iverilog/libveriuser/veriusertfs.c

470 lines
12 KiB
C

/*
* Copyright (c) 2002-2020 Michael Ruff (mruff at chiaro.com)
* Michael Runyan (mrunyan at chiaro.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
/*
* Contains the routines required to implement veriusertfs routines
* via VPI. This is extremely ugly, so don't look after eating dinner.
*/
# include <string.h>
# include <stdlib.h>
# include <assert.h>
# include <math.h>
# include "config.h"
# include "priv.h"
# include "vpi_user.h"
# include "veriuser.h"
# include "ivl_alloc.h"
/*
* Data to be passed to the callback function via the VPI callback
* user data pointer.
*/
typedef struct t_pli_data {
p_tfcell tf; /* pointer to veriusertfs cell */
vpiHandle call_handle; /* handle returned by vpiSysTfCall */
int paramvc; /* parameter number for misctf */
} s_pli_data, *p_pli_data;
static PLI_INT32 compiletf(ICARUS_VPI_CONST PLI_BYTE8 *);
static PLI_INT32 calltf(ICARUS_VPI_CONST PLI_BYTE8 *);
static PLI_INT32 sizetf(ICARUS_VPI_CONST PLI_BYTE8 *);
static PLI_INT32 callback(p_cb_data);
/*
* Keep a pointer to the user data so that it can be freed when the
* simulation is finished.
*/
static p_pli_data* udata_store = 0;
static unsigned udata_count = 0;
static p_pli_data new_pli_data(p_tfcell tf, vpiHandle call_handle, int paramvc)
{
p_pli_data data = calloc(1, sizeof(s_pli_data));
data->tf = tf;
data->call_handle = call_handle;
data->paramvc = paramvc;
udata_count += 1;
udata_store = (p_pli_data*)realloc(udata_store,
udata_count*sizeof(p_pli_data*));
udata_store[udata_count-1] = data;
return data;
}
static PLI_INT32 sys_end_of_simulation(p_cb_data cb_data)
{
unsigned idx;
(void)cb_data; /* Parameter is not used. */
for (idx = 0; idx < udata_count; idx += 1) {
free(udata_store[idx]);
}
free(udata_store);
udata_store = 0;
udata_count = 0;
return 0;
}
/*
* Register veriusertfs routines/wrappers. Iterate over the tfcell
* array, registering each function.
*/
void veriusertfs_register_table(p_tfcell vtable)
{
static int need_EOS_cb = 1;
const char*path;
p_tfcell tf;
s_vpi_systf_data tf_data;
if (!pli_trace && (path = getenv("PLI_TRACE"))) {
static char trace_buf[1024];
if (strcmp(path,"-") == 0)
pli_trace = stdout;
else {
pli_trace = fopen(path, "w");
if (!pli_trace) {
perror(path);
exit(1);
}
}
setvbuf(pli_trace, trace_buf, _IOLBF, sizeof(trace_buf));
}
for (tf = vtable; tf; tf++) {
/* last element */
if (tf->type == 0) break;
/* force forwref true */
if (!tf->forwref) {
vpi_printf("veriusertfs: %s, forcing forwref = true\n",
tf->tfname);
}
if (need_EOS_cb) {
s_cb_data cb_data;
cb_data.reason = cbEndOfSimulation;
cb_data.time = 0;
cb_data.cb_rtn = sys_end_of_simulation;
cb_data.user_data = "system";
vpi_register_cb(&cb_data);
need_EOS_cb = 0;
}
/* Build a VPI system task/function structure, and point
it to the pli_data that represents this
function. Supply wrapper functions for the system
task actions. */
memset(&tf_data, 0, sizeof(s_vpi_systf_data));
switch (tf->type) {
case usertask:
tf_data.type = vpiSysTask;
break;
case userfunction:
tf_data.sysfunctype = vpiIntFunc;
tf_data.type = vpiSysFunc;
break;
case userrealfunction:
tf_data.sysfunctype = vpiRealFunc;
tf_data.type = vpiSysFunc;
break;
default:
vpi_printf("veriusertfs: %s, unsupported type %d\n",
tf->tfname, tf->type);
continue;
}
tf_data.tfname = tf->tfname;
tf_data.compiletf = compiletf;
tf_data.calltf = calltf;
tf_data.sizetf = sizetf;
tf_data.user_data = (PLI_BYTE8*)tf;
if (pli_trace) {
fprintf(pli_trace, "Registering system %s:\n",
tf->type == usertask ? "task" : "function");
fprintf(pli_trace, " tfname : %s\n", tf->tfname);
if (tf->data)
fprintf(pli_trace, " data : %d\n", tf->data);
if (tf->checktf)
fprintf(pli_trace, " checktf: %p\n", tf->checktf);
if (tf->sizetf)
fprintf(pli_trace, " sizetf : %p\n", tf->sizetf);
if (tf->calltf)
fprintf(pli_trace, " calltf : %p\n", tf->calltf);
if (tf->misctf)
fprintf(pli_trace, " misctf : %p\n", tf->misctf);
}
/* register */
vpi_register_systf(&tf_data);
}
return;
}
/*
* This function calls the veriusertfs checktf and sets up all the
* callbacks misctf requires.
*/
static PLI_INT32 compiletf(ICARUS_VPI_CONST PLI_BYTE8*data)
{
p_tfcell tf;
p_pli_data pli;
s_cb_data cb_data;
vpiHandle arg_i, arg_h;
int rtn = 0;
/* cast back from opaque */
tf = (p_tfcell)data;
/* get call handle */
cur_instance = vpi_handle(vpiSysTfCall, NULL);
/* build callback user data for this instance */
pli = new_pli_data(tf, cur_instance, 0);
/* Attach the pli_data structure to the VPI handle of the
system task. This is how I manage the map from vpiHandle to
PLI1 user data. We do it here (instead of during register)
because this is the first that I have both the vpiHandle
and the user data. */
vpi_put_userdata(cur_instance, pli);
/* default cb_data */
memset(&cb_data, 0, sizeof(s_cb_data));
cb_data.cb_rtn = callback;
cb_data.user_data = (PLI_BYTE8*)pli;
/* register EOS misctf callback */
cb_data.reason = cbEndOfSimulation;
vpi_register_cb(&cb_data);
/* If there is a misctf function, then create a value change
callback for all the arguments. In the tf_* API, misctf
functions get value change callbacks, controlled by the
tf_asyncon and tf_asyncoff functions. */
if (tf->misctf && ((arg_i = vpi_iterate(vpiArgument, cur_instance)) != NULL)) {
int paramvc = 1;
cb_data.reason = cbValueChange;
while ((arg_h = vpi_scan(arg_i)) != NULL) {
/* replicate user_data for each instance */
p_pli_data dp = new_pli_data(tf, cur_instance, paramvc++);
cb_data.user_data = (PLI_BYTE8*)dp;
cb_data.obj = arg_h;
vpi_register_cb(&cb_data);
}
}
/*
* Since we are in compiletf, checktf and misctf need to
* be executed. Check runs first to match other simulators.
*/
if (tf->checktf) {
if (pli_trace) {
fprintf(pli_trace, "Call %s->checktf(reason_checktf)\n",
tf->tfname);
}
rtn = tf->checktf(tf->data, reason_checktf);
}
if (tf->misctf) {
if (pli_trace) {
fprintf(pli_trace, "Call %s->misctf"
"(user_data=%d, reason=%d, paramvc=%d)\n",
tf->tfname, tf->data, reason_endofcompile, 0);
}
tf->misctf(tf->data, reason_endofcompile, 0);
}
cur_instance = 0;
return rtn;
}
/*
* This function is the wrapper for the veriusertfs calltf routine.
*/
static PLI_INT32 calltf(ICARUS_VPI_CONST PLI_BYTE8*data)
{
int rc = 0;
p_tfcell tf;
/* cast back from opaque */
tf = (p_tfcell)data;
/* get call handle */
cur_instance = vpi_handle(vpiSysTfCall, NULL);
/* execute calltf */
if (tf->calltf) {
if (pli_trace) {
fprintf(pli_trace, "Call %s->calltf(%d, %d)\n",
tf->tfname, tf->data, reason_calltf);
}
rc = tf->calltf(tf->data, reason_calltf);
}
cur_instance = 0;
return rc;
}
/*
* This function is the wrapper for the veriusertfs sizetf routine.
*/
static PLI_INT32 sizetf(ICARUS_VPI_CONST PLI_BYTE8*data)
{
int rc = 32;
p_tfcell tf;
/* cast back from opaque */
tf = (p_tfcell)data;
/* get call handle */
cur_instance = vpi_handle(vpiSysTfCall, NULL);
/* execute sizetf */
if (tf->sizetf) {
if (pli_trace) {
fprintf(pli_trace, "Call %s->sizetf(%d, %d)\n",
tf->tfname, tf->data, reason_sizetf);
}
rc = tf->sizetf(tf->data, reason_sizetf);
}
cur_instance = 0;
return rc;
}
/*
* This function is the wrapper for all the misctf callbacks
*/
extern int async_misctf_enable;
static PLI_INT32 callback(p_cb_data data)
{
p_pli_data pli;
p_tfcell tf;
int reason;
int paramvc = 0;
PLI_INT32 rc;
/* not enabled */
if (data->reason == cbValueChange && !async_misctf_enable)
return 0;
/* cast back from opaque */
pli = (p_pli_data)data->user_data;
tf = pli->tf;
cur_instance = pli->call_handle;
switch (data->reason) {
case cbValueChange:
reason = reason_paramvc;
paramvc = pli->paramvc;
break;
case cbEndOfSimulation:
reason = reason_finish;
break;
case cbReadWriteSynch:
reason = reason_synch;
break;
case cbReadOnlySynch:
reason = reason_rosynch;
break;
case cbAfterDelay:
reason = reason_reactivate;
break;
default:
reason = -1;
assert(0);
}
if (pli_trace) {
fprintf(pli_trace, "Call %s->misctf"
"(user_data=%d, reason=%d, paramvc=%d)\n",
tf->tfname, tf->data, reason, paramvc);
}
/* execute misctf */
rc = (tf->misctf) ? tf->misctf(tf->data, reason, paramvc) : 0;
cur_instance = 0;
return rc;
}
PLI_INT32 tf_isynchronize(void*obj)
{
vpiHandle sys = (vpiHandle)obj;
p_pli_data pli = vpi_get_userdata(sys);
s_cb_data cb;
s_vpi_time ti = {vpiSimTime, 0, 0, 0.0};
cb.reason = cbReadWriteSynch;
cb.cb_rtn = callback;
cb.obj = sys;
cb.time = &ti;
cb.user_data = (PLI_BYTE8*)pli;
vpi_register_cb(&cb);
if (pli_trace)
fprintf(pli_trace, "tf_isynchronize(%p) --> %d\n", obj, 0);
return 0;
}
PLI_INT32 tf_synchronize(void)
{
return tf_isynchronize(tf_getinstance());
}
PLI_INT32 tf_irosynchronize(void*obj)
{
vpiHandle sys = (vpiHandle)obj;
p_pli_data pli = vpi_get_userdata(sys);
s_cb_data cb;
s_vpi_time ti = {vpiSimTime, 0, 0, 0.0};
cb.reason = cbReadOnlySynch;
cb.cb_rtn = callback;
cb.obj = sys;
cb.time = &ti;
cb.user_data = (PLI_BYTE8*)pli;
vpi_register_cb(&cb);
if (pli_trace)
fprintf(pli_trace, "tf_irosynchronize(%p) --> %d\n", obj, 0);
return 0;
}
PLI_INT32 tf_rosynchronize(void)
{
return tf_irosynchronize(tf_getinstance());
}
PLI_INT32 tf_isetrealdelay(double dly, void*obj)
{
vpiHandle sys = (vpiHandle)obj;
p_pli_data pli = vpi_get_userdata(sys);
s_cb_data cb;
s_vpi_time ti = {vpiSimTime, 0, 0, 0.0};
/* Scale delay to SimTime */
ivl_u64_t delay = ((dly
/ pow(10, tf_gettimeunit() - tf_gettimeprecision()))
+ 0.5);
ti.high = delay >> 32 & 0xffffffff;
ti.low = delay & 0xffffffff;
cb.reason = cbAfterDelay;
cb.cb_rtn = callback;
cb.obj = sys;
cb.time = &ti;
cb.user_data = (PLI_BYTE8*)pli;
vpi_register_cb(&cb);
if (pli_trace)
fprintf(pli_trace, "tf_isetrealdelay(%f, %p) --> %d\n",
dly, obj, 0);
return 0;
}
PLI_INT32 tf_setrealdelay(double dly)
{
return tf_isetrealdelay(dly, tf_getinstance());
}