h"
# include <iostream>
# include <typeinfo>
# include "parse_types.h"
# include "compiler.h"
# include "ivl_assert.h"
using namespace std;
int Expression::elaborate_lval(Entity*, ScopeBase*, bool)
{
cerr << get_fileline() << ": error: Expression is not a valid l-value." << endl;
return 1;
}
const VType* Expression::probe_type(Entity*, ScopeBase*) const
{
return 0;
}
const VType* Expression::fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*) const
{
const VType*res = probe_type(ent,scope);
if (res == 0) {
cerr << get_fileline() << ": internal error: "
<< "fit_type for " << typeid(*this).name()
<< " is not implemented." << endl;
}
return res;
}
const VType*ExpName::elaborate_adjust_type_with_range_(Entity*ent, ScopeBase*scope,
const VType*type)
{
// Unfold typedefs
while (const VTypeDef*tdef = dynamic_cast<const VTypeDef*>(type)) {
type = tdef->peek_definition();
}
if (const VTypeArray*array = dynamic_cast<const VTypeArray*>(type)) {
Expression*idx = index(0);
if (ExpRange*range = dynamic_cast<ExpRange*>(idx)) {
// If the name is an array, then a part select is
// also an array, but with different bounds.
int64_t use_msb, use_lsb;
bool flag = true;
flag &= range->msb()->evaluate(ent, scope, use_msb);
flag &= range->lsb()->evaluate(ent, scope, use_lsb);
if(flag)
type = new VTypeArray(array->element_type(), use_msb, use_lsb);
}
else if(idx) {
// If the name is an array or a vector, then an
// indexed name has the type of the element.
type = array->element_type();
}
}
return type;
}
int ExpName::elaborate_lval_(Entity*ent, ScopeBase*scope, bool is_sequ, ExpName*suffix)
{
int errors = 0;
if (debug_elaboration) {
debug_log_file << get_fileline() << ": ExpName::elaborate_lval_: "
<< "name_=" << name_
<< ", suffix->name()=" << suffix->name();
if (indices_) {
for(list<Expression*>::const_iterator it = indices_->begin();
it != indices_->end(); ++it) {
debug_log_file << "[";
debug_log_file << **it;
debug_log_file << "]";
}
}
debug_log_file << endl;
}
if (prefix_.get()) {
cerr << get_fileline() << ": sorry: I don't know how to elaborate "
<< "ExpName prefix of " << name_
<< " in l-value expressions." << endl;
errors += 1;
}
const VType*found_type = 0;
if (const InterfacePort*cur = ent->find_port(name_)) {
if (cur->mode != PORT_OUT && cur->mode != PORT_INOUT) {
cerr << get_fileline() << ": error: Assignment to "
"input port " << name_ << "." << endl;
return errors + 1;
}
if (is_sequ)
ent->set_declaration_l_value(name_, is_sequ);
found_type = cur->type;
} else if (ent->find_generic(name_)) {
cerr << get_fileline() << ": error: Assignment to generic "
<< name_ << " from entity "
<< ent->get_name() << "." << endl;
return errors + 1;
} else if (Signal*sig = scope->find_signal(name_)) {
// Tell the target signal that this may be a sequential l-value.
if (is_sequ) sig->count_ref_sequ();
found_type = sig->peek_type();
} else if (Variable*var = scope->find_variable(name_)) {
// Tell the target signal that this may be a sequential l-value.
if (is_sequ) var->count_ref_sequ();
found_type = var->peek_type();
}
// Resolve type definition to get an actual type.
while (const VTypeDef*tdef = dynamic_cast<const VTypeDef*> (found_type)) {
found_type = tdef->peek_definition();
if (debug_elaboration) {
debug_log_file << get_fileline() << ": ExpName::elaborate_lval_: "
<< "Resolve typedef " << tdef->peek_name()
<< " to defined type=" << typeid(*found_type).name()
<< endl;
}
}
ivl_assert(*this, found_type);
// If the prefix type is an array, then we may actually have a
// case of an array of structs. For example:
// foo(n).bar
// where foo is an array, (n) is an array index and foo(n) is
// something that takes a suffix. For the purpose of our
// expression type calculations, we need the element type.
if (const VTypeArray*array = dynamic_cast<const VTypeArray*> (found_type)) {
found_type = array->element_type();
while (const VTypeDef*tdef = dynamic_cast<const VTypeDef*> (found_type)) {
found_type = tdef->peek_definition();
}
if (debug_elaboration) {
debug_log_file << get_fileline() << ": ExpName::elaborate_lval_: "
<< "Extract array element type=" << typeid(*found_type).name()
<< endl;
}
}
const VType*suffix_type = 0;
if (const VTypeRecord*record = dynamic_cast<const VTypeRecord*> (found_type)) {
const VTypeRecord::element_t*element = record->element_by_name(suffix->name_);
ivl_assert(*this, element);
const VType*element_type = element->peek_type();
ivl_assert(*this, element_type);
suffix_type = element_type;
}
if (suffix_type == 0) {
cerr << get_fileline() << ": error: I don't know how to handle prefix " << name_
<< " with suffix " << suffix->name_ << endl;
errors += 1;
return errors;
}
suffix_type = suffix->elaborate_adjust_type_with_range_(ent, scope, suffix_type);
ivl_assert(*this, suffix_type);
suffix->set_type(suffix_type);
return errors;
}
int ExpName::elaborate_lval(Entity*ent, ScopeBase*scope, bool is_sequ)
{
int errors = 0;
if (prefix_.get()) {
return prefix_->elaborate_lval_(ent, scope, is_sequ, this);
}
const VType*found_type = 0;
if (ent) {
if (const InterfacePort*cur = ent->find_port(name_)) {
if (cur->mode != PORT_OUT && cur->mode != PORT_INOUT) {
cerr << get_fileline() << ": error: Assignment to "
"input port " << name_ << "." << endl;
return errors += 1;
}
if (is_sequ)
ent->set_declaration_l_value(name_, is_sequ);
found_type = cur->type;
} else if (ent->find_generic(name_)) {
cerr << get_fileline() << ": error: Assignment to generic "
<< name_ << " from entity "
<< ent->get_name() << "." << endl;
return 1;
}
}
if (!found_type && scope) {
if (Signal*sig = scope->find_signal(name_)) {
// Tell the target signal that this may be a sequential l-value.
if (is_sequ) sig->count_ref_sequ();
found_type = sig->peek_type();
} else if (Variable*var = scope->find_variable(name_)) {
// Tell the target signal that this may be a sequential l-value.
if (is_sequ) var->count_ref_sequ();
found_type = var->peek_type();
} else if (const InterfacePort*port = scope->find_param(name_)) {
found_type = port->type;
}
}
if (found_type == 0) {
cerr << get_fileline() << ": error: Signal/variable " << name_
<< " not found in this context." << endl;
return errors + 1;
}
found_type = elaborate_adjust_type_with_range_(ent, scope, found_type);
set_type(found_type);
return errors;
}
int ExpName::elaborate_rval(const Entity*ent, const ScopeBase*scope, const InterfacePort*lval)
{
int errors = 0;
if (prefix_.get()) {
cerr << get_fileline() << ": sorry: I don't know how to elaborate "
<< "ExpName prefix parts in r-value expressions." << endl;
errors += 1;
}
const VType*dummy_type;
Expression*dummy_expr;
if (const InterfacePort*cur = ent->find_port(name_)) {
/* IEEE 1076-2008, p.80:
* For a formal port IN, associated port should be IN, OUT, INOUT or BUFFER
* For a formal port OUT, associated port should be OUT, INOUT or BUFFER
* For a formal port INOUT, associated port should be OUT, INOUT or BUFFER
* For a formal port BUFFER, associated port should be OUT, INOUT or BUFFER
*/
switch(lval->mode) {
case PORT_OUT:
//case PORT_INOUT:
if (cur->mode == PORT_IN) {
cerr << get_fileline() << ": error: Connecting "
"formal output port " << lval->name << " to actual input port "
<< name_ << "." << endl;
errors += 1;
}
break;
case PORT_IN:
case PORT_NONE:
default:
break;
}
} else if (scope->find_signal(name_)) {
/* OK */
} else if (ent->find_generic(name_)) {
/* OK */
} else if (scope->find_constant(name_, dummy_type, dummy_expr)) {
/* OK */
} else if (scope->is_enum_name(name_)) {
/* OK */
} else {
cerr << get_fileline() << ": error: No port, signal or constant " << name_
<< " to be used as r-value." << endl;
errors += 1;
}
return errors;
}
int Expression::elaborate_expr(Entity*, ScopeBase*, const VType*)
{
cerr << get_fileline() << ": internal error: I don't know how to "
<< "elaborate expression type=" << typeid(*this).name() << endl;
return 1;
}
const VType* ExpBinary::probe_type(Entity*ent, ScopeBase*scope) const
{
const VType*t1 = operand1_->probe_type(ent, scope);
const VType*t2 = operand2_->probe_type(ent, scope);
if (t1 == 0)
return t2;
if (t2 == 0)
return t1;
if (t1->type_match(t2))
return t1;
if (t2->type_match(t1))
return t2;
if (const VType*tb = resolve_operand_types_(t1, t2))
return tb;
// FIXME: I should at this point try harder to find an
// operator that has the proper argument list and use this
// here, but for now we leave it for the back-end to figure out.
#if 0
cerr << get_fileline() << ": internal error: I don't know how to resolve types of generic binary expressions." << endl;
#endif
return 0;
}
const VType*ExpBinary::resolve_operand_types_(const VType*, const VType*) const
{
return 0;
}
int ExpBinary::elaborate_exprs(Entity*ent, ScopeBase*scope, const VType*ltype)
{
int errors = 0;
errors += operand1_->elaborate_expr(ent, scope, ltype);
errors += operand2_->elaborate_expr(ent, scope, ltype);
return errors;
}
/*
* the default fit_type method for unary operator expressions is to
* return the fit_type for the operand. The assumption is that the
* operator doesn't change the type.
*/
const VType*ExpUnary::fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const
{
return operand1_->fit_type(ent, scope, atype);
}
const VType*ExpUnary::probe_type(Entity*ent, ScopeBase*scope) const
{
return operand1_->probe_type(ent, scope);
}
int ExpUnary::elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype)
{
ivl_assert(*this, ltype != 0);
set_type(ltype);
return operand1_->elaborate_expr(ent, scope, ltype);
}
const VType*ExpAggregate::fit_type(Entity*, ScopeBase*, const VTypeArray*host) const
{
ivl_assert(*this, elements_.size() == 1);
size_t choice_count = elements_[0]->count_choices();
ivl_assert(*this, choice_count > 0);
vector<choice_element> ce (choice_count);
elements_[0]->map_choices(&ce[0]);
ivl_assert(*this, ce.size() == 1);
ExpRange*prange = ce[0].choice->range_expressions();
ivl_assert(*this, prange);
Expression*use_msb = prange->msb();
Expression*use_lsb = prange->lsb();
ivl_assert(*this, host->dimensions().size() == 1);
vector<VTypeArray::range_t> range (1);
range[0] = VTypeArray::range_t(use_msb, use_lsb);
const VTypeArray*res = new VTypeArray(host->element_type(), range);
return res;
}
int ExpAggregate::elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype)
{
if (ltype == 0) {
cerr << get_fileline() << ": error: Elaboration of aggregate types needs well known type context?" << endl;
return 1;
}
set_type(ltype);
while (const VTypeDef*cur = dynamic_cast<const VTypeDef*>(ltype)) {
ltype = cur->peek_definition();
}
if (const VTypeArray*larray = dynamic_cast<const VTypeArray*>(ltype)) {
return elaborate_expr_array_(ent, scope, larray);
}
else if(const VTypeRecord*lrecord = dynamic_cast<const VTypeRecord*>(ltype)) {
return elaborate_expr_record_(ent, scope, lrecord);
}
cerr << get_fileline() << ": internal error: I don't know how to elaborate aggregate expressions. type=" << typeid(*ltype).name() << endl;
return 1;
}
/*
* Elaboration of array aggregates is elaboration of the element
* expressions (the elements_ member) using the element type as the
* ltype for the subexpression.
*/
int ExpAggregate::elaborate_expr_array_(Entity*ent, ScopeBase*scope, const VTypeArray*ltype)
{
const VType*element_type = ltype->element_type();
int errors = 0;
size_t choice_count = 0;
// Figure out how many total elements we have here. Note that
// each parsed element may be bound to multiple choices, so
// account for that.
for (size_t edx = 0 ; edx < elements_.size() ; edx += 1) {
const element_t*ecur = elements_[edx];
if (ecur->count_choices() == 0)
choice_count += 1;
else
choice_count += ecur->count_choices();
}
aggregate_.resize(choice_count);
// Translate the elements_ array to the aggregate_ array. In
// the target array, each expression is attached to a single
// choice.
size_t cdx = 0;
for (size_t edx = 0 ; edx < elements_.size() ; edx += 1) {
element_t*ecur = elements_[edx];
if (ecur->count_choices() == 0) {
// positional associations have no "choice"
// associated with them.
aggregate_[cdx].choice = 0;
aggregate_[cdx].expr = ecur->extract_expression();
aggregate_[cdx].alias_flag = false;
cdx += 1;
} else {
ecur->map_choices(&aggregate_[cdx]);
cdx += ecur->count_choices();
}
}
ivl_assert(*this, cdx == choice_count);
// Now run through the more convenient mapping and elaborate
// all the expressions that I find.
for (size_t idx = 0 ; idx < aggregate_.size() ; idx += 1) {
if (aggregate_[idx].alias_flag)
continue;
errors += aggregate_[idx].expr->elaborate_expr(ent, scope, element_type);
}
// done with the obsolete elements_ vector.
elements_.clear();
return errors;
}
int ExpAggregate::elaborate_expr_record_(Entity*ent, ScopeBase*scope, const VTypeRecord*ltype)
{
int errors = 0;
aggregate_.resize(elements_.size());
choice_element tmp;
int idx;
// Translate the elements_ array to the aggregate_ array. In
// the target array, each expression is attached to a single
// choice.
for (size_t edx = 0 ; edx < elements_.size() ; edx += 1) {
element_t*ecur = elements_[edx];
// it is invalid to have more than one choice in record assignment
ivl_assert(*this, ecur->count_choices() == 1);
ecur->map_choices(&tmp);
choice_t*ch = tmp.choice;
ivl_assert(*this, !ch->others());
ivl_assert(*this, !tmp.alias_flag);
// Get the appropriate type for a field
const ExpName*field = dynamic_cast<const ExpName*>(ch->simple_expression(false));
ivl_assert(*this, field);
perm_string field_name = field->peek_name();
idx = -1;
const VTypeRecord::element_t*el = ltype->element_by_name(field_name, &idx);
ivl_assert(*this, idx >= 0);
aggregate_[idx] = tmp;
errors += aggregate_[idx].expr->elaborate_expr(ent, scope, el->peek_type());
}
// done with the obsolete elements_ vector.
elements_.clear();
return errors;
}
void ExpAggregate::element_t::map_choices(ExpAggregate::choice_element*dst)
{
for (size_t idx = 0 ; idx < fields_.size() ; idx += 1) {
dst->choice = fields_[idx];
dst->expr = val_;
dst->alias_flag = (idx != 0);
dst += 1;
}
}
int ExpArithmetic::elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype)
{
int errors = 0;
if (ltype == 0) {
ltype = probe_type(ent, scope);
}
ivl_assert(*this, ltype != 0);
errors += elaborate_exprs(ent, scope, ltype);
return errors;
}
const VType* ExpArithmetic::resolve_operand_types_(const VType*t1, const VType*t2) const
{
// Ranges
while (const VTypeRange*tmp = dynamic_cast<const VTypeRange*> (t1))
t1 = tmp->base_type();
while (const VTypeRange*tmp = dynamic_cast<const VTypeRange*> (t2))
t2 = tmp->base_type();
if (t1->type_match(t2))
return t1;
// Signed & unsigned (resized to the widest argument)
const VTypeArray*t1_arr = dynamic_cast<const VTypeArray*>(t1);
const VTypeArray*t2_arr = dynamic_cast<const VTypeArray*>(t2);
if(t1_arr && t2_arr) {
const VTypeArray*t1_parent = t1_arr->get_parent_type();
const VTypeArray*t2_parent = t2_arr->get_parent_type();
if(t1_parent == t2_parent
&& (t1_parent == &primitive_SIGNED || t1_parent == &primitive_UNSIGNED)) {
int t1_size = t1_arr->get_width(NULL);
int t2_size = t2_arr->get_width(NULL);
// Easy, the same sizes, so we do not need to resize
if(t1_size == t2_size && t1_size > 0)
return t1; // == t2
VTypeArray*resolved = new VTypeArray(t1_parent->element_type(),
std::max(t1_size, t2_size) - 1, 0, t1_parent->signed_vector());
resolved->set_parent_type(t1_parent);
return resolved;
}
} else if(t1_arr) {
if(const VTypePrimitive*prim = dynamic_cast<const VTypePrimitive*>(t2)) {
const VTypeArray*t1_parent = t1_arr->get_parent_type();
VTypePrimitive::type_t t2_type = prim->type();
if((t2_type == VTypePrimitive::NATURAL || t2_type == VTypePrimitive::INTEGER)
&& t1_parent == &primitive_SIGNED)
return t1;
if((t2_type == VTypePrimitive::NATURAL) && t1_parent == &primitive_UNSIGNED)
return t1;
}
} else if(t2_arr) {
if(const VTypePrimitive*prim = dynamic_cast<const VTypePrimitive*>(t1)) {
const VTypeArray*t2_parent = t2_arr->get_parent_type();
VTypePrimitive::type_t t1_type = prim->type();
if((t1_type == VTypePrimitive::NATURAL || t1_type == VTypePrimitive::INTEGER)
&& t2_parent == &primitive_SIGNED)
return t2;
if((t1_type == VTypePrimitive::NATURAL) && t2_parent == &primitive_UNSIGNED)
return t2;
}
}
return 0;
}
int ExpAttribute::elaborate_args(Entity*ent, ScopeBase*scope, const VType*ltype)
{
int errors = 0;
if(args_) {
for(list<Expression*>::iterator it = args_->begin();
it != args_->end(); ++it) {
errors += (*it)->elaborate_expr(ent, scope, ltype);
}
}
return errors;
}
int ExpObjAttribute::elaborate_expr(Entity*ent, ScopeBase*scope, const VType*)
{
int errors = 0;
const VType*sub_type = base_->probe_type(ent, scope);
errors += elaborate_args(ent, scope, sub_type);
errors += base_->elaborate_expr(ent, scope, sub_type);
return errors;
}
const VType* ExpObjAttribute::probe_type(Entity*, ScopeBase*) const
{
if (name_ == "length" || name_ == "left" || name_ == "right")
return &primitive_NATURAL;
return NULL;
}
int ExpTypeAttribute::elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype)
{
return elaborate_args(ent, scope, ltype);
}
const VType* ExpTypeAttribute::probe_type(Entity*, ScopeBase*) const
{
if(name_ == "image")
return &primitive_STRING;
return NULL;
}
const VType*ExpBitstring::fit_type(Entity*, ScopeBase*, const VTypeArray*atype) const
{
// Really should check that this string can work with the
// array element type?
return atype->element_type();
}
int ExpBitstring::elaborate_expr(Entity*, ScopeBase*, const VType*)
{
int errors = 0;
const VTypeArray*type = new VTypeArray(&primitive_STDLOGIC, value_.size() - 1, 0);
set_type(type);
return errors;
}
const VType*ExpCharacter::fit_type(Entity*, ScopeBase*, const VTypeArray*atype) const
{
// Really should check that this character can work with the
// array element type?
return atype->element_type();
}
int ExpCharacter::elaborate_expr(Entity*, ScopeBase*, const VType*ltype)
{
ivl_assert(*this, ltype != 0);
set_type(ltype);
return 0;
}
const VType*ExpConcat::fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*atype) const
{
Expression*operands[2] = {operand1_, operand2_};
const VType*types[2] = {NULL, NULL};
Expression*sizes[2] = {NULL, NULL};
// determine the type and size of concatenated expressions
for(int i = 0; i < 2; ++i) {
types[i] = operands[i]->fit_type(ent, scope, atype);
if(const VTypeArray*arr = dynamic_cast<const VTypeArray*>(types[i])) {
types[i] = arr->element_type();
ivl_assert(*this, arr->dimensions().size() == 1);
const VTypeArray::range_t&dim = arr->dimension(0);
sizes[i] = new ExpArithmetic(ExpArithmetic::MINUS, dim.msb(), dim.lsb());
} else {
sizes[i] = new ExpInteger(0);
}
}
// the range of the concatenated expression is (size1 + size2 + 1):0
// note that each of the sizes are already decreased by one,
// e.g. 3:0 <=> size == 3 even though there are 4 bits
Expression*size = new ExpArithmetic(ExpArithmetic::PLUS,
new ExpArithmetic(ExpArithmetic::PLUS, sizes[0], sizes[1]),
new ExpInteger(1));
std::list<ExpRange*> ranges;
ranges.push_front(new ExpRange(size, new ExpInteger(0), ExpRange::DOWNTO));
const VType*array = new VTypeArray(types[1], &ranges);
return array;
}
/*
* I don't know how to probe the type of a concatenation, quite yet.
*/
const VType*ExpConcat::probe_type(Entity*, ScopeBase*) const
{
ivl_assert(*this, 0);
return 0;
}
int ExpConcat::elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype)
{
int errors = 0;
if (ltype == 0) {
ltype = probe_type(ent, scope);
}
ivl_assert(*this, ltype != 0);
if (const VTypeArray*atype = dynamic_cast<const VTypeArray*>(ltype)) {
errors += elaborate_expr_array_(ent, scope, atype);
} else {
errors += operand1_->elaborate_expr(ent, scope, ltype);
errors += operand2_->elaborate_expr(ent, scope, ltype);
}
return errors;
}
int ExpConcat::elaborate_expr_array_(Entity*ent, ScopeBase*scope, const VTypeArray*atype)
{
int errors = 0;
// For now, only support single-dimension arrays here.
ivl_assert(*this, atype->dimensions().size() == 1);
const VType*type1 = operand1_->fit_type(ent, scope, atype);
ivl_assert(*this, type1);
const VType*type2 = operand2_->fit_type(ent, scope, atype);
ivl_assert(*this, type2);
errors += operand1_->elaborate_expr(ent, scope, type1);
errors += operand2_->elaborate_expr(ent, scope, type2);
return errors;
}
const VType* ExpConditional::probe_type(Entity*, ScopeBase*) const
{
return 0;
}
int ExpConditional::elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype)
{
int errors = 0;
if (ltype == 0)
ltype = probe_type(ent, scope);
ivl_assert(*this, ltype);
set_type(ltype);
/* Note that the type for the condition expression need not
have anything to do with the type of this expression. */
for (list<case_t*>::const_iterator cur = options_.begin()
; cur != options_.end() ; ++cur) {
errors += (*cur)->elaborate_expr(ent, scope, ltype);
}
return errors;
}
int ExpConditional::case_t::elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype)
{
int errors = 0;
if (cond_)
errors += cond_->elaborate_expr(ent, scope, 0);
for (list<Expression*>::const_iterator cur = true_clause_.begin()
; cur != true_clause_.end() ; ++cur) {
errors += (*cur)->elaborate_expr(ent, scope, ltype);
}
return errors;
}
const VType*ExpFunc::probe_type(Entity*ent, ScopeBase*scope) const
{
if(!def_)
def_ = match_signature(ent, scope);
return def_ ? def_->exact_return_type(argv_, ent, scope) : NULL;
}
int ExpFunc::elaborate_expr(Entity*ent, ScopeBase*scope, const VType*)
{
int errors = 0;
if(def_)
return 0;
def_ = match_signature(ent, scope);
if(!def_)
return 1;
// Elaborate arguments
for (size_t idx = 0; idx < argv_.size(); ++idx) {
errors += def_->elaborate_argument(argv_[idx], idx, ent, scope);
}
// SystemVerilog functions work only with defined size data types, therefore
// if header does not specify argument or return type size, create a function
// instance that work with this particular size.
if(!def_->is_std() && def_->unbounded()) {
def_ = def_->make_instance(argv_, scope);
name_ = def_->name(); // TODO necessary?
}
return errors;
}
const VType* ExpFunc::fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*) const
{
return probe_type(ent, scope);
}
const VType* ExpInteger::probe_type(Entity*, ScopeBase*) const
{
if(value_ >= 0)
return &primitive_NATURAL;
else
return &primitive_INTEGER;
}
int ExpInteger::elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype)
{
int errors = 0;
if (ltype == 0) {
ltype = probe_type(ent, scope);
}
ivl_assert(*this, ltype != 0);
return errors;
}
const VType* ExpReal::probe_type(Entity*, ScopeBase*) const
{
return &primitive_REAL;
}
int ExpReal::elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype)
{
int errors = 0;
if (ltype == 0) {
ltype = probe_type(ent, scope);
}
ivl_assert(*this, ltype != 0);
return errors;
}
int ExpLogical::elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype)
{
int errors = 0;
if (ltype == 0) {
ltype = probe_type(ent, scope);
}
ivl_assert(*this, ltype != 0);
errors += elaborate_exprs(ent, scope, ltype);
return errors;
}
const VType* ExpName::probe_prefix_type_(Entity*ent, ScopeBase*scope) const
{
if (prefix_.get()) {
cerr << get_fileline() << ": sorry: I do not know how to support nested prefix parts." << endl;
return 0;
}
const VType*type = probe_type(ent, scope);
return type;
}
/*
* This method is the probe_type() implementation for ExpName objects
* that have prefix parts. In this case we try to get the type of the
* prefix and interpret the name in that context.
*/
const VType* ExpName::probe_prefixed_type_(Entity*ent, ScopeBase*scope) const
{
// First, get the type of the prefix.
const VType*prefix_type = prefix_->probe_prefix_type_(ent, scope);
if (prefix_type == 0) {
return 0;
}
while (const VTypeDef*def = dynamic_cast<const VTypeDef*> (prefix_type)) {
prefix_type = def->peek_definition();
}
const VType*element_type = prefix_type;
bool type_changed = true;
// Keep unwinding the type until we find the basic element type
while (type_changed) {
type_changed = false;
// If the prefix type is a record, then the current name is
// the name of a member.
if (const VTypeRecord*pref_record = dynamic_cast<const VTypeRecord*>(element_type)) {
const VTypeRecord::element_t*element = pref_record->element_by_name(name_);
ivl_assert(*this, element);
element_type = element->peek_type();
ivl_assert(*this, element_type);
type_changed = true;
}
if (const VTypeArray*pref_array = dynamic_cast<const VTypeArray*>(element_type)) {
element_type = pref_array->basic_type(false);
ivl_assert(*this, element_type);
type_changed = true;
}
}
if(!element_type) {
cerr << get_fileline() << ": sorry: I don't know how to probe "
<< "prefix type " << typeid(*prefix_type).name()
<< " of " << name_ << "." << endl;
return NULL;
}
return element_type;
}
const VType* ExpName::probe_type(Entity*ent, ScopeBase*scope) const
{
if (prefix_.get())
return probe_prefixed_type_(ent, scope);
if(ent) {
if (const InterfacePort*cur = ent->find_port(name_)) {
ivl_assert(*this, cur->type);
return cur->type;
}
if (const InterfacePort*cur = ent->find_generic(name_)) {
ivl_assert(*this, cur->type);
return cur->type;
}
}
if(scope) {
if (const Signal*sig = scope->find_signal(name_))
return sig->peek_type();
if (const Variable*var = scope->find_variable(name_))
return var->peek_type();
const VType*type = 0;
Expression*cval = 0;
if (scope->find_constant(name_, type, cval))
return type;
Architecture*arc = dynamic_cast<Architecture*>(scope);
if (arc && (type = arc->probe_genvar_type(name_))) {
return type;
}
if (const InterfacePort*port = scope->find_param(name_)) {
return port->type;
}
if ((type = scope->is_enum_name(name_))) {
return type;
}
}
if(ent || scope) {
// Do not display error messages if there was no entity or scope
// specified. There are functions that are called without any specific
// context and they still may want to probe the expression type.
cerr << get_fileline() << ": error: Signal/variable " << name_
<< " not found in this context." << endl;
}
return 0;
}
const VType* ExpName::fit_type(Entity*ent, ScopeBase*scope, const VTypeArray*)const
{
return probe_type(ent, scope);
}
int ExpName::elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype)
{
if (ltype) {
ivl_assert(*this, ltype != 0);
set_type(ltype);
}
if(prefix_.get())
prefix_.get()->elaborate_expr(ent, scope, NULL);
if (indices_) {
for(list<Expression*>::const_iterator it = indices_->begin();
it != indices_->end(); ++it) {
(*it)->elaborate_expr(ent, scope, &primitive_INTEGER);
}
}
return 0;
}
const VType* ExpNameALL::probe_type(Entity*, ScopeBase*) const
{
return 0;
}
const VType* ExpRelation::probe_type(Entity*, ScopeBase*) const
{
return &type_BOOLEAN;
}
int ExpRelation::elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype)
{
int errors = 0;
if (ltype == 0) {
ltype = probe_type(ent, scope);
}
ivl_assert(*this, ltype != 0);
// The type of the operands must match, but need not match the
// type for the ExpRelation itself. So get the operand type
// separately.
const VType*otype = ExpBinary::probe_type(ent, scope);
errors += elaborate_exprs(ent, scope, otype);
return errors;
}
int ExpShift::elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype)
{
int errors = 0;
if (ltype == 0) {
ltype = probe_type(ent, scope);
}
ivl_assert(*this, ltype != 0);
errors += elaborate_exprs(ent, scope, ltype);
return errors;
}
/*
* When a string appears in a concatenation, then the type of the
* string is an array with the same element type of the concatenation,
* but with elements for each character of the string.
*/
const VType*ExpString::fit_type(Entity*, ScopeBase*, const VTypeArray*atype) const
{
vector<VTypeArray::range_t> range (atype->dimensions());
// Generate an array range for this string
ivl_assert(*this, range.size() == 1);
VTypeArray*type = new VTypeArray(atype->element_type(), value_.size(), 0);
return type;
}
int ExpString::elaborate_expr(Entity*, ScopeBase*, const VType*ltype)
{
ivl_assert(*this, ltype != 0);
set_type(ltype);
return 0;
}
int ExpTime::elaborate_expr(Entity*, ScopeBase*, const VType*)
{
set_type(&primitive_INTEGER);
return 0;
}
int ExpRange::elaborate_expr(Entity*ent, ScopeBase*scope, const VType*)
{
int errors = 0;
if(left_)
errors += left_->elaborate_expr(ent, scope, &primitive_INTEGER);
if(right_)
errors += right_->elaborate_expr(ent, scope, &primitive_INTEGER);
return errors;
}
int ExpDelay::elaborate_expr(Entity*ent, ScopeBase*scope, const VType*ltype)
{
int errors = 0;
errors += expr_->elaborate_expr(ent, scope, ltype);
errors += delay_->elaborate_expr(ent, scope, ltype);
return errors;
}