2501 lines
59 KiB
C++
2501 lines
59 KiB
C++
/*
|
|
* Copyright (c) 2004-2005 Stephen Williams (steve@icarus.com)
|
|
*
|
|
* This source code is free software; you can redistribute it
|
|
* and/or modify it in source code form under the terms of the GNU
|
|
* General Public License as published by the Free Software
|
|
* Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
|
|
*/
|
|
#ident "$Id: vvp_net.cc,v 1.64 2007/06/12 02:36:58 steve Exp $"
|
|
|
|
# include "config.h"
|
|
# include "vvp_net.h"
|
|
# include "schedule.h"
|
|
# include <stdio.h>
|
|
# include <iostream>
|
|
# include <typeinfo>
|
|
# include <limits.h>
|
|
# include <math.h>
|
|
# include <assert.h>
|
|
|
|
/* *** BIT operations *** */
|
|
vvp_bit4_t add_with_carry(vvp_bit4_t a, vvp_bit4_t b, vvp_bit4_t&c)
|
|
{
|
|
if (bit4_is_xz(a) || bit4_is_xz(b) || bit4_is_xz(c)) {
|
|
c = BIT4_X;
|
|
return BIT4_X;
|
|
}
|
|
|
|
// NOTE: This relies on the facts that XZ values have been
|
|
// weeded out, and that BIT4_1 is 1 and BIT4_0 is 0.
|
|
int sum = (int)a + (int)b + (int)c;
|
|
|
|
switch (sum) {
|
|
case 0:
|
|
return BIT4_0;
|
|
case 1:
|
|
c = BIT4_0;
|
|
return BIT4_1;
|
|
case 2:
|
|
c = BIT4_1;
|
|
return BIT4_0;
|
|
case 3:
|
|
c = BIT4_1;
|
|
return BIT4_1;
|
|
default:
|
|
assert(0);
|
|
}
|
|
}
|
|
|
|
vvp_bit4_t operator & (vvp_bit4_t a, vvp_bit4_t b)
|
|
{
|
|
if (a == BIT4_0)
|
|
return BIT4_0;
|
|
if (b == BIT4_0)
|
|
return BIT4_0;
|
|
if (bit4_is_xz(a))
|
|
return BIT4_X;
|
|
if (bit4_is_xz(b))
|
|
return BIT4_X;
|
|
return BIT4_1;
|
|
}
|
|
|
|
vvp_bit4_t operator | (vvp_bit4_t a, vvp_bit4_t b)
|
|
{
|
|
if (a == BIT4_1)
|
|
return BIT4_1;
|
|
if (b == BIT4_1)
|
|
return BIT4_1;
|
|
if (bit4_is_xz(a))
|
|
return BIT4_X;
|
|
if (bit4_is_xz(b))
|
|
return BIT4_X;
|
|
return BIT4_0;
|
|
}
|
|
|
|
vvp_bit4_t operator ^ (vvp_bit4_t a, vvp_bit4_t b)
|
|
{
|
|
if (bit4_is_xz(a))
|
|
return BIT4_X;
|
|
if (bit4_is_xz(b))
|
|
return BIT4_X;
|
|
if (a == BIT4_0)
|
|
return b;
|
|
if (b == BIT4_0)
|
|
return a;
|
|
return BIT4_0;
|
|
}
|
|
|
|
vvp_bit4_t operator ~ (vvp_bit4_t a)
|
|
{
|
|
switch (a) {
|
|
case BIT4_0:
|
|
return BIT4_1;
|
|
case BIT4_1:
|
|
return BIT4_0;
|
|
default:
|
|
return BIT4_X;
|
|
}
|
|
}
|
|
|
|
ostream& operator<<(ostream&out, vvp_bit4_t bit)
|
|
{
|
|
switch (bit) {
|
|
case BIT4_0:
|
|
out << "0";
|
|
break;
|
|
case BIT4_1:
|
|
out << "1";
|
|
break;
|
|
case BIT4_X:
|
|
out << "X";
|
|
break;
|
|
case BIT4_Z:
|
|
out << "Z";
|
|
break;
|
|
default:
|
|
out << "?";
|
|
break;
|
|
}
|
|
return out;
|
|
}
|
|
|
|
typedef unsigned short edge_t;
|
|
|
|
inline edge_t VVP_EDGE(vvp_bit4_t from, vvp_bit4_t to)
|
|
{
|
|
return 1 << ((from << 2) | to);
|
|
}
|
|
|
|
const edge_t vvp_edge_posedge
|
|
= VVP_EDGE(BIT4_0,BIT4_1)
|
|
| VVP_EDGE(BIT4_0,BIT4_X)
|
|
| VVP_EDGE(BIT4_0,BIT4_Z)
|
|
| VVP_EDGE(BIT4_X,BIT4_1)
|
|
| VVP_EDGE(BIT4_Z,BIT4_1)
|
|
;
|
|
|
|
const edge_t vvp_edge_negedge
|
|
= VVP_EDGE(BIT4_1,BIT4_0)
|
|
| VVP_EDGE(BIT4_1,BIT4_X)
|
|
| VVP_EDGE(BIT4_1,BIT4_Z)
|
|
| VVP_EDGE(BIT4_X,BIT4_0)
|
|
| VVP_EDGE(BIT4_Z,BIT4_0)
|
|
;
|
|
|
|
int edge(vvp_bit4_t from, vvp_bit4_t to)
|
|
{
|
|
edge_t mask = VVP_EDGE(from, to);
|
|
if (mask & vvp_edge_posedge)
|
|
return 1;
|
|
if (mask & vvp_edge_negedge)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
void vvp_send_vec8(vvp_net_ptr_t ptr, vvp_vector8_t val)
|
|
{
|
|
while (struct vvp_net_t*cur = ptr.ptr()) {
|
|
vvp_net_ptr_t next = cur->port[ptr.port()];
|
|
|
|
if (cur->fun)
|
|
cur->fun->recv_vec8(ptr, val);
|
|
|
|
ptr = next;
|
|
}
|
|
}
|
|
|
|
void vvp_send_real(vvp_net_ptr_t ptr, double val)
|
|
{
|
|
while (struct vvp_net_t*cur = ptr.ptr()) {
|
|
vvp_net_ptr_t next = cur->port[ptr.port()];
|
|
|
|
if (cur->fun)
|
|
cur->fun->recv_real(ptr, val);
|
|
|
|
ptr = next;
|
|
}
|
|
}
|
|
|
|
void vvp_send_long(vvp_net_ptr_t ptr, long val)
|
|
{
|
|
while (struct vvp_net_t*cur = ptr.ptr()) {
|
|
vvp_net_ptr_t next = cur->port[ptr.port()];
|
|
|
|
if (cur->fun)
|
|
cur->fun->recv_long(ptr, val);
|
|
|
|
ptr = next;
|
|
}
|
|
}
|
|
|
|
void vvp_vector4_t::copy_from_(const vvp_vector4_t&that)
|
|
{
|
|
size_ = that.size_;
|
|
if (size_ > BITS_PER_WORD) {
|
|
unsigned words = (size_+BITS_PER_WORD-1) / BITS_PER_WORD;
|
|
bits_ptr_ = new unsigned long[words];
|
|
|
|
for (unsigned idx = 0 ; idx < words ; idx += 1)
|
|
bits_ptr_[idx] = that.bits_ptr_[idx];
|
|
|
|
} else {
|
|
bits_val_ = that.bits_val_;
|
|
}
|
|
}
|
|
|
|
void vvp_vector4_t::allocate_words_(unsigned wid, unsigned long init)
|
|
{
|
|
if (size_ > BITS_PER_WORD) {
|
|
unsigned cnt = (size_ + BITS_PER_WORD - 1) / BITS_PER_WORD;
|
|
bits_ptr_ = new unsigned long[cnt];
|
|
for (unsigned idx = 0 ; idx < cnt ; idx += 1)
|
|
bits_ptr_[idx] = init;
|
|
|
|
} else {
|
|
bits_val_ = init;
|
|
}
|
|
}
|
|
|
|
vvp_vector4_t::vvp_vector4_t(const vvp_vector4_t&that,
|
|
unsigned adr, unsigned wid)
|
|
{
|
|
size_ = wid;
|
|
assert((adr + wid) <= that.size_);
|
|
|
|
allocate_words_(wid, WORD_X_BITS);
|
|
|
|
if (wid > BITS_PER_WORD) {
|
|
/* In this case, the subvector and the source vector are
|
|
long. Do the transfer reasonably efficiently. */
|
|
unsigned ptr = adr / BITS_PER_WORD;
|
|
unsigned off = adr % BITS_PER_WORD;
|
|
unsigned noff = BITS_PER_WORD - off;
|
|
unsigned long lmask = (1UL << 2UL*off) - 1UL;
|
|
unsigned trans = 0;
|
|
unsigned dst = 0;
|
|
while (trans < wid) {
|
|
// The low bits of the result.
|
|
bits_ptr_[dst] = (that.bits_ptr_[ptr] & ~lmask) >> 2UL*off;
|
|
trans += noff;
|
|
|
|
if (trans >= wid)
|
|
break;
|
|
|
|
ptr += 1;
|
|
|
|
// The high bits of the result. Skip this if the
|
|
// source and destination are perfectly aligned.
|
|
if (noff != BITS_PER_WORD) {
|
|
bits_ptr_[dst] |= (that.bits_ptr_[ptr]&lmask) << 2*noff;
|
|
trans += off;
|
|
}
|
|
|
|
dst += 1;
|
|
}
|
|
|
|
} else {
|
|
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
|
|
set_bit(idx, that.value(adr+idx));
|
|
}
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Change the size of the vvp_vector4_t vector to the new size. Copy
|
|
* the old values, as many as well fit, into the new vector.
|
|
*/
|
|
void vvp_vector4_t::resize(unsigned newsize)
|
|
{
|
|
if (size_ == newsize)
|
|
return;
|
|
|
|
unsigned cnt = (size_ + BITS_PER_WORD - 1) / BITS_PER_WORD;
|
|
|
|
if (newsize > BITS_PER_WORD) {
|
|
unsigned newcnt = (newsize + BITS_PER_WORD - 1) / BITS_PER_WORD;
|
|
unsigned long*newbits = new unsigned long[newcnt];
|
|
|
|
if (cnt > 1) {
|
|
unsigned trans = cnt;
|
|
if (trans > newcnt)
|
|
trans = newcnt;
|
|
|
|
for (unsigned idx = 0 ; idx < trans ; idx += 1)
|
|
newbits[idx] = bits_ptr_[idx];
|
|
|
|
delete[]bits_ptr_;
|
|
|
|
} else {
|
|
newbits[0] = bits_val_;
|
|
}
|
|
|
|
for (unsigned idx = cnt ; idx < newcnt ; idx += 1)
|
|
newbits[idx] = WORD_X_BITS;
|
|
|
|
size_ = newsize;
|
|
bits_ptr_ = newbits;
|
|
|
|
} else {
|
|
unsigned long newval;
|
|
if (cnt > 1) {
|
|
newval = bits_ptr_[0];
|
|
delete[]bits_ptr_;
|
|
bits_val_ = newval;
|
|
}
|
|
|
|
size_ = newsize;
|
|
}
|
|
}
|
|
|
|
|
|
unsigned long* vvp_vector4_t::subarray(unsigned adr, unsigned wid) const
|
|
{
|
|
const unsigned BIT2_PER_WORD = 8*sizeof(unsigned long);
|
|
unsigned awid = (wid + BIT2_PER_WORD - 1) / (BIT2_PER_WORD);
|
|
unsigned long*val = new unsigned long[awid];
|
|
|
|
for (unsigned idx = 0 ; idx < awid ; idx += 1)
|
|
val[idx] = 0;
|
|
|
|
if (size_ <= BITS_PER_WORD) {
|
|
/* Handle the special case that the array is small. The
|
|
entire value of the vector4 is within the bits_val_
|
|
so we know that the result is a single word, the
|
|
source is a single word, and we just have to loop
|
|
through that word. */
|
|
unsigned long tmp = bits_val_ >> 2UL*adr;
|
|
tmp &= (1UL << 2*wid) - 1;
|
|
if (tmp & WORD_X_BITS)
|
|
goto x_out;
|
|
|
|
unsigned long mask1 = 1;
|
|
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
|
|
if (tmp & 1) val[0] |= mask1;
|
|
mask1 <<= 1UL;
|
|
tmp >>= 2UL;
|
|
}
|
|
return val;
|
|
|
|
} else {
|
|
|
|
/* Get the first word we are scanning. We may in fact be
|
|
somewhere in the middle of that word. */
|
|
unsigned long tmp = bits_ptr_[adr/BITS_PER_WORD];
|
|
tmp >>= 2UL * (adr%BITS_PER_WORD);
|
|
|
|
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
|
|
/* Starting a new word? */
|
|
if (adr%BITS_PER_WORD == 0)
|
|
tmp = bits_ptr_[adr/BITS_PER_WORD];
|
|
|
|
if (tmp&2)
|
|
goto x_out;
|
|
if (tmp&1)
|
|
val[idx/BIT2_PER_WORD] |= 1UL << (idx % BIT2_PER_WORD);
|
|
|
|
adr += 1;
|
|
tmp >>= 2UL;
|
|
}
|
|
}
|
|
|
|
return val;
|
|
|
|
x_out:
|
|
delete[]val;
|
|
return 0;
|
|
}
|
|
|
|
/*
|
|
* Set the bits of that vector, which must be a subset of this vector,
|
|
* into the addressed part of this vector. Use bit masking and word
|
|
* copies to go as fast as reasonably possible.
|
|
*/
|
|
void vvp_vector4_t::set_vec(unsigned adr, const vvp_vector4_t&that)
|
|
{
|
|
assert(adr+that.size_ <= size_);
|
|
|
|
if (size_ <= BITS_PER_WORD) {
|
|
|
|
/* The destination vector (me!) is within a bits_val_
|
|
word, so the subvector is certainly within a
|
|
bits_val_ word. Therefore, the entire operation is a
|
|
matter of writing the bits of that into the addressed
|
|
bits of this. The mask below is calculated to be 1
|
|
for all the bits that are to come from that. Do the
|
|
job by some shifting, masking and OR. */
|
|
|
|
unsigned long lmask = (1UL << 2UL*adr) - 1;
|
|
unsigned long hmask;
|
|
unsigned long hshift = adr+that.size_;
|
|
if (hshift >= BITS_PER_WORD)
|
|
hmask = -1UL;
|
|
else
|
|
hmask = (1UL << 2UL*(adr+that.size_)) - 1;
|
|
unsigned long mask = hmask & ~lmask;
|
|
|
|
bits_val_ =
|
|
(bits_val_ & ~mask)
|
|
| ((that.bits_val_<<2UL*adr) & mask);
|
|
|
|
} else if (that.size_ <= BITS_PER_WORD) {
|
|
|
|
/* This vector is more than a word, but that vector is
|
|
still small. Write into the destination, possibly
|
|
spanning two destination works, depending on whether
|
|
the source vector spans a word transition. */
|
|
unsigned long dptr = adr / BITS_PER_WORD;
|
|
unsigned long doff = adr % BITS_PER_WORD;
|
|
|
|
unsigned long lmask = (1UL << 2UL*doff) - 1;
|
|
unsigned long hshift = doff+that.size_;
|
|
unsigned long hmask;
|
|
if (hshift >= BITS_PER_WORD)
|
|
hmask = -1UL;
|
|
else
|
|
hmask = (1UL << 2*hshift) - 1UL;
|
|
|
|
unsigned long mask = hmask & ~lmask;
|
|
|
|
bits_ptr_[dptr] =
|
|
(bits_ptr_[dptr] & ~mask)
|
|
| ((that.bits_val_ << 2UL*doff) & mask);
|
|
|
|
if ((doff + that.size_) > BITS_PER_WORD) {
|
|
unsigned tail = doff + that.size_ - BITS_PER_WORD;
|
|
mask = (1UL << 2UL*tail) - 1;
|
|
|
|
dptr += 1;
|
|
bits_ptr_[dptr] =
|
|
(bits_ptr_[dptr] & ~mask)
|
|
| ((that.bits_val_ >> 2UL*(that.size_-tail)) & mask);
|
|
}
|
|
|
|
} else if (adr%BITS_PER_WORD == 0) {
|
|
|
|
/* In this case, both vectors are long, but the
|
|
destination is neatly aligned. That means all but the
|
|
last word can be simply copied with no masking. */
|
|
|
|
unsigned remain = that.size_;
|
|
unsigned sptr = 0;
|
|
unsigned dptr = adr / BITS_PER_WORD;
|
|
while (remain >= BITS_PER_WORD) {
|
|
bits_ptr_[dptr++] = that.bits_ptr_[sptr++];
|
|
remain -= BITS_PER_WORD;
|
|
}
|
|
|
|
if (remain > 0) {
|
|
unsigned long mask = (1UL << 2UL*remain) - 1;
|
|
bits_ptr_[dptr] =
|
|
(bits_ptr_[dptr] & ~mask)
|
|
| (that.bits_ptr_[sptr] & mask);
|
|
}
|
|
|
|
} else {
|
|
|
|
/* We know that there are two long vectors, and we know
|
|
that the destination is definitely NOT aligned. */
|
|
|
|
unsigned remain = that.size_;
|
|
unsigned sptr = 0;
|
|
unsigned dptr = adr / BITS_PER_WORD;
|
|
unsigned doff = adr % BITS_PER_WORD;
|
|
unsigned long lmask = (1UL << 2UL*doff) - 1;
|
|
unsigned ndoff = BITS_PER_WORD - doff;
|
|
while (remain >= BITS_PER_WORD) {
|
|
bits_ptr_[dptr] =
|
|
(bits_ptr_[dptr] & lmask)
|
|
| ((that.bits_ptr_[sptr] << 2UL*doff) & ~lmask);
|
|
dptr += 1;
|
|
|
|
bits_ptr_[dptr] =
|
|
(bits_ptr_[dptr] & ~lmask)
|
|
| ((that.bits_ptr_[sptr] >> 2UL*ndoff) & lmask);
|
|
|
|
remain -= BITS_PER_WORD;
|
|
sptr += 1;
|
|
}
|
|
|
|
unsigned long hshift = doff+remain;
|
|
unsigned long hmask;
|
|
if (hshift >= BITS_PER_WORD)
|
|
hmask = -1UL;
|
|
else
|
|
hmask = (1UL << 2UL*(doff+remain)) - 1;
|
|
|
|
unsigned long mask = hmask & ~lmask;
|
|
|
|
bits_ptr_[dptr] =
|
|
(bits_ptr_[dptr] & ~mask)
|
|
| ((that.bits_ptr_[sptr] << 2UL*doff) & mask);
|
|
|
|
if ((doff + remain) > BITS_PER_WORD) {
|
|
unsigned tail = doff + remain - BITS_PER_WORD;
|
|
if (tail >= BITS_PER_WORD)
|
|
mask = -1UL;
|
|
else
|
|
mask = (1UL << 2UL*tail) - 1;
|
|
|
|
dptr += 1;
|
|
bits_ptr_[dptr] =
|
|
(bits_ptr_[dptr] & ~mask)
|
|
| ((that.bits_ptr_[sptr] >> 2UL*(remain-tail))&mask);
|
|
}
|
|
|
|
|
|
}
|
|
}
|
|
|
|
bool vvp_vector4_t::eeq(const vvp_vector4_t&that) const
|
|
{
|
|
if (size_ != that.size_)
|
|
return false;
|
|
|
|
if (size_ < BITS_PER_WORD) {
|
|
unsigned long mask = (1UL << 2UL * size_) - 1;
|
|
return (bits_val_&mask) == (that.bits_val_&mask);
|
|
}
|
|
|
|
if (size_ == BITS_PER_WORD) {
|
|
return bits_val_ == that.bits_val_;
|
|
}
|
|
|
|
unsigned words = size_ / BITS_PER_WORD;
|
|
for (unsigned idx = 0 ; idx < words ; idx += 1) {
|
|
if (bits_ptr_[idx] != that.bits_ptr_[idx])
|
|
return false;
|
|
}
|
|
|
|
unsigned long mask = size_%BITS_PER_WORD;
|
|
if (mask > 0) {
|
|
mask = (1UL << 2UL*mask) - 1;
|
|
return (bits_ptr_[words]&mask) == (that.bits_ptr_[words]&mask);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
|
|
void vvp_vector4_t::change_z2x()
|
|
{
|
|
assert(BIT4_Z == 3 && BIT4_X == 2);
|
|
# define Z2X(val) do{ (val) = (val) & ~(((val)&WORD_X_BITS) >> 1UL); }while(0)
|
|
|
|
if (size_ <= BITS_PER_WORD) {
|
|
Z2X(bits_val_);
|
|
} else {
|
|
unsigned words = (size_+BITS_PER_WORD-1) / BITS_PER_WORD;
|
|
for (unsigned idx = 0 ; idx < words ; idx += 1)
|
|
Z2X(bits_ptr_[idx]);
|
|
}
|
|
}
|
|
|
|
char* vvp_vector4_t::as_string(char*buf, size_t buf_len)
|
|
{
|
|
char*res = buf;
|
|
*buf++ = 'C';
|
|
*buf++ = '4';
|
|
*buf++ = '<';
|
|
buf_len -= 3;
|
|
|
|
for (unsigned idx = 0 ; idx < size() && buf_len >= 2 ; idx += 1) {
|
|
switch (value(size()-idx-1)) {
|
|
case BIT4_0:
|
|
*buf++ = '0';
|
|
break;
|
|
case BIT4_1:
|
|
*buf++ = '1';
|
|
break;
|
|
case BIT4_X:
|
|
*buf++ = 'x';
|
|
break;
|
|
case BIT4_Z:
|
|
*buf++ = 'z';
|
|
}
|
|
buf_len -= 1;
|
|
}
|
|
|
|
*buf++ = '>';
|
|
*buf++ = 0;
|
|
return res;
|
|
}
|
|
|
|
ostream& operator<< (ostream&out, const vvp_vector4_t&that)
|
|
{
|
|
out << that.size() << "'b";
|
|
for (unsigned idx = 0 ; idx < that.size() ; idx += 1)
|
|
out << that.value(that.size()-idx-1);
|
|
return out;
|
|
}
|
|
|
|
bool vector4_to_value(const vvp_vector4_t&vec, unsigned long&val)
|
|
{
|
|
unsigned long res = 0;
|
|
unsigned long msk = 1;
|
|
|
|
for (unsigned idx = 0 ; idx < vec.size() ; idx += 1) {
|
|
switch (vec.value(idx)) {
|
|
case BIT4_0:
|
|
break;
|
|
case BIT4_1:
|
|
res |= msk;
|
|
break;
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
msk <<= 1UL;
|
|
}
|
|
|
|
val = res;
|
|
return true;
|
|
}
|
|
|
|
bool vector4_to_value(const vvp_vector4_t&vec, double&val, bool signed_flag)
|
|
{
|
|
|
|
if (vec.size() == 0) {
|
|
val = 0.0;
|
|
return true;
|
|
}
|
|
|
|
bool flag = true;
|
|
|
|
if (vec.value(vec.size()-1) != BIT4_1) {
|
|
signed_flag = false;
|
|
}
|
|
|
|
double res = 0.0;
|
|
if (signed_flag) {
|
|
vvp_bit4_t carry = BIT4_1;
|
|
for (unsigned idx = 0 ; idx < vec.size() ; idx += 1) {
|
|
vvp_bit4_t a = ~vec.value(idx);
|
|
vvp_bit4_t x = add_with_carry(a, BIT4_0, carry);
|
|
switch (x) {
|
|
case BIT4_0:
|
|
break;
|
|
case BIT4_1:
|
|
res += pow(2.0, (int)idx);
|
|
break;
|
|
default:
|
|
flag = false;
|
|
}
|
|
}
|
|
res *= -1.0;
|
|
} else {
|
|
for (unsigned idx = 0 ; idx < vec.size() ; idx += 1) {
|
|
switch (vec.value(idx)) {
|
|
case BIT4_0:
|
|
break;
|
|
case BIT4_1:
|
|
res += pow(2.0, (int)idx);
|
|
break;
|
|
default:
|
|
flag = false;
|
|
}
|
|
}
|
|
}
|
|
val = res;
|
|
return flag;
|
|
}
|
|
|
|
template <class T> T coerce_to_width(const T&that, unsigned width)
|
|
{
|
|
if (that.size() == width)
|
|
return that;
|
|
|
|
assert(that.size() > width);
|
|
T res (width);
|
|
for (unsigned idx = 0 ; idx < width ; idx += 1)
|
|
res.set_bit(idx, that.value(idx));
|
|
|
|
return res;
|
|
}
|
|
|
|
vvp_vector2_t::vvp_vector2_t()
|
|
{
|
|
vec_ = 0;
|
|
wid_ = 0;
|
|
}
|
|
|
|
vvp_vector2_t::vvp_vector2_t(unsigned long v, unsigned wid)
|
|
{
|
|
wid_ = wid;
|
|
const unsigned bits_per_word = 8 * sizeof(vec_[0]);
|
|
const unsigned words = (wid_ + bits_per_word-1) / bits_per_word;
|
|
|
|
vec_ = new unsigned long[words];
|
|
vec_[0] = v;
|
|
for (unsigned idx = 1 ; idx < words ; idx += 1)
|
|
vec_[idx] = 0;
|
|
}
|
|
|
|
vvp_vector2_t::vvp_vector2_t(vvp_vector2_t::fill_t fill, unsigned wid)
|
|
{
|
|
wid_ = wid;
|
|
const unsigned bits_per_word = 8 * sizeof(vec_[0]);
|
|
const unsigned words = (wid_ + bits_per_word-1) / bits_per_word;
|
|
|
|
vec_ = new unsigned long[words];
|
|
for (unsigned idx = 0 ; idx < words ; idx += 1)
|
|
vec_[idx] = fill? -1 : 0;
|
|
}
|
|
|
|
vvp_vector2_t::vvp_vector2_t(const vvp_vector4_t&that)
|
|
{
|
|
wid_ = that.size();
|
|
const unsigned words = (that.size() + BITS_PER_WORD-1) / BITS_PER_WORD;
|
|
|
|
if (words == 0) {
|
|
vec_ = 0;
|
|
wid_ = 0;
|
|
return;
|
|
}
|
|
|
|
vec_ = new unsigned long[words];
|
|
for (unsigned idx = 0 ; idx < words ; idx += 1)
|
|
vec_[idx] = 0;
|
|
|
|
for (unsigned idx = 0 ; idx < that.size() ; idx += 1) {
|
|
unsigned addr = idx / BITS_PER_WORD;
|
|
unsigned shift = idx % BITS_PER_WORD;
|
|
|
|
switch (that.value(idx)) {
|
|
case BIT4_0:
|
|
break;
|
|
case BIT4_1:
|
|
vec_[addr] |= 1UL << shift;
|
|
break;
|
|
default:
|
|
delete[]vec_;
|
|
vec_ = 0;
|
|
wid_ = 0;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
|
|
void vvp_vector2_t::copy_from_that_(const vvp_vector2_t&that)
|
|
{
|
|
wid_ = that.wid_;
|
|
const unsigned words = (wid_ + BITS_PER_WORD-1) / BITS_PER_WORD;
|
|
|
|
if (words == 0) {
|
|
vec_ = 0;
|
|
wid_ = 0;
|
|
return;
|
|
}
|
|
|
|
vec_ = new unsigned long[words];
|
|
for (unsigned idx = 0 ; idx < words ; idx += 1)
|
|
vec_[idx] = that.vec_[idx];
|
|
}
|
|
|
|
vvp_vector2_t::vvp_vector2_t(const vvp_vector2_t&that)
|
|
{
|
|
copy_from_that_(that);
|
|
}
|
|
|
|
vvp_vector2_t::vvp_vector2_t(const vvp_vector2_t&that, unsigned newsize)
|
|
{
|
|
wid_ = newsize;
|
|
if (newsize == 0) {
|
|
vec_ = 0;
|
|
return;
|
|
}
|
|
|
|
const unsigned words = (wid_ + BITS_PER_WORD-1) / BITS_PER_WORD;
|
|
const unsigned twords = (that.wid_ + BITS_PER_WORD-1) / BITS_PER_WORD;
|
|
|
|
vec_ = new unsigned long[words];
|
|
for (unsigned idx = 0 ; idx < words ; idx += 1) {
|
|
if (idx < twords)
|
|
vec_[idx] = that.vec_[idx];
|
|
else
|
|
vec_[idx] = 0;
|
|
}
|
|
}
|
|
|
|
vvp_vector2_t& vvp_vector2_t::operator= (const vvp_vector2_t&that)
|
|
{
|
|
if (this == &that)
|
|
return *this;
|
|
|
|
if (vec_) {
|
|
delete[]vec_;
|
|
vec_ = 0;
|
|
}
|
|
|
|
copy_from_that_(that);
|
|
return *this;
|
|
}
|
|
|
|
vvp_vector2_t& vvp_vector2_t::operator <<= (unsigned int shift)
|
|
{
|
|
if (wid_ == 0)
|
|
return *this;
|
|
|
|
const unsigned words = (wid_ + BITS_PER_WORD-1) / BITS_PER_WORD;
|
|
|
|
// Number of words to shift
|
|
const unsigned wshift = shift / BITS_PER_WORD;
|
|
// bits to shift within each word.
|
|
const unsigned long oshift = shift % BITS_PER_WORD;
|
|
|
|
// If shifting the entire value away, then return zeros.
|
|
if (wshift >= words) {
|
|
for (unsigned idx = 0 ; idx < words ; idx += 1)
|
|
vec_[idx] = 0;
|
|
|
|
return *this;
|
|
}
|
|
|
|
// Do the word shift first.
|
|
if (wshift > 0) {
|
|
for (unsigned idx = 0 ; idx < words-wshift ; idx += 1) {
|
|
unsigned sel = words - idx - 1;
|
|
vec_[sel] = vec_[sel-wshift];
|
|
}
|
|
|
|
for (unsigned idx = 0 ; idx < wshift ; idx += 1)
|
|
vec_[idx] = 0;
|
|
}
|
|
|
|
// Do the fine shift.
|
|
if (oshift != 0) {
|
|
unsigned long pad = 0;
|
|
for (unsigned idx = 0 ; idx < words ; idx += 1) {
|
|
unsigned long next_pad = vec_[idx] >> (BITS_PER_WORD-oshift);
|
|
vec_[idx] = (vec_[idx] << oshift) | pad;
|
|
pad = next_pad;
|
|
}
|
|
|
|
// Cleanup the tail bits.
|
|
unsigned long mask = -1UL >> (BITS_PER_WORD - wid_%BITS_PER_WORD);
|
|
vec_[words-1] &= mask;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
vvp_vector2_t& vvp_vector2_t::operator >>= (unsigned shift)
|
|
{
|
|
if (wid_ == 0)
|
|
return *this;
|
|
|
|
const unsigned words = (wid_ + BITS_PER_WORD-1) / BITS_PER_WORD;
|
|
|
|
// Number of words to shift
|
|
const unsigned wshift = shift / BITS_PER_WORD;
|
|
// bits to shift within each word.
|
|
const unsigned long oshift = shift % BITS_PER_WORD;
|
|
|
|
// If shifting the entire value away, then return zeros.
|
|
if (wshift >= words) {
|
|
for (unsigned idx = 0 ; idx < words ; idx += 1)
|
|
vec_[idx] = 0;
|
|
|
|
return *this;
|
|
}
|
|
|
|
if (wshift > 0) {
|
|
for (unsigned idx = 0 ; idx < words-wshift ; idx += 1)
|
|
vec_[idx] = vec_[idx+wshift];
|
|
|
|
for (unsigned idx = words-wshift ; idx < words ; idx += 1)
|
|
vec_[idx] = 0;
|
|
}
|
|
|
|
if (oshift > 0) {
|
|
unsigned long pad = 0;
|
|
for (unsigned idx = words ; idx > 0 ; idx -= 1) {
|
|
unsigned long new_pad = vec_[idx-1] <<(BITS_PER_WORD-oshift);
|
|
vec_[idx-1] = pad | (vec_[idx-1] >> oshift);
|
|
pad = new_pad;
|
|
}
|
|
|
|
// Cleanup the tail bits.
|
|
unsigned long mask = -1UL >> (BITS_PER_WORD - wid_%BITS_PER_WORD);
|
|
vec_[words-1] &= mask;
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
static unsigned long add_carry(unsigned long a, unsigned long b,
|
|
unsigned long&carry)
|
|
{
|
|
unsigned long out = carry;
|
|
carry = 0;
|
|
|
|
if ((ULONG_MAX - out) < a)
|
|
carry += 1;
|
|
out += a;
|
|
|
|
if ((ULONG_MAX - out) < b)
|
|
carry += 1;
|
|
out += b;
|
|
|
|
return out;
|
|
}
|
|
|
|
vvp_vector2_t& vvp_vector2_t::operator += (const vvp_vector2_t&that)
|
|
{
|
|
assert(wid_ == that.wid_);
|
|
if (wid_ == 0)
|
|
return *this;
|
|
|
|
const unsigned words = (wid_ + BITS_PER_WORD-1) / BITS_PER_WORD;
|
|
|
|
unsigned long carry = 0;
|
|
for (unsigned idx = 0 ; idx < words ; idx += 1) {
|
|
vec_[idx] = add_carry(vec_[idx], that.vec_[idx], carry);
|
|
}
|
|
|
|
|
|
// Cleanup the tail bits.
|
|
unsigned long mask = -1UL >> (BITS_PER_WORD - wid_%BITS_PER_WORD);
|
|
vec_[words-1] &= mask;
|
|
|
|
return *this;
|
|
}
|
|
|
|
vvp_vector2_t& vvp_vector2_t::operator -= (const vvp_vector2_t&that)
|
|
{
|
|
assert(wid_ == that.wid_);
|
|
if (wid_ == 0)
|
|
return *this;
|
|
|
|
const unsigned words = (wid_ + BITS_PER_WORD-1) / BITS_PER_WORD;
|
|
|
|
unsigned long carry = 1;
|
|
for (unsigned idx = 0 ; idx < words ; idx += 1) {
|
|
vec_[idx] = add_carry(vec_[idx], ~that.vec_[idx], carry);
|
|
}
|
|
|
|
return *this;
|
|
}
|
|
|
|
vvp_vector2_t::~vvp_vector2_t()
|
|
{
|
|
if (vec_) delete[]vec_;
|
|
}
|
|
|
|
unsigned vvp_vector2_t::size() const
|
|
{
|
|
return wid_;
|
|
}
|
|
|
|
int vvp_vector2_t::value(unsigned idx) const
|
|
{
|
|
if (idx >= wid_)
|
|
return 0;
|
|
|
|
const unsigned bits_per_word = 8 * sizeof(vec_[0]);
|
|
unsigned addr = idx/bits_per_word;
|
|
unsigned mask = idx%bits_per_word;
|
|
|
|
if (vec_[addr] & (1UL<<mask))
|
|
return 1;
|
|
else
|
|
return 0;
|
|
}
|
|
|
|
void vvp_vector2_t::set_bit(unsigned idx, int bit)
|
|
{
|
|
assert(idx < wid_);
|
|
|
|
const unsigned bits_per_word = 8 * sizeof(vec_[0]);
|
|
unsigned addr = idx/bits_per_word;
|
|
unsigned long mask = idx%bits_per_word;
|
|
|
|
if (bit)
|
|
vec_[addr] |= 1UL << mask;
|
|
else
|
|
vec_[addr] &= ~(1UL << mask);
|
|
}
|
|
|
|
bool vvp_vector2_t::is_NaN() const
|
|
{
|
|
return wid_ == 0;
|
|
}
|
|
|
|
static void multiply_long(unsigned long a, unsigned long b,
|
|
unsigned long&low, unsigned long&high)
|
|
{
|
|
assert(sizeof(unsigned long) %2 == 0);
|
|
|
|
const unsigned long word_mask = (1UL << 4UL*sizeof(a)) - 1UL;
|
|
unsigned long tmpa;
|
|
unsigned long tmpb;
|
|
unsigned long res[4];
|
|
|
|
tmpa = a & word_mask;
|
|
tmpb = b & word_mask;
|
|
res[0] = tmpa * tmpb;
|
|
res[1] = res[0] >> 4UL*sizeof(unsigned long);
|
|
res[0] &= word_mask;
|
|
|
|
tmpa = (a >> 4UL*sizeof(unsigned long)) & word_mask;
|
|
tmpb = b & word_mask;
|
|
res[1] += tmpa * tmpb;
|
|
res[2] = res[1] >> 4UL*sizeof(unsigned long);
|
|
res[1] &= word_mask;
|
|
|
|
tmpa = a & word_mask;
|
|
tmpb = (b >> 4UL*sizeof(unsigned long)) & word_mask;
|
|
res[1] += tmpa * tmpb;
|
|
res[2] += res[1] >> 4UL*sizeof(unsigned long);
|
|
res[3] = res[2] >> 4UL*sizeof(unsigned long);
|
|
res[1] &= word_mask;
|
|
res[2] &= word_mask;
|
|
|
|
tmpa = (a >> 4UL*sizeof(unsigned long)) & word_mask;
|
|
tmpb = (b >> 4UL*sizeof(unsigned long)) & word_mask;
|
|
res[2] += tmpa * tmpb;
|
|
res[3] += res[2] >> 4UL*sizeof(unsigned long);
|
|
res[2] &= word_mask;
|
|
|
|
high = (res[3] << 4UL*sizeof(unsigned long)) | res[2];
|
|
low = (res[1] << 4UL*sizeof(unsigned long)) | res[0];
|
|
}
|
|
|
|
/*
|
|
* Multiplication of two vector2 vectors returns a product as wide as
|
|
* the sum of the widths of the input vectors.
|
|
*/
|
|
vvp_vector2_t operator * (const vvp_vector2_t&a, const vvp_vector2_t&b)
|
|
{
|
|
const unsigned bits_per_word = 8 * sizeof(a.vec_[0]);
|
|
vvp_vector2_t r (0, a.size() + b.size());
|
|
|
|
unsigned awords = (a.wid_ + bits_per_word - 1) / bits_per_word;
|
|
unsigned bwords = (b.wid_ + bits_per_word - 1) / bits_per_word;
|
|
unsigned rwords = (r.wid_ + bits_per_word - 1) / bits_per_word;
|
|
|
|
for (unsigned bdx = 0 ; bdx < bwords ; bdx += 1) {
|
|
unsigned long tmpb = b.vec_[bdx];
|
|
if (tmpb == 0)
|
|
continue;
|
|
|
|
for (unsigned adx = 0 ; adx < awords ; adx += 1) {
|
|
unsigned long tmpa = a.vec_[adx];
|
|
if (tmpa == 0)
|
|
continue;
|
|
|
|
unsigned long low, hig;
|
|
multiply_long(tmpa, tmpb, low, hig);
|
|
|
|
unsigned long carry = 0;
|
|
for (unsigned sdx = 0
|
|
; (adx+bdx+sdx) < rwords
|
|
; sdx += 1) {
|
|
|
|
r.vec_[adx+bdx+sdx] = add_carry(r.vec_[adx+bdx+sdx],
|
|
low, carry);
|
|
low = hig;
|
|
hig = 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
|
|
return r;
|
|
}
|
|
|
|
static void div_mod (vvp_vector2_t dividend, vvp_vector2_t divisor,
|
|
vvp_vector2_t"ient, vvp_vector2_t&remainder)
|
|
{
|
|
|
|
quotient = vvp_vector2_t(0, dividend.size());
|
|
|
|
if (dividend < divisor) {
|
|
remainder = dividend;
|
|
return;
|
|
}
|
|
|
|
vvp_vector2_t mask (1, dividend.size());
|
|
|
|
// Make the dividend 1 bit larger to prevent overflow of
|
|
// divtmp in startup.
|
|
dividend = vvp_vector2_t(dividend, dividend.size()+1);
|
|
vvp_vector2_t divtmp (divisor, dividend.size());
|
|
|
|
while (divtmp < dividend) {
|
|
divtmp <<= 1;
|
|
mask <<= 1;
|
|
}
|
|
|
|
while (dividend > divisor) {
|
|
if (divtmp <= dividend) {
|
|
dividend -= divtmp;
|
|
quotient += mask;
|
|
}
|
|
|
|
divtmp >>= 1;
|
|
mask >>= 1;
|
|
}
|
|
|
|
remainder = dividend;
|
|
}
|
|
|
|
vvp_vector2_t operator / (const vvp_vector2_t÷nd,
|
|
const vvp_vector2_t&divisor)
|
|
{
|
|
vvp_vector2_t quot, rem;
|
|
div_mod(dividend, divisor, quot, rem);
|
|
return quot;
|
|
}
|
|
|
|
vvp_vector2_t operator % (const vvp_vector2_t÷nd,
|
|
const vvp_vector2_t&divisor)
|
|
{
|
|
vvp_vector2_t quot, rem;
|
|
div_mod(dividend, divisor, quot, rem);
|
|
return rem;
|
|
}
|
|
|
|
bool operator > (const vvp_vector2_t&a, const vvp_vector2_t&b)
|
|
{
|
|
const unsigned awords = (a.wid_ + vvp_vector2_t::BITS_PER_WORD-1) / vvp_vector2_t::BITS_PER_WORD;
|
|
const unsigned bwords = (b.wid_ + vvp_vector2_t::BITS_PER_WORD-1) / vvp_vector2_t::BITS_PER_WORD;
|
|
|
|
const unsigned words = awords > bwords? awords : bwords;
|
|
|
|
for (unsigned idx = words ; idx > 0 ; idx -= 1) {
|
|
unsigned long aw = (idx <= awords)? a.vec_[idx-1] : 0;
|
|
unsigned long bw = (idx <= bwords)? b.vec_[idx-1] : 0;
|
|
|
|
if (aw > bw)
|
|
return true;
|
|
if (aw < bw)
|
|
return false;
|
|
}
|
|
|
|
// If the above loop finishes, then the vectors are equal.
|
|
return false;
|
|
}
|
|
|
|
bool operator < (const vvp_vector2_t&a, const vvp_vector2_t&b)
|
|
{
|
|
const unsigned awords = (a.wid_ + vvp_vector2_t::BITS_PER_WORD-1) / vvp_vector2_t::BITS_PER_WORD;
|
|
const unsigned bwords = (b.wid_ + vvp_vector2_t::BITS_PER_WORD-1) / vvp_vector2_t::BITS_PER_WORD;
|
|
|
|
unsigned words = awords;
|
|
if (bwords > words)
|
|
words = bwords;
|
|
|
|
for (unsigned idx = words ; idx > 0 ; idx -= 1) {
|
|
unsigned long aw = (idx <= awords)? a.vec_[idx-1] : 0;
|
|
unsigned long bw = (idx <= bwords)? b.vec_[idx-1] : 0;
|
|
|
|
if (aw < bw)
|
|
return true;
|
|
if (aw > bw)
|
|
return false;
|
|
}
|
|
|
|
// If the above loop finishes, then the vectors are equal.
|
|
return false;
|
|
}
|
|
|
|
bool operator <= (const vvp_vector2_t&a, const vvp_vector2_t&b)
|
|
{
|
|
// XXXX For now, only support equal width vectors.
|
|
assert(a.wid_ == b.wid_);
|
|
|
|
const unsigned awords = (a.wid_ + vvp_vector2_t::BITS_PER_WORD-1) / vvp_vector2_t::BITS_PER_WORD;
|
|
|
|
for (unsigned idx = awords ; idx > 0 ; idx -= 1) {
|
|
if (a.vec_[idx-1] < b.vec_[idx-1])
|
|
return true;
|
|
if (a.vec_[idx-1] > b.vec_[idx-1])
|
|
return false;
|
|
}
|
|
|
|
// If the above loop finishes, then the vectors are equal.
|
|
return true;
|
|
}
|
|
|
|
vvp_vector4_t vector2_to_vector4(const vvp_vector2_t&that, unsigned wid)
|
|
{
|
|
vvp_vector4_t res (wid);
|
|
|
|
for (unsigned idx = 0 ; idx < res.size() ; idx += 1) {
|
|
vvp_bit4_t bit = BIT4_0;
|
|
|
|
if (that.value(idx))
|
|
bit = BIT4_1;
|
|
|
|
res.set_bit(idx, bit);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
vvp_vector4_t c4string_to_vector4(const char*str)
|
|
{
|
|
assert((str[0]=='C') && (str[1]=='4') && (str[2]=='<'));
|
|
|
|
str += 3;
|
|
const char*tp = str + strspn(str,"01xz");
|
|
assert(tp[0] == '>');
|
|
|
|
vvp_vector4_t tmp (tp-str);
|
|
|
|
for (unsigned idx = 0 ; idx < tmp.size() ; idx += 1) {
|
|
vvp_bit4_t bit;
|
|
switch (str[idx]) {
|
|
case '0':
|
|
bit = BIT4_0;
|
|
break;
|
|
case '1':
|
|
bit = BIT4_1;
|
|
break;
|
|
case 'x':
|
|
bit = BIT4_X;
|
|
break;
|
|
case 'z':
|
|
bit = BIT4_Z;
|
|
break;
|
|
default:
|
|
assert(0);
|
|
bit = BIT4_0;
|
|
break;
|
|
}
|
|
tmp.set_bit(tmp.size()-idx-1, bit);
|
|
}
|
|
|
|
return tmp;
|
|
}
|
|
|
|
ostream& operator<< (ostream&out, const vvp_vector2_t&that)
|
|
{
|
|
if (that.is_NaN()) {
|
|
out << "NaN";
|
|
|
|
} else {
|
|
out << vector2_to_vector4(that, that.size());
|
|
}
|
|
return out;
|
|
}
|
|
|
|
vvp_vector8_t::vvp_vector8_t(const vvp_vector8_t&that)
|
|
{
|
|
size_ = that.size_;
|
|
|
|
bits_ = new vvp_scalar_t[size_];
|
|
|
|
for (unsigned idx = 0 ; idx < size_ ; idx += 1)
|
|
bits_[idx] = that.bits_[idx];
|
|
|
|
}
|
|
|
|
vvp_vector8_t::vvp_vector8_t(unsigned size)
|
|
: size_(size)
|
|
{
|
|
if (size_ == 0) {
|
|
bits_ = 0;
|
|
return;
|
|
}
|
|
|
|
bits_ = new vvp_scalar_t[size_];
|
|
}
|
|
|
|
vvp_vector8_t::vvp_vector8_t(const vvp_vector4_t&that, unsigned str)
|
|
: size_(that.size())
|
|
{
|
|
if (size_ == 0) {
|
|
bits_ = 0;
|
|
return;
|
|
}
|
|
|
|
bits_ = new vvp_scalar_t[size_];
|
|
|
|
for (unsigned idx = 0 ; idx < size_ ; idx += 1)
|
|
bits_[idx] = vvp_scalar_t (that.value(idx), str);
|
|
|
|
}
|
|
|
|
vvp_vector8_t::vvp_vector8_t(const vvp_vector4_t&that,
|
|
unsigned str0, unsigned str1)
|
|
: size_(that.size())
|
|
{
|
|
if (size_ == 0) {
|
|
bits_ = 0;
|
|
return;
|
|
}
|
|
|
|
bits_ = new vvp_scalar_t[size_];
|
|
for (unsigned idx = 0 ; idx < size_ ; idx += 1)
|
|
bits_[idx] = vvp_scalar_t (that.value(idx), str0, str1);
|
|
|
|
}
|
|
|
|
vvp_vector8_t& vvp_vector8_t::operator= (const vvp_vector8_t&that)
|
|
{
|
|
if (size_ != that.size_) {
|
|
if (size_ > 0)
|
|
delete[]bits_;
|
|
size_ = 0;
|
|
}
|
|
|
|
if (that.size_ == 0) {
|
|
assert(size_ == 0);
|
|
return *this;
|
|
}
|
|
|
|
if (size_ == 0) {
|
|
size_ = that.size_;
|
|
bits_ = new vvp_scalar_t[size_];
|
|
}
|
|
|
|
for (unsigned idx = 0 ; idx < size_ ; idx += 1)
|
|
bits_[idx] = that.bits_[idx];
|
|
|
|
return *this;
|
|
}
|
|
|
|
bool vvp_vector8_t::eeq(const vvp_vector8_t&that) const
|
|
{
|
|
if (size_ != that.size_)
|
|
return false;
|
|
|
|
if (size_ == 0)
|
|
return true;
|
|
|
|
for (unsigned idx = 0 ; idx < size_ ; idx += 1) {
|
|
if (! bits_[idx] .eeq( that.bits_[idx] ))
|
|
return false;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
ostream& operator<<(ostream&out, const vvp_vector8_t&that)
|
|
{
|
|
out << "C8<";
|
|
for (unsigned idx = 0 ; idx < that.size() ; idx += 1)
|
|
out << that.value(that.size()-idx-1);
|
|
|
|
out << ">";
|
|
return out;
|
|
}
|
|
|
|
vvp_net_fun_t::vvp_net_fun_t()
|
|
{
|
|
}
|
|
|
|
vvp_net_fun_t::~vvp_net_fun_t()
|
|
{
|
|
}
|
|
|
|
void vvp_net_fun_t::recv_vec4(vvp_net_ptr_t, const vvp_vector4_t&)
|
|
{
|
|
fprintf(stderr, "internal error: %s: recv_vec4 not implemented\n",
|
|
typeid(*this).name());
|
|
assert(0);
|
|
}
|
|
|
|
void vvp_net_fun_t::recv_vec4_pv(vvp_net_ptr_t, const vvp_vector4_t&,
|
|
unsigned, unsigned, unsigned)
|
|
{
|
|
fprintf(stderr, "internal error: %s: recv_vec4_pv not implemented\n",
|
|
typeid(*this).name());
|
|
assert(0);
|
|
}
|
|
|
|
void vvp_net_fun_t::recv_vec8(vvp_net_ptr_t port, vvp_vector8_t bit)
|
|
{
|
|
recv_vec4(port, reduce4(bit));
|
|
}
|
|
|
|
void vvp_net_fun_t::recv_real(vvp_net_ptr_t, double bit)
|
|
{
|
|
fprintf(stderr, "internal error: %s: recv_real(%f) not implemented\n",
|
|
typeid(*this).name(), bit);
|
|
assert(0);
|
|
}
|
|
|
|
void vvp_net_fun_t::recv_long(vvp_net_ptr_t, long)
|
|
{
|
|
fprintf(stderr, "internal error: %s: recv_long not implemented\n",
|
|
typeid(*this).name());
|
|
assert(0);
|
|
}
|
|
|
|
/* **** vvp_fun_drive methods **** */
|
|
|
|
vvp_fun_drive::vvp_fun_drive(vvp_bit4_t init, unsigned str0, unsigned str1)
|
|
{
|
|
assert(str0 < 8);
|
|
assert(str1 < 8);
|
|
|
|
drive0_ = str0;
|
|
drive1_ = str1;
|
|
}
|
|
|
|
vvp_fun_drive::~vvp_fun_drive()
|
|
{
|
|
}
|
|
|
|
void vvp_fun_drive::recv_vec4(vvp_net_ptr_t port, const vvp_vector4_t&bit)
|
|
{
|
|
assert(port.port() == 0);
|
|
vvp_send_vec8(port.ptr()->out, vvp_vector8_t(bit, drive0_, drive1_));
|
|
}
|
|
|
|
|
|
/* **** vvp_fun_signal methods **** */
|
|
|
|
vvp_fun_signal_base::vvp_fun_signal_base()
|
|
{
|
|
needs_init_ = true;
|
|
continuous_assign_active_ = false;
|
|
force_link = 0;
|
|
cassign_link = 0;
|
|
}
|
|
|
|
void vvp_fun_signal_base::deassign()
|
|
{
|
|
continuous_assign_active_ = false;
|
|
}
|
|
|
|
/*
|
|
* The signal functor takes commands as long values to port-3. This
|
|
* method interprets those commands.
|
|
*/
|
|
void vvp_fun_signal_base::recv_long(vvp_net_ptr_t ptr, long bit)
|
|
{
|
|
switch (ptr.port()) {
|
|
case 3: // Command port
|
|
switch (bit) {
|
|
case 1: // deassign command
|
|
deassign();
|
|
break;
|
|
case 2: // release/net
|
|
release(ptr, true);
|
|
break;
|
|
case 3: // release/reg
|
|
release(ptr, false);
|
|
break;
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
break;
|
|
|
|
default: // Other ports ar errors.
|
|
assert(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
vvp_fun_signal::vvp_fun_signal(unsigned wid)
|
|
: bits4_(wid)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Nets simply reflect their input to their output.
|
|
*
|
|
* NOTE: It is a quirk of vvp_fun_signal that it has an initial value
|
|
* that needs to be propagated, but after that it only needs to
|
|
* propagate if the value changes. Elimitating duplicate propagations
|
|
* should improve performance, but has the quirk that an input that
|
|
* matches the initial value might not be propagated. The hack used
|
|
* herein is to keep a "needs_init_" flag that is turned false after
|
|
* the first propagation, and forces the first propagation to happen
|
|
* even if it matches the initial value.
|
|
*/
|
|
void vvp_fun_signal::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit)
|
|
{
|
|
switch (ptr.port()) {
|
|
case 0: // Normal input (feed from net, or set from process)
|
|
/* If continuous assign is active, then this is a var
|
|
and the continuous assigned values overrides any
|
|
normal input. So process input only if continuous
|
|
assignment is not active. */
|
|
if (!continuous_assign_active_) {
|
|
if (needs_init_ || !bits4_.eeq(bit)) {
|
|
bits4_ = bit;
|
|
needs_init_ = false;
|
|
calculate_output_(ptr);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 1: // Continuous assign value
|
|
continuous_assign_active_ = true;
|
|
bits4_ = bit;
|
|
calculate_output_(ptr);
|
|
break;
|
|
|
|
case 2: // Force value
|
|
|
|
// Force from a node may not have been sized completely
|
|
// by the source, so coerce the size here.
|
|
if (bit.size() != size())
|
|
force_ = coerce_to_width(bit, size());
|
|
else
|
|
force_ = bit;
|
|
|
|
force_mask_ = vvp_vector2_t(vvp_vector2_t::FILL1, size());
|
|
calculate_output_(ptr);
|
|
break;
|
|
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void vvp_fun_signal::recv_vec4_pv(vvp_net_ptr_t ptr, const vvp_vector4_t&bit,
|
|
unsigned base, unsigned wid, unsigned vwid)
|
|
{
|
|
assert(bit.size() == wid);
|
|
assert(bits4_.size() == vwid);
|
|
|
|
switch (ptr.port()) {
|
|
case 0: // Normal input
|
|
if (! continuous_assign_active_) {
|
|
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
|
|
if (base+idx >= bits4_.size())
|
|
break;
|
|
bits4_.set_bit(base+idx, bit.value(idx));
|
|
}
|
|
needs_init_ = false;
|
|
calculate_output_(ptr);
|
|
}
|
|
break;
|
|
|
|
case 2: // Force value
|
|
|
|
if (force_mask_.size() == 0)
|
|
force_mask_ = vvp_vector2_t(vvp_vector2_t::FILL0, size());
|
|
if (force_.size() == 0)
|
|
force_ = vvp_vector4_t(vwid, BIT4_Z);
|
|
|
|
for (unsigned idx = 0 ; idx < wid ; idx += 1) {
|
|
force_mask_.set_bit(base+idx, 1);
|
|
force_.set_bit(base+idx, bit.value(idx));
|
|
}
|
|
|
|
calculate_output_(ptr);
|
|
break;
|
|
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void vvp_fun_signal::calculate_output_(vvp_net_ptr_t ptr)
|
|
{
|
|
if (force_mask_.size()) {
|
|
assert(bits4_.size() == force_mask_.size());
|
|
assert(bits4_.size() == force_.size());
|
|
vvp_vector4_t bits (bits4_);
|
|
for (unsigned idx = 0 ; idx < bits.size() ; idx += 1) {
|
|
if (force_mask_.value(idx))
|
|
bits.set_bit(idx, force_.value(idx));
|
|
}
|
|
vvp_send_vec4(ptr.ptr()->out, bits);
|
|
|
|
} else {
|
|
vvp_send_vec4(ptr.ptr()->out, bits4_);
|
|
}
|
|
|
|
run_vpi_callbacks();
|
|
}
|
|
|
|
void vvp_fun_signal::recv_vec8(vvp_net_ptr_t ptr, vvp_vector8_t bit)
|
|
{
|
|
recv_vec4(ptr, reduce4(bit));
|
|
}
|
|
|
|
|
|
void vvp_fun_signal::release(vvp_net_ptr_t ptr, bool net)
|
|
{
|
|
force_mask_ = vvp_vector2_t();
|
|
if (net) {
|
|
vvp_send_vec4(ptr.ptr()->out, bits4_);
|
|
run_vpi_callbacks();
|
|
} else {
|
|
bits4_ = force_;
|
|
}
|
|
}
|
|
|
|
unsigned vvp_fun_signal::size() const
|
|
{
|
|
if (force_mask_.size())
|
|
return force_.size();
|
|
else
|
|
return bits4_.size();
|
|
}
|
|
|
|
vvp_bit4_t vvp_fun_signal::value(unsigned idx) const
|
|
{
|
|
if (force_mask_.size() && force_mask_.value(idx))
|
|
return force_.value(idx);
|
|
else
|
|
return bits4_.value(idx);
|
|
}
|
|
|
|
vvp_scalar_t vvp_fun_signal::scalar_value(unsigned idx) const
|
|
{
|
|
if (force_mask_.size() && force_mask_.value(idx))
|
|
return vvp_scalar_t(force_.value(idx), 6, 6);
|
|
else
|
|
return vvp_scalar_t(bits4_.value(idx), 6, 6);
|
|
}
|
|
|
|
vvp_vector4_t vvp_fun_signal::vec4_value() const
|
|
{
|
|
if (force_mask_.size()) {
|
|
assert(bits4_.size() == force_mask_.size());
|
|
assert(bits4_.size() == force_.size());
|
|
vvp_vector4_t bits (bits4_);
|
|
for (unsigned idx = 0 ; idx < bits.size() ; idx += 1) {
|
|
if (force_mask_.value(idx))
|
|
bits.set_bit(idx, force_.value(idx));
|
|
}
|
|
return bits;
|
|
|
|
} else {
|
|
return bits4_;
|
|
}
|
|
}
|
|
|
|
vvp_fun_signal8::vvp_fun_signal8(unsigned wid)
|
|
: bits8_(wid)
|
|
{
|
|
}
|
|
|
|
void vvp_fun_signal8::recv_vec4(vvp_net_ptr_t ptr, const vvp_vector4_t&bit)
|
|
{
|
|
recv_vec8(ptr, bit);
|
|
}
|
|
|
|
void vvp_fun_signal8::recv_vec8(vvp_net_ptr_t ptr, vvp_vector8_t bit)
|
|
{
|
|
switch (ptr.port()) {
|
|
case 0: // Normal input (feed from net, or set from process)
|
|
if (!continuous_assign_active_) {
|
|
if (needs_init_ || !bits8_.eeq(bit)) {
|
|
bits8_ = bit;
|
|
needs_init_ = false;
|
|
calculate_output_(ptr);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 1: // Continuous assign value
|
|
continuous_assign_active_ = true;
|
|
bits8_ = bit;
|
|
calculate_output_(ptr);
|
|
break;
|
|
|
|
case 2: // Force value
|
|
|
|
// Force from a node may not have been sized completely
|
|
// by the source, so coerce the size here.
|
|
if (bit.size() != size())
|
|
force_ = coerce_to_width(bit, size());
|
|
else
|
|
force_ = bit;
|
|
|
|
force_mask_ = vvp_vector2_t(vvp_vector2_t::FILL1, size());
|
|
calculate_output_(ptr);
|
|
break;
|
|
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void vvp_fun_signal8::calculate_output_(vvp_net_ptr_t ptr)
|
|
{
|
|
if (force_mask_.size()) {
|
|
assert(bits8_.size() == force_mask_.size());
|
|
assert(bits8_.size() == force_.size());
|
|
vvp_vector8_t bits (bits8_);
|
|
for (unsigned idx = 0 ; idx < bits.size() ; idx += 1) {
|
|
if (force_mask_.value(idx))
|
|
bits.set_bit(idx, force_.value(idx));
|
|
}
|
|
vvp_send_vec8(ptr.ptr()->out, bits);
|
|
|
|
} else {
|
|
vvp_send_vec8(ptr.ptr()->out, bits8_);
|
|
}
|
|
|
|
run_vpi_callbacks();
|
|
}
|
|
|
|
void vvp_fun_signal8::release(vvp_net_ptr_t ptr, bool net)
|
|
{
|
|
force_mask_ = vvp_vector2_t();
|
|
if (net) {
|
|
vvp_send_vec8(ptr.ptr()->out, bits8_);
|
|
run_vpi_callbacks();
|
|
} else {
|
|
bits8_ = force_;
|
|
}
|
|
}
|
|
|
|
unsigned vvp_fun_signal8::size() const
|
|
{
|
|
if (force_mask_.size())
|
|
return force_.size();
|
|
else
|
|
return bits8_.size();
|
|
}
|
|
|
|
vvp_bit4_t vvp_fun_signal8::value(unsigned idx) const
|
|
{
|
|
if (force_mask_.size() && force_mask_.value(idx))
|
|
return force_.value(idx).value();
|
|
else
|
|
return bits8_.value(idx).value();
|
|
}
|
|
|
|
vvp_vector4_t vvp_fun_signal8::vec4_value() const
|
|
{
|
|
if (force_mask_.size())
|
|
return reduce4(force_);
|
|
else
|
|
return reduce4(bits8_);
|
|
}
|
|
|
|
vvp_scalar_t vvp_fun_signal8::scalar_value(unsigned idx) const
|
|
{
|
|
if (force_mask_.size() && force_mask_.value(idx))
|
|
return force_.value(idx);
|
|
else
|
|
return bits8_.value(idx);
|
|
}
|
|
|
|
vvp_fun_signal_real::vvp_fun_signal_real()
|
|
{
|
|
}
|
|
|
|
double vvp_fun_signal_real::real_value() const
|
|
{
|
|
if (force_mask_.size())
|
|
return force_;
|
|
else
|
|
return bits_;
|
|
}
|
|
|
|
void vvp_fun_signal_real::recv_real(vvp_net_ptr_t ptr, double bit)
|
|
{
|
|
switch (ptr.port()) {
|
|
case 0:
|
|
if (!continuous_assign_active_) {
|
|
if (needs_init_ || (bits_ != bit)) {
|
|
bits_ = bit;
|
|
needs_init_ = false;
|
|
vvp_send_real(ptr.ptr()->out, bit);
|
|
run_vpi_callbacks();
|
|
}
|
|
}
|
|
break;
|
|
|
|
case 1: // Continuous assign value
|
|
continuous_assign_active_ = true;
|
|
bits_ = bit;
|
|
vvp_send_real(ptr.ptr()->out, bit);
|
|
run_vpi_callbacks();
|
|
break;
|
|
|
|
case 2: // Force value
|
|
force_mask_ = vvp_vector2_t(1, 1);
|
|
force_ = bit;
|
|
vvp_send_real(ptr.ptr()->out, bit);
|
|
run_vpi_callbacks();
|
|
break;
|
|
|
|
default:
|
|
assert(0);
|
|
break;
|
|
}
|
|
}
|
|
|
|
void vvp_fun_signal_real::release(vvp_net_ptr_t ptr, bool net)
|
|
{
|
|
force_mask_ = vvp_vector2_t();
|
|
if (net) {
|
|
vvp_send_real(ptr.ptr()->out, bits_);
|
|
run_vpi_callbacks();
|
|
} else {
|
|
bits_ = force_;
|
|
}
|
|
}
|
|
|
|
/* **** vvp_wide_fun_* methods **** */
|
|
|
|
vvp_wide_fun_core::vvp_wide_fun_core(vvp_net_t*net, unsigned nports)
|
|
{
|
|
ptr_ = net;
|
|
nports_ = nports;
|
|
port_values_ = 0;
|
|
port_rvalues_ = 0;
|
|
}
|
|
|
|
vvp_wide_fun_core::~vvp_wide_fun_core()
|
|
{
|
|
if (port_values_) delete[]port_values_;
|
|
if (port_rvalues_) delete[]port_rvalues_;
|
|
}
|
|
|
|
void vvp_wide_fun_core::propagate_vec4(const vvp_vector4_t&bit,
|
|
vvp_time64_t delay)
|
|
{
|
|
if (delay)
|
|
schedule_assign_vector(ptr_->out, bit, delay);
|
|
else
|
|
vvp_send_vec4(ptr_->out, bit);
|
|
}
|
|
|
|
|
|
unsigned vvp_wide_fun_core::port_count() const
|
|
{
|
|
return nports_;
|
|
}
|
|
|
|
vvp_vector4_t& vvp_wide_fun_core::value(unsigned idx)
|
|
{
|
|
assert(idx < nports_);
|
|
assert(port_values_);
|
|
return port_values_[idx];
|
|
}
|
|
|
|
double vvp_wide_fun_core::value_r(unsigned idx)
|
|
{
|
|
assert(idx < nports_);
|
|
return port_rvalues_? port_rvalues_[idx] : 0.0;
|
|
}
|
|
|
|
void vvp_wide_fun_core::recv_real_from_inputs(unsigned p)
|
|
{
|
|
assert(0);
|
|
}
|
|
|
|
void vvp_wide_fun_core::dispatch_vec4_from_input_(unsigned port,
|
|
vvp_vector4_t bit)
|
|
{
|
|
assert(port < nports_);
|
|
if (port_values_ == 0) port_values_ = new vvp_vector4_t [nports_];
|
|
port_values_[port] = bit;
|
|
recv_vec4_from_inputs(port);
|
|
}
|
|
|
|
void vvp_wide_fun_core::dispatch_real_from_input_(unsigned port,
|
|
double bit)
|
|
{
|
|
assert(port < nports_);
|
|
if (port_rvalues_ == 0) port_rvalues_ = new double[nports_];
|
|
port_rvalues_[port] = bit;
|
|
recv_real_from_inputs(port);
|
|
}
|
|
|
|
vvp_wide_fun_t::vvp_wide_fun_t(vvp_wide_fun_core*c, unsigned base)
|
|
: core_(c), port_base_(base)
|
|
{
|
|
}
|
|
|
|
vvp_wide_fun_t::~vvp_wide_fun_t()
|
|
{
|
|
}
|
|
|
|
void vvp_wide_fun_t::recv_vec4(vvp_net_ptr_t port, const vvp_vector4_t&bit)
|
|
{
|
|
unsigned pidx = port_base_ + port.port();
|
|
core_->dispatch_vec4_from_input_(pidx, bit);
|
|
}
|
|
|
|
void vvp_wide_fun_t::recv_real(vvp_net_ptr_t port, double bit)
|
|
{
|
|
unsigned pidx = port_base_ + port.port();
|
|
core_->dispatch_real_from_input_(pidx, bit);
|
|
}
|
|
|
|
|
|
/* **** vvp_scalar_t methods **** */
|
|
|
|
/*
|
|
* DRIVE STRENGTHS:
|
|
*
|
|
* The normal functor is not aware of strengths. It generates strength
|
|
* simply by virtue of having strength specifications. The drive
|
|
* strength specification includes a drive0 and drive1 strength, each
|
|
* with 8 possible values (that can be represented in 3 bits) as given
|
|
* in this table:
|
|
*
|
|
* HiZ = 0,
|
|
* SMALL = 1,
|
|
* MEDIUM = 2,
|
|
* WEAK = 3,
|
|
* LARGE = 4,
|
|
* PULL = 5,
|
|
* STRONG = 6,
|
|
* SUPPLY = 7
|
|
*
|
|
* The vvp_scalar_t value, however, is a combination of value and
|
|
* strength, used in strength-aware contexts.
|
|
*
|
|
* OUTPUT STRENGTHS:
|
|
*
|
|
* The strength-aware values are specified as an 8 bit value, that is
|
|
* two 4 bit numbers. The value is encoded with two drive strengths (0-7)
|
|
* and two drive values (0 or 1). Each nibble contains three bits of
|
|
* strength and one bit of value, like so: VSSS. The high nibble has
|
|
* the strength-value closest to supply1, and the low nibble has the
|
|
* strength-value closest to supply0.
|
|
*/
|
|
|
|
/*
|
|
* A signal value is unambiguous if the top 4 bits and the bottom 4
|
|
* bits are identical. This means that the VSSSvsss bits of the 8bit
|
|
* value have V==v and SSS==sss.
|
|
*/
|
|
# define UNAMBIG(v) (((v) & 0x0f) == (((v) >> 4) & 0x0f))
|
|
|
|
#if 0
|
|
# define STREN1(v) ( ((v)&0x80)? ((v)&0xf0) : (0x70 - ((v)&0xf0)) )
|
|
# define STREN0(v) ( ((v)&0x08)? ((v)&0x0f) : (0x07 - ((v)&0x0f)) )
|
|
#else
|
|
# define STREN1(v) (((v)&0x70) >> 4)
|
|
# define STREN0(v) ((v)&0x07)
|
|
#endif
|
|
|
|
vvp_scalar_t::vvp_scalar_t(vvp_bit4_t val, unsigned str0, unsigned str1)
|
|
{
|
|
assert(str0 <= 7);
|
|
assert(str1 <= 7);
|
|
|
|
if (str0 == 0 && str1 == 0) {
|
|
value_ = 0x00;
|
|
} else switch (val) {
|
|
case BIT4_0:
|
|
value_ = str0 | (str0<<4);
|
|
break;
|
|
case BIT4_1:
|
|
value_ = str1 | (str1<<4) | 0x88;
|
|
break;
|
|
case BIT4_X:
|
|
value_ = str0 | (str1<<4) | 0x80;
|
|
break;
|
|
case BIT4_Z:
|
|
value_ = 0x00;
|
|
break;
|
|
}
|
|
}
|
|
|
|
vvp_bit4_t vvp_scalar_t::value() const
|
|
{
|
|
if (value_ == 0) {
|
|
return BIT4_Z;
|
|
|
|
} else switch (value_ & 0x88) {
|
|
case 0x00:
|
|
return BIT4_0;
|
|
case 0x88:
|
|
return BIT4_1;
|
|
default:
|
|
return BIT4_X;
|
|
}
|
|
}
|
|
|
|
unsigned vvp_scalar_t::strength0() const
|
|
{
|
|
return STREN0(value_);
|
|
}
|
|
|
|
unsigned vvp_scalar_t::strength1() const
|
|
{
|
|
return STREN1(value_);
|
|
}
|
|
|
|
ostream& operator <<(ostream&out, vvp_scalar_t a)
|
|
{
|
|
out << a.strength0() << a.strength1();
|
|
switch (a.value()) {
|
|
case BIT4_0:
|
|
out << "0";
|
|
break;
|
|
case BIT4_1:
|
|
out << "1";
|
|
break;
|
|
case BIT4_X:
|
|
out << "X";
|
|
break;
|
|
case BIT4_Z:
|
|
out << "Z";
|
|
break;
|
|
}
|
|
return out;
|
|
}
|
|
|
|
vvp_scalar_t resolve(vvp_scalar_t a, vvp_scalar_t b)
|
|
{
|
|
// If the value is 0, that is the same as HiZ. In that case,
|
|
// resolution is simply a matter of returning the *other* value.
|
|
if (a.value_ == 0)
|
|
return b;
|
|
if (b.value_ == 0)
|
|
return a;
|
|
|
|
vvp_scalar_t res = a;
|
|
|
|
if (UNAMBIG(a.value_) && UNAMBIG(b.value_)) {
|
|
|
|
/* If both signals are unambiguous, simply choose
|
|
the stronger. If they have the same strength
|
|
but different values, then this becomes
|
|
ambiguous. */
|
|
|
|
if (a.value_ == b.value_) {
|
|
|
|
/* values are equal. do nothing. */
|
|
|
|
} else if ((b.value_&0x07) > (res.value_&0x07)) {
|
|
|
|
/* New value is stronger. Take it. */
|
|
res.value_ = b.value_;
|
|
|
|
} else if ((b.value_&0x77) == (res.value_&0x77)) {
|
|
|
|
/* Strengths are the same. Make value ambiguous. */
|
|
res.value_ = (res.value_&0x70) | (b.value_&0x07) | 0x80;
|
|
|
|
} else {
|
|
|
|
/* Must be res is the stronger one. */
|
|
}
|
|
|
|
} else if (UNAMBIG(res.value_)) {
|
|
unsigned tmp = 0;
|
|
|
|
if ((res.value_&0x70) > (b.value_&0x70))
|
|
tmp |= res.value_&0xf0;
|
|
else
|
|
tmp |= b.value_&0xf0;
|
|
|
|
if ((res.value_&0x07) > (b.value_&0x07))
|
|
tmp |= res.value_&0x0f;
|
|
else
|
|
tmp |= b.value_&0x0f;
|
|
|
|
res.value_ = tmp;
|
|
|
|
} else if (UNAMBIG(b.value_)) {
|
|
|
|
/* If one of the signals is unambiguous, then it
|
|
will sweep up the weaker parts of the ambiguous
|
|
signal. The result may be ambiguous, or maybe not. */
|
|
|
|
unsigned tmp = 0;
|
|
|
|
if ((b.value_&0x70) > (res.value_&0x70))
|
|
tmp |= b.value_&0xf0;
|
|
else
|
|
tmp |= res.value_&0xf0;
|
|
|
|
if ((b.value_&0x07) > (res.value_&0x07))
|
|
tmp |= b.value_&0x0f;
|
|
else
|
|
tmp |= res.value_&0x0f;
|
|
|
|
res.value_ = tmp;
|
|
|
|
} else {
|
|
|
|
/* If both signals are ambiguous, then the result
|
|
has an even wider ambiguity. */
|
|
|
|
unsigned tmp = 0;
|
|
int sv1a = a.value_&0x80 ? STREN1(a.value_) : - STREN1(a.value_);
|
|
int sv0a = a.value_&0x08 ? STREN0(a.value_) : - STREN0(a.value_);
|
|
int sv1b = b.value_&0x80 ? STREN1(b.value_) : - STREN1(b.value_);
|
|
int sv0b = b.value_&0x08 ? STREN0(b.value_) : - STREN0(b.value_);
|
|
|
|
int sv1 = sv1a;
|
|
int sv0 = sv0a;
|
|
|
|
if (sv0a > sv1)
|
|
sv1 = sv0a;
|
|
if (sv1b > sv1)
|
|
sv1 = sv1b;
|
|
if (sv0b > sv1)
|
|
sv1 = sv0b;
|
|
|
|
if (sv1a < sv0)
|
|
sv0 = sv1a;
|
|
if (sv1b < sv0)
|
|
sv0 = sv1b;
|
|
if (sv0b < sv0)
|
|
sv0 = sv0b;
|
|
|
|
if (sv1 > 0) {
|
|
tmp |= 0x80;
|
|
tmp |= sv1 << 4;
|
|
} else {
|
|
tmp |= (-sv1) << 4;
|
|
}
|
|
|
|
if (sv0 > 0) {
|
|
tmp |= 0x08;
|
|
tmp |= sv0;
|
|
} else {
|
|
tmp |= (-sv0);
|
|
}
|
|
|
|
res.value_ = tmp;
|
|
}
|
|
|
|
/* Canonicalize the HiZ value. */
|
|
if ((res.value_&0x77) == 0)
|
|
res.value_ = 0;
|
|
|
|
return res;
|
|
}
|
|
|
|
vvp_vector8_t resolve(const vvp_vector8_t&a, const vvp_vector8_t&b)
|
|
{
|
|
assert(a.size() == b.size());
|
|
|
|
vvp_vector8_t out (a.size());
|
|
|
|
for (unsigned idx = 0 ; idx < out.size() ; idx += 1) {
|
|
out.set_bit(idx, resolve(a.value(idx), b.value(idx)));
|
|
}
|
|
|
|
return out;
|
|
}
|
|
|
|
vvp_vector8_t resistive_reduction(const vvp_vector8_t&that)
|
|
{
|
|
static unsigned rstr[8] = {
|
|
0, /* Hi-Z --> Hi-Z */
|
|
1, /* Small capacitance --> Small capacitance */
|
|
1, /* Medium capacitance --> Small capacitance */
|
|
2, /* Weak drive --> Medium capacitance */
|
|
2, /* Large capacitance --> Medium capacitance */
|
|
3, /* Pull drive --> Weak drive */
|
|
5, /* Strong drive --> Pull drive */
|
|
5 /* Supply drive --> Pull drive */
|
|
};
|
|
|
|
vvp_vector8_t res (that.size());
|
|
|
|
for (unsigned idx = 0 ; idx < res.size() ; idx += 1) {
|
|
vvp_scalar_t bit = that.value(idx);
|
|
bit = vvp_scalar_t(bit.value(),
|
|
rstr[bit.strength0()],
|
|
rstr[bit.strength1()]);
|
|
res.set_bit(idx, bit);
|
|
}
|
|
|
|
return res;
|
|
}
|
|
|
|
vvp_vector4_t reduce4(const vvp_vector8_t&that)
|
|
{
|
|
vvp_vector4_t out (that.size());
|
|
for (unsigned idx = 0 ; idx < out.size() ; idx += 1)
|
|
out.set_bit(idx, that.value(idx).value());
|
|
|
|
return out;
|
|
}
|
|
|
|
vvp_bit4_t compare_gtge(const vvp_vector4_t&lef, const vvp_vector4_t&rig,
|
|
vvp_bit4_t out_if_equal)
|
|
{
|
|
unsigned min_size = lef.size();
|
|
if (rig.size() < min_size)
|
|
min_size = rig.size();
|
|
|
|
// If one of the inputs is nil, treat is as all X values, and
|
|
// that makes the result BIT4_X.
|
|
if (min_size == 0)
|
|
return BIT4_X;
|
|
|
|
// As per the IEEE1364 definition of >, >=, < and <=, if there
|
|
// are any X or Z values in either of the operand vectors,
|
|
// then the result of the compare is BIT4_X.
|
|
|
|
// Check for X/Z in the left operand
|
|
for (unsigned idx = 0 ; idx < lef.size() ; idx += 1) {
|
|
vvp_bit4_t bit = lef.value(idx);
|
|
if (bit == BIT4_X)
|
|
return BIT4_X;
|
|
if (bit == BIT4_Z)
|
|
return BIT4_X;
|
|
}
|
|
|
|
// Check for X/Z in the right operand
|
|
for (unsigned idx = 0 ; idx < rig.size() ; idx += 1) {
|
|
vvp_bit4_t bit = rig.value(idx);
|
|
if (bit == BIT4_X)
|
|
return BIT4_X;
|
|
if (bit == BIT4_Z)
|
|
return BIT4_X;
|
|
}
|
|
|
|
for (unsigned idx = lef.size() ; idx > rig.size() ; idx -= 1) {
|
|
if (lef.value(idx-1) == BIT4_1)
|
|
return BIT4_1;
|
|
}
|
|
|
|
for (unsigned idx = rig.size() ; idx > lef.size() ; idx -= 1) {
|
|
if (rig.value(idx-1) == BIT4_1)
|
|
return BIT4_0;
|
|
}
|
|
|
|
for (unsigned idx = min_size ; idx > 0 ; idx -= 1) {
|
|
vvp_bit4_t lv = lef.value(idx-1);
|
|
vvp_bit4_t rv = rig.value(idx-1);
|
|
|
|
if (lv == rv)
|
|
continue;
|
|
|
|
if (lv == BIT4_1)
|
|
return BIT4_1;
|
|
else
|
|
return BIT4_0;
|
|
}
|
|
|
|
return out_if_equal;
|
|
}
|
|
|
|
vvp_vector4_t operator ~ (const vvp_vector4_t&that)
|
|
{
|
|
vvp_vector4_t res (that.size());
|
|
for (unsigned idx = 0 ; idx < res.size() ; idx += 1)
|
|
res.set_bit(idx, ~ that.value(idx));
|
|
|
|
return res;
|
|
}
|
|
|
|
vvp_bit4_t compare_gtge_signed(const vvp_vector4_t&a,
|
|
const vvp_vector4_t&b,
|
|
vvp_bit4_t out_if_equal)
|
|
{
|
|
assert(a.size() == b.size());
|
|
|
|
unsigned sign_idx = a.size()-1;
|
|
vvp_bit4_t a_sign = a.value(sign_idx);
|
|
vvp_bit4_t b_sign = b.value(sign_idx);
|
|
|
|
if (a_sign == BIT4_X)
|
|
return BIT4_X;
|
|
if (a_sign == BIT4_Z)
|
|
return BIT4_X;
|
|
if (b_sign == BIT4_X)
|
|
return BIT4_X;
|
|
if (b_sign == BIT4_Z)
|
|
return BIT4_Z;
|
|
|
|
if (a_sign == b_sign)
|
|
return compare_gtge(a, b, out_if_equal);
|
|
|
|
for (unsigned idx = 0 ; idx < sign_idx ; idx += 1) {
|
|
vvp_bit4_t a_bit = a.value(idx);
|
|
vvp_bit4_t b_bit = a.value(idx);
|
|
|
|
if (a_bit == BIT4_X)
|
|
return BIT4_X;
|
|
if (a_bit == BIT4_Z)
|
|
return BIT4_X;
|
|
if (b_bit == BIT4_X)
|
|
return BIT4_X;
|
|
if (b_bit == BIT4_Z)
|
|
return BIT4_Z;
|
|
}
|
|
|
|
if(a_sign == BIT4_0)
|
|
return BIT4_1;
|
|
else
|
|
return BIT4_0;
|
|
}
|
|
|
|
/*
|
|
* $Log: vvp_net.cc,v $
|
|
* Revision 1.64 2007/06/12 02:36:58 steve
|
|
* handle constant inf values.
|
|
*
|
|
* Revision 1.63 2007/04/15 02:07:24 steve
|
|
* Fix div/mod calculation that caused a hang for some divisions.
|
|
*
|
|
* Revision 1.62 2007/03/22 16:08:19 steve
|
|
* Spelling fixes from Larry
|
|
*
|
|
* Revision 1.61 2007/03/07 03:55:42 steve
|
|
* Cast to remove ambiguities calling pow function.
|
|
*
|
|
* Revision 1.60 2007/03/07 00:38:16 steve
|
|
* Lint fixes.
|
|
*
|
|
* Revision 1.59 2007/03/02 06:13:22 steve
|
|
* Add support for edge sensitive spec paths.
|
|
*
|
|
* Revision 1.58 2007/02/05 01:08:10 steve
|
|
* Handle relink of continuous assignment.
|
|
*
|
|
* Revision 1.57 2006/12/10 17:15:48 steve
|
|
* Fix build error overloading pow function.
|
|
*
|
|
* Revision 1.56 2006/12/09 19:06:53 steve
|
|
* Handle vpiRealVal reads of signals, and real anyedge events.
|
|
*
|
|
* Revision 1.55 2006/11/22 06:10:05 steve
|
|
* Fix spurious event from net8 that is forced.
|
|
*
|
|
* Revision 1.54 2006/07/08 21:48:00 steve
|
|
* Delay object supports real valued delays.
|
|
*
|
|
* Revision 1.53 2006/06/18 04:15:50 steve
|
|
* Add support for system functions in continuous assignments.
|
|
*
|
|
* Revision 1.52 2006/03/15 19:15:34 steve
|
|
* const/non-const clash.
|
|
*
|
|
* Revision 1.51 2006/03/08 05:29:42 steve
|
|
* Add support for logic parameters.
|
|
*
|
|
* Revision 1.50 2006/01/03 06:19:31 steve
|
|
* Support wide divide nodes.
|
|
*
|
|
* Revision 1.49 2005/11/26 17:16:05 steve
|
|
* Force instruction that can be indexed.
|
|
*
|
|
* Revision 1.48 2005/11/25 17:55:26 steve
|
|
* Put vec8 and vec4 nets into seperate net classes.
|
|
*
|
|
* Revision 1.47 2005/11/10 13:27:16 steve
|
|
* Handle very wide % and / operations using expanded vector2 support.
|
|
*
|
|
* Revision 1.46 2005/10/04 04:41:07 steve
|
|
* Make sure the new size sticks in resize method.
|
|
*
|
|
* Revision 1.45 2005/08/30 00:49:42 steve
|
|
* Clean up a few overflowed shifts.
|
|
*
|
|
* Revision 1.44 2005/08/29 04:46:52 steve
|
|
* Safe handling of C left shift.
|
|
*
|
|
* Revision 1.43 2005/08/27 03:28:16 steve
|
|
* Be more cautios about accessing out-of-range bits.
|
|
*
|
|
* Revision 1.42 2005/08/27 02:34:43 steve
|
|
* Bring threads into the vvp_vector4_t structure.
|
|
*
|
|
* Revision 1.41 2005/07/06 04:29:25 steve
|
|
* Implement real valued signals and arith nodes.
|
|
*
|
|
* Revision 1.40 2005/06/27 21:13:14 steve
|
|
* Make vector2 multiply more portable.
|
|
*
|
|
* Revision 1.39 2005/06/26 01:57:22 steve
|
|
* Make bit masks of vector4_t 64bit aware.
|
|
*
|
|
* Revision 1.38 2005/06/24 02:16:42 steve
|
|
* inline the vvp_send_vec4_pv function.
|
|
*
|
|
* Revision 1.37 2005/06/22 18:30:12 steve
|
|
* Inline more simple stuff, and more vector4_t by const reference for performance.
|
|
*
|
|
* Revision 1.36 2005/06/22 00:04:49 steve
|
|
* Reduce vvp_vector4 copies by using const references.
|
|
*
|
|
* Revision 1.35 2005/06/21 22:48:23 steve
|
|
* Optimize vvp_scalar_t handling, and fun_buf Z handling.
|
|
*
|
|
* Revision 1.34 2005/06/20 01:28:14 steve
|
|
* Inline some commonly called vvp_vector4_t methods.
|
|
*
|
|
* Revision 1.33 2005/06/19 18:42:00 steve
|
|
* Optimize the LOAD_VEC implementation.
|
|
*
|
|
* Revision 1.32 2005/06/15 00:47:15 steve
|
|
* Resolv do not propogate inputs that do not change.
|
|
*
|
|
* Revision 1.31 2005/06/13 00:54:04 steve
|
|
* More unified vec4 to hex string functions.
|
|
*
|
|
* Revision 1.30 2005/06/12 15:13:37 steve
|
|
* Support resistive mos devices.
|
|
*
|
|
* Revision 1.29 2005/06/02 16:02:11 steve
|
|
* Add support for notif0/1 gates.
|
|
* Make delay nodes support inertial delay.
|
|
* Add the %force/link instruction.
|
|
*
|
|
* Revision 1.28 2005/05/17 20:54:56 steve
|
|
* Clean up definition of vvp_vector4_t insertion into ostream.
|
|
*
|
|
* Revision 1.27 2005/05/07 03:14:50 steve
|
|
* ostream insert for vvp_vector4_t objects.
|
|
*
|
|
* Revision 1.26 2005/04/28 04:59:53 steve
|
|
* Remove dead functor code.
|
|
*
|
|
* Revision 1.25 2005/04/25 04:42:17 steve
|
|
* vvp_fun_signal eliminates duplicate propagations.
|
|
*
|
|
* Revision 1.24 2005/04/13 06:34:20 steve
|
|
* Add vvp driver functor for logic outputs,
|
|
* Add ostream output operators for debugging.
|
|
*
|
|
* Revision 1.23 2005/04/09 06:00:58 steve
|
|
* scalars with 0-drivers are hiZ by definition.
|
|
*
|
|
* Revision 1.22 2005/04/09 05:30:38 steve
|
|
* Default behavior for recv_vec8 methods.
|
|
*
|
|
* Revision 1.21 2005/04/03 05:45:51 steve
|
|
* Rework the vvp_delay_t class.
|
|
*
|
|
* Revision 1.20 2005/04/01 06:02:45 steve
|
|
* Reimplement combinational UDPs.
|
|
*
|
|
* Revision 1.19 2005/03/18 02:56:04 steve
|
|
* Add support for LPM_UFUNC user defined functions.
|
|
*
|
|
* Revision 1.18 2005/03/12 04:27:43 steve
|
|
* Implement VPI access to signal strengths,
|
|
* Fix resolution of ambiguous drive pairs,
|
|
* Fix spelling of scalar.
|
|
*
|
|
* Revision 1.17 2005/02/14 01:50:23 steve
|
|
* Signals may receive part vectors from %set/x0
|
|
* instructions. Re-implement the %set/x0 to do
|
|
* just that. Remove the useless %set/x0/x instruction.
|
|
*
|
|
* Revision 1.16 2005/02/12 06:13:22 steve
|
|
* Add debug dumps for vectors, and fix vvp_scaler_t make from BIT4_X values.
|
|
*
|
|
* Revision 1.15 2005/02/10 04:54:41 steve
|
|
* Simplify vvp_scaler strength representation.
|
|
*
|
|
* Revision 1.14 2005/02/07 22:42:42 steve
|
|
* Add .repeat functor and BIFIF functors.
|
|
*
|
|
* Revision 1.13 2005/02/04 05:13:02 steve
|
|
* Add wide .arith/mult, and vvp_vector2_t vectors.
|
|
*
|
|
* Revision 1.12 2005/02/03 04:55:13 steve
|
|
* Add support for reduction logic gates.
|
|
*
|
|
* Revision 1.11 2005/01/30 05:06:49 steve
|
|
* Get .arith/sub working.
|
|
*
|
|
* Revision 1.10 2005/01/29 17:52:06 steve
|
|
* move AND to buitin instead of table.
|
|
*
|
|
* Revision 1.9 2005/01/28 05:34:25 steve
|
|
* Add vector4 implementation of .arith/mult.
|
|
*
|
|
* Revision 1.8 2005/01/22 17:36:15 steve
|
|
* .cmp/x supports signed magnitude compare.
|
|
*
|
|
* Revision 1.7 2005/01/22 00:58:22 steve
|
|
* Implement the %load/x instruction.
|
|
*
|
|
* Revision 1.6 2005/01/16 04:19:08 steve
|
|
* Reimplement comparators as vvp_vector4_t nodes.
|
|
*
|
|
* Revision 1.5 2005/01/09 20:11:16 steve
|
|
* Add the .part/pv node and related functionality.
|
|
*
|
|
* Revision 1.4 2005/01/01 02:12:34 steve
|
|
* vvp_fun_signal propagates vvp_vector8_t vectors when appropriate
|
|
*
|
|
* Revision 1.3 2004/12/31 06:00:06 steve
|
|
* Implement .resolv functors, and stub signals recv_vec8 method.
|
|
*
|
|
* Revision 1.2 2004/12/15 17:16:08 steve
|
|
* Add basic force/release capabilities.
|
|
*
|
|
* Revision 1.1 2004/12/11 02:31:30 steve
|
|
* Rework of internals to carry vectors through nexus instead
|
|
* of single bits. Make the ivl, tgt-vvp and vvp initial changes
|
|
* down this path.
|
|
*
|
|
*/
|
|
|