iverilog/tgt-vvp/eval_expr.c

327 lines
8.8 KiB
C

/*
* Copyright (c) 2001-2025 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "vvp_priv.h"
# include <string.h>
# include <stdlib.h>
# include <assert.h>
# include <stdbool.h>
# include "ivl_alloc.h"
int number_is_unknown(ivl_expr_t expr)
{
const char*bits;
unsigned idx;
if (ivl_expr_type(expr) == IVL_EX_ULONG)
return 0;
assert(ivl_expr_type(expr) == IVL_EX_NUMBER);
bits = ivl_expr_bits(expr);
for (idx = 0 ; idx < ivl_expr_width(expr) ; idx += 1)
if ((bits[idx] != '0') && (bits[idx] != '1'))
return 1;
return 0;
}
/*
* This function returns TRUE if the number can be represented as a
* lim_wid immediate value. This amounts to verifying that any upper
* bits are the same. For a negative value we do not support the most
* negative twos-complement value since it can not be negated. This
* code generator always emits positive values, hence the negation
* requirement.
*/
int number_is_immediate(ivl_expr_t expr, unsigned lim_wid, int negative_ok_flag)
{
const char *bits;
unsigned nbits = ivl_expr_width(expr);
char pad_bit = '0';
unsigned idx;
/* We can only convert numbers to an immediate value. */
if (ivl_expr_type(expr) != IVL_EX_NUMBER
&& ivl_expr_type(expr) != IVL_EX_ULONG
&& ivl_expr_type(expr) != IVL_EX_DELAY)
return 0;
/* If a negative value is OK, then we really have one less
* significant bit because of the sign bit. */
if (negative_ok_flag) lim_wid -= 1;
/* This is an unsigned value so it can not have the -2**N problem. */
if (ivl_expr_type(expr) == IVL_EX_ULONG) {
unsigned long imm;
if (lim_wid >= 8*sizeof(unsigned long)) return 1;
/* At this point we know that lim_wid is smaller than an
* unsigned long variable. */
imm = ivl_expr_uvalue(expr);
if (imm < (1UL << lim_wid)) return 1;
else return 0;
}
/* This is an unsigned value so it can not have the -2**N problem. */
if (ivl_expr_type(expr) == IVL_EX_DELAY) {
uint64_t imm;
if (lim_wid >= 8*sizeof(uint64_t)) return 1;
/* At this point we know that lim_wid is smaller than a
* uint64_t variable. */
imm = ivl_expr_delay_val(expr);
if (imm < ((uint64_t)1 << lim_wid)) return 1;
else return 0;
}
bits = ivl_expr_bits(expr);
if (ivl_expr_signed(expr) && bits[nbits-1]=='1') pad_bit = '1';
if (pad_bit == '1' && !negative_ok_flag) return 0;
/* Check if all the bits are either x or z. */
if ((bits[0] == 'x') || (bits[0] == 'z')) {
char first_bit = bits[0];
unsigned bits_match = 1;
for (idx = 1 ; idx < nbits ; idx += 1)
if (bits[idx] != first_bit) {
bits_match = 0;
break;
}
if (bits_match) return 1;
}
for (idx = lim_wid ; idx < nbits ; idx += 1)
if (bits[idx] != pad_bit) return 0;
/* If we have a negative number make sure it is not too big. */
if (pad_bit == '1') {
for (idx = 0; idx < lim_wid; idx += 1)
if (bits[idx] == '1') return 1;
return 0;
}
return 1;
}
/*
* We can return positive or negative values. You must verify that the
* number is not unknown (number_is_unknown) and is small enough
* (number_is_immediate).
*/
long get_number_immediate(ivl_expr_t expr)
{
long imm = 0;
switch (ivl_expr_type(expr)) {
case IVL_EX_ULONG:
imm = ivl_expr_uvalue(expr);
break;
case IVL_EX_NUMBER: {
const char*bits = ivl_expr_bits(expr);
unsigned nbits = ivl_expr_width(expr);
unsigned idx;
/* We can not copy more bits than fit into a long. */
if (nbits > 8*sizeof(long)) nbits = 8*sizeof(long);
for (idx = 0 ; idx < nbits ; idx += 1) switch (bits[idx]){
case '0':
break;
case '1':
imm |= 1L << idx;
break;
default:
assert(0);
}
if (ivl_expr_signed(expr) && bits[nbits-1]=='1' &&
nbits < 8*sizeof(long)) imm |= -1UL << nbits;
break;
}
default:
assert(0);
}
return imm;
}
uint64_t get_number_immediate64(ivl_expr_t expr)
{
uint64_t imm = 0;
switch (ivl_expr_type(expr)) {
case IVL_EX_ULONG:
imm = ivl_expr_uvalue(expr);
break;
case IVL_EX_NUMBER: {
const char*bits = ivl_expr_bits(expr);
unsigned nbits = ivl_expr_width(expr);
unsigned idx;
for (idx = 0 ; idx < nbits ; idx += 1) switch (bits[idx]){
case '0':
break;
case '1':
assert(idx < 64);
imm |= UINT64_C(1) << idx;
break;
default:
assert(0);
}
if (ivl_expr_signed(expr) && bits[nbits-1]=='1' && nbits < 64)
imm |= (-UINT64_C(1)) << nbits;
break;
}
default:
assert(0);
}
return imm;
}
static void eval_logic_into_integer(ivl_expr_t expr, unsigned ix)
{
switch (ivl_expr_type(expr)) {
case IVL_EX_NUMBER:
case IVL_EX_ULONG:
{
assert(number_is_immediate(expr, IMM_WID, 1));
if (number_is_unknown(expr)) {
/* We are loading a 'bx so mimic %ix/get. */
fprintf(vvp_out, " %%ix/load %u, 0, 0;\n", ix);
fprintf(vvp_out, " %%flag_set/imm 4, 1;\n");
break;
}
long imm = get_number_immediate(expr);
if (imm >= 0) {
fprintf(vvp_out, " %%ix/load %u, %ld, 0;\n", ix, imm);
} else {
fprintf(vvp_out, " %%ix/load %u, 0, 0; loading %ld\n", ix, imm);
fprintf(vvp_out, " %%ix/sub %u, %ld, 0;\n", ix, -imm);
}
/* This can not have have a X/Z value so clear flag 4. */
fprintf(vvp_out, " %%flag_set/imm 4, 0;\n");
}
break;
/* Special case: There is an %ix instruction for
reading index values directly from variables. In
this case, try to use that special instruction. */
case IVL_EX_SIGNAL: {
const char*type = ivl_expr_signed(expr) ? "/s" : "";
ivl_signal_t sig = ivl_expr_signal(expr);
unsigned word = 0;
if (ivl_signal_dimensions(sig) > 0) {
ivl_expr_t ixe;
/* Detect the special case that this is a
variable array. In this case, the ix/getv
will not work, so do it the hard way. */
if (ivl_signal_type(sig) == IVL_SIT_REG) {
draw_eval_vec4(expr);
fprintf(vvp_out, " %%ix/vec4%s %u;\n", type, ix);
break;
}
ixe = ivl_expr_oper1(expr);
if (number_is_immediate(ixe, IMM_WID, 0)) {
assert(! number_is_unknown(ixe));
word = get_number_immediate(ixe);
} else {
draw_eval_vec4(expr);
fprintf(vvp_out, " %%ix/vec4%s %u;\n", type, ix);
break;
}
}
fprintf(vvp_out, " %%ix/getv%s %u, v%p_%u;\n", type, ix,
sig, word);
break;
}
default:
draw_eval_vec4(expr);
/* Is this a signed expression? */
if (ivl_expr_signed(expr)) {
fprintf(vvp_out, " %%ix/vec4/s %u;\n", ix);
} else {
fprintf(vvp_out, " %%ix/vec4 %u;\n", ix);
}
break;
}
}
/*
* This function, in addition to setting the value into index 0, sets
* bit 4 to 1 if the value is unknown.
*/
void draw_eval_expr_into_integer(ivl_expr_t expr, unsigned ix)
{
switch (ivl_expr_value(expr)) {
case IVL_VT_BOOL:
case IVL_VT_LOGIC:
eval_logic_into_integer(expr, ix);
break;
case IVL_VT_REAL:
draw_eval_real(expr);
fprintf(vvp_out, " %%cvt/sr %u;\n", ix);
break;
default:
fprintf(stderr, "XXXX ivl_expr_value == %d\n",
ivl_expr_value(expr));
assert(0);
}
}
char *process_octal_codes(const char *in, unsigned width)
{
unsigned idx = 0;
unsigned ridx = 0;
unsigned str_len = strlen(in);
char *out = (char *)malloc(str_len+1);
/* If we do not have any octal codes just return the input. */
if (width/8 == str_len) {
strcpy(out, in);
return out;
}
while (ridx < str_len) {
/* An octal constant always has three digits. */
if (in[ridx] == '\\') {
out[idx] = (in[ridx+1]-'0')*64 + (in[ridx+2]-'0')*8 +
(in[ridx+3]-'0');
idx += 1;
ridx += 4;
} else {
out[idx] = in[ridx];
idx += 1;
ridx += 1;
}
}
out[idx] = '\0';
return out;
}