1152 lines
33 KiB
C++
1152 lines
33 KiB
C++
/*
|
|
* Copyright (c) 1998-2000 Stephen Williams (steve@icarus.com)
|
|
*
|
|
* This source code is free software; you can redistribute it
|
|
* and/or modify it in source code form under the terms of the GNU
|
|
* General Public License as published by the Free Software
|
|
* Foundation; either version 2 of the License, or (at your option)
|
|
* any later version.
|
|
*
|
|
* This program is distributed in the hope that it will be useful,
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
* GNU General Public License for more details.
|
|
*
|
|
* You should have received a copy of the GNU General Public License
|
|
* along with this program; if not, write to the Free Software
|
|
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
|
|
*/
|
|
#ifdef HAVE_CVS_IDENT
|
|
#ident "$Id: t-xnf.cc,v 1.52 2004/02/20 18:53:36 steve Exp $"
|
|
#endif
|
|
|
|
# include "config.h"
|
|
|
|
# include <iostream>
|
|
|
|
/* XNF BACKEND
|
|
* This target supports generating Xilinx Netlist Format netlists for
|
|
* use by Xilinx tools, and other tools that accepts Xilinx designs.
|
|
*
|
|
* The code generator automatically detects ports to top level modules
|
|
* and generates SIG records that make the XNF usable as a schematic.
|
|
*
|
|
* FLAGS
|
|
* The XNF backend uses the following flags from the command line to
|
|
* affect the generated file:
|
|
*
|
|
* part=<foo>
|
|
* Specify the part type. The part string is written into the
|
|
* PART record. Valid types are defined by Xilinx or the
|
|
* receiving tools.
|
|
*
|
|
* ncf=<path>
|
|
* Specify the path to a NCF file. This is an OUTPUT file into
|
|
* which the code generator will write netlist constraints that
|
|
* relate to pin assignments, CLB placement, etc. If this flag is
|
|
* not given, no NCF file will be written.
|
|
*
|
|
* WIRE ATTRIBUTES
|
|
*
|
|
* PAD = <io><n>
|
|
* Tell the XNF generator that this wire goes to a PAD. The <io>
|
|
* is a single character that tells the direction, and <n> is the
|
|
* pin number. For example, "o31" is output on pin 31. The PAD
|
|
* attribute is not practically connected to a vector, as all the
|
|
* bits would go to the same pad.
|
|
*
|
|
* NODE ATTRIBUTES
|
|
*
|
|
* XNF-LCA = <lname>:<pin>,<pin>...
|
|
* Specify the LCA library part type for the gate. The lname
|
|
* is the name of the symbol to use (i.e. DFF) and the comma
|
|
* separated list is the names of the pins, in the order they
|
|
* appear in the Verilog source. If the name is prefixed with a
|
|
* tilde (~) then the pin is inverted, and the proper "INV" token
|
|
* will be added to the PIN record.
|
|
*
|
|
* This attribute can override even the typical generation of
|
|
* gates that one might naturally expect of the code generator,
|
|
* but may be used by the optimizers for placing parts.
|
|
*
|
|
* An example is "XNF-LCA=OBUF:O,~I". This attribute means that
|
|
* the object is an OBUF. Pin 0 is called "O", and pin 1 is
|
|
* called "I". In addition, pin 1 is inverted.
|
|
*/
|
|
|
|
# include "netlist.h"
|
|
# include "target.h"
|
|
# include <fstream>
|
|
# include <sstream>
|
|
|
|
verinum::V link_get_ival(const Link&lnk)
|
|
{
|
|
const Nexus*nex = lnk.nexus();
|
|
for (const Link*cur = nex->first_nlink()
|
|
; cur ; cur = cur->next_nlink()) {
|
|
if (cur == &lnk)
|
|
continue;
|
|
|
|
if (dynamic_cast<const NetNet*>(cur->get_obj()))
|
|
return cur->nexus()->get_init();
|
|
|
|
}
|
|
|
|
return verinum::Vx;
|
|
}
|
|
|
|
class target_xnf : public target_t {
|
|
|
|
public:
|
|
bool start_design(const Design*);
|
|
int end_design(const Design*);
|
|
void memory(const NetMemory*);
|
|
void signal(const NetNet*);
|
|
|
|
void lpm_add_sub(const NetAddSub*);
|
|
void lpm_compare(const NetCompare*);
|
|
void lpm_compare_eq_(ostream&os, const NetCompare*);
|
|
void lpm_compare_ge_(ostream&os, const NetCompare*);
|
|
void lpm_compare_le_(ostream&os, const NetCompare*);
|
|
void lpm_ff(const NetFF*);
|
|
void lpm_mux(const NetMux*);
|
|
void lpm_ram_dq(const NetRamDq*);
|
|
|
|
bool net_const(const NetConst*);
|
|
void logic(const NetLogic*);
|
|
bool bufz(const NetBUFZ*);
|
|
void udp(const NetUDP*);
|
|
|
|
private:
|
|
static string mangle(const string&);
|
|
static string mangle(perm_string);
|
|
static string choose_sig_name(const Link*lnk);
|
|
static void draw_pin(ostream&os, const string&name,
|
|
const Link&lnk);
|
|
static void draw_sym_with_lcaname(ostream&os, string lca,
|
|
const NetNode*net);
|
|
static void draw_xor(ostream&os, const NetAddSub*, unsigned idx);
|
|
enum adder_type {FORCE0, LOWER, DOUBLE, LOWER_W_CO, EXAMINE_CI };
|
|
static void draw_carry(ostream&os, const NetAddSub*, unsigned idx,
|
|
enum adder_type);
|
|
|
|
ofstream out_;
|
|
ofstream ncf_;
|
|
};
|
|
|
|
/*
|
|
* This function takes a signal name and mangles it into an equivalent
|
|
* name that is suitable to the XNF format.
|
|
*/
|
|
string target_xnf::mangle(const string&name)
|
|
{
|
|
string result;
|
|
for (unsigned idx = 0 ; idx < name.length() ; idx += 1)
|
|
switch (name[idx]) {
|
|
case '.':
|
|
result = result + "/";
|
|
break;
|
|
default:
|
|
result = result + name[idx];
|
|
break;
|
|
}
|
|
|
|
return result;
|
|
}
|
|
|
|
string target_xnf::mangle(perm_string name)
|
|
{
|
|
return mangle(string(name));
|
|
}
|
|
|
|
/*
|
|
* This method takes a signal and pin number as a nexus. Scan the
|
|
* nexus to decide which name to use if there are lots of attached
|
|
* signals.
|
|
*/
|
|
string target_xnf::choose_sig_name(const Link*lnk)
|
|
{
|
|
return mangle( string(lnk->nexus()->name()) );
|
|
}
|
|
|
|
void target_xnf::draw_pin(ostream&os, const string&name,
|
|
const Link&lnk)
|
|
{
|
|
bool inv = false;
|
|
string use_name = name;
|
|
if (use_name[0] == '~') {
|
|
inv = true;
|
|
use_name = use_name.substr(1);
|
|
}
|
|
|
|
char type=0;
|
|
switch (lnk.get_dir()) {
|
|
case Link::INPUT:
|
|
case Link::PASSIVE:
|
|
type = 'I';
|
|
break;
|
|
case Link::OUTPUT:
|
|
type = 'O';
|
|
break;
|
|
}
|
|
assert(type);
|
|
|
|
os << " PIN, " << use_name << ", " << type << ", " <<
|
|
choose_sig_name(&lnk);
|
|
if (inv) os << ",,INV";
|
|
os << endl;
|
|
}
|
|
|
|
static string scrape_pin_name(string&list)
|
|
{
|
|
unsigned idx = list.find(',');
|
|
string name = list.substr(0, idx);
|
|
list = list.substr(idx+1);
|
|
return name;
|
|
}
|
|
|
|
/*
|
|
* This method draws an LCA item based on the XNF-LCA attribute
|
|
* given. The LCA attribute gives enough information to completely
|
|
* draw the node in XNF, which is pretty handy at this point.
|
|
*/
|
|
void target_xnf::draw_sym_with_lcaname(ostream&os, string lca,
|
|
const NetNode*net)
|
|
{
|
|
unsigned idx = lca.find(':');
|
|
string lcaname = lca.substr(0, idx);
|
|
lca = lca.substr(idx+1);
|
|
|
|
os << "SYM, " << mangle(net->name()) << ", " << lcaname
|
|
<< ", LIBVER=2.0.0" << endl;
|
|
|
|
for (idx = 0 ; idx < net->pin_count() ; idx += 1) {
|
|
string usename = scrape_pin_name(lca);
|
|
if (usename == "") continue;
|
|
draw_pin(os, usename, net->pin(idx));
|
|
}
|
|
|
|
os << "END" << endl;
|
|
}
|
|
|
|
bool target_xnf::start_design(const Design*des)
|
|
{
|
|
out_.open(des->get_flag("-o"), ios::out | ios::trunc);
|
|
|
|
string ncfpath = des->get_flag("ncf");
|
|
if (ncfpath != "")
|
|
ncf_.open(ncfpath.c_str());
|
|
|
|
out_ << "LCANET,6" << endl;
|
|
out_ << "PROG,verilog,$Name: $,\"Icarus Verilog\"" << endl;
|
|
ncf_ << "# Generated by Icarus Verilog $Name: $" << endl;
|
|
|
|
if (des->get_flag("part") != 0) {
|
|
out_ << "PART," << des->get_flag("part") << endl;
|
|
ncf_ << "CONFIG PART=" << des->get_flag("part") << ";" << endl;
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
int target_xnf::end_design(const Design*)
|
|
{
|
|
out_ << "EOF" << endl;
|
|
ncf_.close();
|
|
return 0;
|
|
}
|
|
|
|
void scrape_pad_info(string str, char&dir, unsigned&num)
|
|
{
|
|
// Get rid of leading white space
|
|
while (str[0] == ' ')
|
|
str = str.substr(1);
|
|
|
|
// Get the direction letter
|
|
switch (str[0]) {
|
|
case 'b':
|
|
case 'B':
|
|
dir = 'B';
|
|
break;
|
|
case 'o':
|
|
case 'O':
|
|
dir = 'O';
|
|
break;
|
|
case 'i':
|
|
case 'I':
|
|
dir = 'I';
|
|
break;
|
|
case 't':
|
|
case 'T':
|
|
dir = 'T';
|
|
break;
|
|
default:
|
|
dir = '?';
|
|
break;
|
|
}
|
|
|
|
// Get the number part.
|
|
str = str.substr(1);
|
|
unsigned val = 0;
|
|
while (str.size() && isdigit(str[0])) {
|
|
val = val * 10 + (str[0]-'0');
|
|
str = str.substr(1);
|
|
}
|
|
num = val;
|
|
}
|
|
|
|
/*
|
|
* Memories are handled by the lpm_ram_dq method, so there is nothing
|
|
* to do here.
|
|
*/
|
|
void target_xnf::memory(const NetMemory*)
|
|
{
|
|
}
|
|
|
|
/*
|
|
* Look for signals that have attributes that are pertinent to XNF
|
|
* files. The most obvious are those that have the PAD attribute.
|
|
*
|
|
* Individual signals are easy, the pad description is a letter
|
|
* followed by a decimal number that is the pin.
|
|
*
|
|
* The PAD attribute for a vector is a comma separated pin
|
|
* descriptions, that enumerate the pins from most significant to
|
|
* least significant.
|
|
*/
|
|
void target_xnf::signal(const NetNet*net)
|
|
{
|
|
|
|
/* Look for signals that are ports to the root module. If they
|
|
are, the write a SIG record and generate a pin name so that
|
|
this module can be used as a macro. */
|
|
|
|
if (const NetScope*scope = net->scope()) do {
|
|
|
|
if (scope->parent())
|
|
break;
|
|
|
|
if (net->port_type() == NetNet::NOT_A_PORT)
|
|
break;
|
|
|
|
string mname = mangle(net->name());
|
|
string pname = mname.substr(mname.find('/')+1, mname.length());
|
|
|
|
if (net->pin_count() == 1) {
|
|
out_ << "SIG, " << mangle(net->name()) << ", PIN="
|
|
<< pname << endl;
|
|
|
|
} else for (unsigned idx = 0; idx < net->pin_count(); idx += 1) {
|
|
out_ << "SIG, " << mangle(net->name()) << "<" << idx
|
|
<< ">, PIN=" << pname << idx << endl;
|
|
}
|
|
|
|
} while (0);
|
|
|
|
|
|
/* Now look to see if a PAD attribute is attached, and if so
|
|
write out PAD information to the XNF and the ncf files. */
|
|
|
|
string pad = net->attribute(perm_string::literal("PAD")).as_string();
|
|
if (pad == "")
|
|
return;
|
|
|
|
if (net->pin_count() > 1) {
|
|
cerr << "Signal ``" << net->name() << "'' with PAD=" <<
|
|
pad << " is a vector." << endl;
|
|
return;
|
|
}
|
|
|
|
char dir;
|
|
unsigned num;
|
|
scrape_pad_info(pad, dir, num);
|
|
out_ << "EXT, " << mangle(net->name()) << ", " << dir
|
|
<< ", " << num << endl;
|
|
|
|
ncf_ << "# Assignment to pin " << num << " (DIR=" << dir <<
|
|
") by $attribute(" << net->name() << ", \"PAD\", \"" <<
|
|
pad << "\")" << endl;
|
|
ncf_ << "NET " << mangle(net->name()) << " LOC=P" << num << ";"
|
|
<< endl;
|
|
}
|
|
|
|
void target_xnf::draw_xor(ostream &os, const NetAddSub*gate, unsigned idx)
|
|
{
|
|
string name = mangle(gate->name());
|
|
string name_add = name;
|
|
string name_cout = name + "/COUT";
|
|
|
|
// We only need to pick up the
|
|
// carry if we are not the 0 bit. (We know it is 0).
|
|
os << "SYM, " << name_add << "<" << (idx+0) << ">, XOR, "
|
|
"LIBVER=2.0.0" << endl;
|
|
draw_pin(os, "O", gate->pin_Result(idx));
|
|
draw_pin(os, "I0", gate->pin_DataA(idx));
|
|
draw_pin(os, "I1", gate->pin_DataB(idx));
|
|
if (idx > 0) {
|
|
os << " PIN, I2, I, " << name_cout << "<" <<
|
|
idx << ">" << endl;
|
|
}
|
|
os << "END" << endl;
|
|
}
|
|
|
|
void target_xnf::draw_carry(ostream &os, const NetAddSub*gate, unsigned idx,
|
|
enum adder_type type)
|
|
{
|
|
string name = mangle(gate->name());
|
|
|
|
string name_cy4 = name + "/CY";
|
|
string name_cym = name + "/CM";
|
|
string name_cout = name + "/COUT";
|
|
|
|
os << "SYM, " << name_cy4 << "<" << idx << ">, CY4, "
|
|
"LIBVER=2.0.0" << endl;
|
|
|
|
// Less significant bit addends, if any
|
|
if ( type == LOWER || type == DOUBLE || type == LOWER_W_CO ) {
|
|
draw_pin(os, "A0", gate->pin_DataA(idx));
|
|
draw_pin(os, "B0", gate->pin_DataB(idx));
|
|
}
|
|
|
|
// More significant bit addends, if any
|
|
if ( type == DOUBLE ) {
|
|
draw_pin(os, "A1", gate->pin_DataA(idx+1));
|
|
draw_pin(os, "B1", gate->pin_DataB(idx+1));
|
|
}
|
|
|
|
// All but FORCE0 cells have carry input
|
|
if ( type != FORCE0 ) {
|
|
os << " PIN, CIN, I, " << name_cout << "<" << idx << ">" << endl;
|
|
}
|
|
|
|
// Connect the Cout0 to a signal so that I can connect
|
|
// it to the adder.
|
|
switch (type) {
|
|
case LOWER:
|
|
case DOUBLE:
|
|
os << " PIN, COUT0, O, " << name_cout << "<" << (idx+1) <<
|
|
">" << endl;
|
|
break;
|
|
case EXAMINE_CI:
|
|
case LOWER_W_CO:
|
|
draw_pin(os, "COUT0", gate->pin_Cout());
|
|
break;
|
|
|
|
default:
|
|
assert(0);
|
|
}
|
|
|
|
// Connect the Cout, this will connect to the next Cin
|
|
if ( type == FORCE0 || type == DOUBLE ) {
|
|
unsigned int to = (type==FORCE0)?(0):(idx+2);
|
|
os << " PIN, COUT, O, " << name_cout << "<" << to <<
|
|
">" << endl;
|
|
}
|
|
|
|
// These are the mode inputs from the CY_xx pseudo-device
|
|
for (unsigned cn = 0 ; cn < 8 ; cn += 1) {
|
|
os << " PIN, C" << cn << ", I, " << name << "/C"
|
|
<< cn << "<" << (idx) << ">" << endl;
|
|
}
|
|
os << "END" << endl;
|
|
|
|
// On to the CY_xx pseudo-device itself
|
|
os << "SYM, " << name_cym << "<" << (idx) << ">, ";
|
|
switch (type) {
|
|
case FORCE0:
|
|
os << "CY4_37, CYMODE=FORCE-0" << endl;
|
|
break;
|
|
case LOWER:
|
|
os << "CY4_01, CYMODE=ADD-F-CI" << endl;
|
|
break;
|
|
case LOWER_W_CO:
|
|
os << "CY4_01, CYMODE=ADD-F-CI" << endl;
|
|
break;
|
|
case DOUBLE:
|
|
os << "CY4_02, CYMODE=ADD-FG-CI" << endl;
|
|
break;
|
|
case EXAMINE_CI:
|
|
os << "CY4_42, CYMODE=EXAMINE-CI" << endl;
|
|
break;
|
|
}
|
|
for (unsigned cn = 0 ; cn < 8 ; cn += 1) {
|
|
os << " PIN, C" << cn << ", O, " << name << "/C"
|
|
<< cn << "<" << (idx) << ">" << endl;
|
|
}
|
|
os << "END" << endl;
|
|
}
|
|
|
|
/*
|
|
* This function makes an adder out of carry logic symbols. It makes
|
|
* as many 2 bit adders as are possible, then the top bit is made into
|
|
* a 1-bit adder (with carry in) in the F unit. The low carry is
|
|
* initialized with the FORCE-0 configuration of a carry unit below
|
|
* the 0 bit. This takes up the carry logic of the CLB below, but not
|
|
* the G function.
|
|
*
|
|
* References:
|
|
* XNF 6.1 Specification
|
|
* Application note XAPP013
|
|
* Xilinx Libraries Guide, Chapter 12
|
|
*/
|
|
void target_xnf::lpm_add_sub(const NetAddSub*gate)
|
|
{
|
|
unsigned width = gate->width();
|
|
|
|
/* Make the force-0 carry mode object to initialize the bottom
|
|
bits of the carry chain. Label this with the width instead
|
|
of the bit position so that symbols don't clash. */
|
|
|
|
draw_carry(out_, gate, width+1, FORCE0);
|
|
|
|
|
|
/* Now make the 2 bit adders that chain from the cin
|
|
initializer and up. Save the tail bits for later. */
|
|
for (unsigned idx = 0 ; idx < width-2 ; idx += 2)
|
|
draw_carry(out_, gate, idx, DOUBLE);
|
|
|
|
/* Always have one or two tail bits. The situation gets a
|
|
little tricky if we want the carry output, so handle that
|
|
here.
|
|
|
|
If the carry-out is connected, and there are an even number
|
|
of data bits, we need to see the cout from the CLB. This is
|
|
done by configuring the top CLB CY device as ADD-FG-CI (to
|
|
activate cout) and create an extra CLB CY device on top of
|
|
the carry chain configured EXAMINE-CI to put the carry into
|
|
the G function block.
|
|
|
|
IF the carry-out is connected and there are an odd number
|
|
of data bits, then the top CLB can be configured to carry
|
|
the top bit in the F unit and deliver the carry out through
|
|
the G unit.
|
|
|
|
If the carry-out is not connected, then configure this top
|
|
CLB as ADD-F-CI. The draw_xor for the top bit will include
|
|
the F carry if needed. */
|
|
|
|
if (gate->pin_Cout().is_linked()) {
|
|
if (width%2 == 0) {
|
|
draw_carry(out_, gate, width-2, DOUBLE);
|
|
draw_carry(out_, gate, width, EXAMINE_CI);
|
|
} else {
|
|
draw_carry(out_, gate, width-1, LOWER_W_CO);
|
|
}
|
|
|
|
} else {
|
|
if (width%2 == 0)
|
|
draw_carry(out_, gate, width-2, LOWER);
|
|
else
|
|
draw_carry(out_, gate, width-1, LOWER);
|
|
}
|
|
|
|
/* Now draw all the single bit (plus carry in) adders from XOR
|
|
gates. This puts the F and G units to use. */
|
|
for (unsigned idx = 0 ; idx < width ; idx += 1)
|
|
draw_xor(out_, gate, idx);
|
|
|
|
}
|
|
|
|
/*
|
|
* In XNF, comparators are done differently depending on the type of
|
|
* comparator being implemented. So, here we dispatch to the correct
|
|
* code generator.
|
|
*/
|
|
void target_xnf::lpm_compare(const NetCompare*dev)
|
|
{
|
|
if (dev->pin_AEB().is_linked() || dev->pin_ANEB().is_linked()) {
|
|
lpm_compare_eq_(out_, dev);
|
|
return;
|
|
}
|
|
|
|
if (dev->pin_AGEB().is_linked()) {
|
|
lpm_compare_ge_(out_, dev);
|
|
return;
|
|
}
|
|
|
|
if (dev->pin_ALEB().is_linked()) {
|
|
lpm_compare_le_(out_, dev);
|
|
return;
|
|
}
|
|
|
|
assert(0);
|
|
}
|
|
|
|
/*
|
|
* To compare that vectors are equal (identity comparator) generate
|
|
* XNOR gates to compare each pair of bits, then generate an AND gate
|
|
* to combine the bitwise results. This is pretty much the best way to
|
|
* do an identity compare in Xilinx CLBs.
|
|
*/
|
|
void target_xnf::lpm_compare_eq_(ostream&os, const NetCompare*dev)
|
|
{
|
|
string mname = mangle(dev->name());
|
|
|
|
/* Draw XNOR gates for each bit pair. These gates to the
|
|
bitwise comparison. */
|
|
for (unsigned idx = 0 ; idx < dev->width() ; idx += 1) {
|
|
os << "SYM, " << mname << "/cmp<" << idx << ">, "
|
|
<< "XNOR, LIBVER=2.0.0" << endl;
|
|
os << " PIN, O, O, " << mname << "/bit<" << idx << ">"
|
|
<< endl;
|
|
draw_pin(os, "I0", dev->pin_DataA(idx));
|
|
draw_pin(os, "I1", dev->pin_DataB(idx));
|
|
os << "END" << endl;
|
|
}
|
|
|
|
/* Now draw an AND gate to combine all the bitwise
|
|
comparisons. If there are more the 5 bits of data, then we
|
|
are going to have generate a nested AND to combine the
|
|
results. */
|
|
|
|
if (dev->width() > 5) {
|
|
for (unsigned idx = 0 ; idx < dev->width() ; idx += 5) {
|
|
|
|
if ((idx+1) >= dev->width()) break;
|
|
os << "SYM, " << mname << "/nest<" << idx
|
|
<< ">, AND, LIBVER=2.0.0" << endl;
|
|
|
|
os << " PIN, O, O, " << mname << "/nbit<" << idx
|
|
<< ">" << endl;
|
|
|
|
os << " PIN, I0, I, " << mname << "/bit<" << idx+0
|
|
<< ">" << endl;
|
|
os << " PIN, I1, I, " << mname << "/bit<" << idx+1
|
|
<< ">" << endl;
|
|
if ((idx+2) >= dev->width()) goto gate_out;
|
|
os << " PIN, I2, I, " << mname << "/bit<" << idx+2
|
|
<< ">" << endl;
|
|
if ((idx+3) >= dev->width()) goto gate_out;
|
|
os << " PIN, I3, I, " << mname << "/bit<" << idx+3
|
|
<< ">" << endl;
|
|
if ((idx+4) >= dev->width()) goto gate_out;
|
|
os << " PIN, I4, I, " << mname << "/bit<" << idx+4
|
|
<< ">" << endl;
|
|
gate_out:
|
|
os << "END" << endl;
|
|
}
|
|
|
|
/* Draw an AND gate if this is an EQ result, or a NAND
|
|
gate of this is a NEQ result. */
|
|
|
|
if (dev->pin_AEB().is_linked()) {
|
|
assert( ! dev->pin_ANEB().is_linked());
|
|
os << "SYM, " << mname << ", AND, LIBVER=2.0.0" << endl;
|
|
draw_pin(os, "O", dev->pin_AEB());
|
|
|
|
} else {
|
|
assert( dev->pin_ANEB().is_linked());
|
|
os << "SYM, " << mname << ", NAND, LIBVER=2.0.0" << endl;
|
|
draw_pin(os, "O", dev->pin_ANEB());
|
|
}
|
|
|
|
for (unsigned idx = 0 ; idx < dev->width() ; idx += 5) {
|
|
if ((idx+1) == dev->width())
|
|
os << " PIN, I" << idx/5 << ", I, " << mname
|
|
<< "/bit<" << idx << ">" << endl;
|
|
else
|
|
os << " PIN, I" << idx/5 << ", I, " << mname
|
|
<< "/nbit<" << idx << ">" << endl;
|
|
}
|
|
os << "END" << endl;
|
|
|
|
} else {
|
|
if (dev->pin_AEB().is_linked()) {
|
|
assert( ! dev->pin_ANEB().is_linked());
|
|
os << "SYM, " << mname << ", AND, LIBVER=2.0.0" << endl;
|
|
draw_pin(os, "O", dev->pin_AEB());
|
|
|
|
} else {
|
|
assert( dev->pin_ANEB().is_linked());
|
|
os << "SYM, " << mname << ", NAND, LIBVER=2.0.0" << endl;
|
|
draw_pin(os, "O", dev->pin_ANEB());
|
|
}
|
|
|
|
for (unsigned idx = 0 ; idx < dev->width() ; idx += 1) {
|
|
os << " PIN, I" << idx << ", I, " << mname << "/bit<"
|
|
<< idx << ">" << endl;
|
|
}
|
|
os << "END" << endl;
|
|
}
|
|
}
|
|
|
|
void target_xnf::lpm_compare_ge_(ostream&os, const NetCompare*dev)
|
|
{
|
|
cerr << "XXXX GE not supported yet" << endl;
|
|
}
|
|
|
|
void target_xnf::lpm_compare_le_(ostream&os, const NetCompare*dev)
|
|
{
|
|
cerr << "XXXX LE not supported yet" << endl;
|
|
}
|
|
|
|
void target_xnf::lpm_ff(const NetFF*net)
|
|
{
|
|
string type = net->attribute(perm_string::literal("LPM_FFType")).as_string();
|
|
if (type == "") type = "DFF";
|
|
|
|
// XXXX For now, only support DFF
|
|
assert(type == "DFF");
|
|
|
|
string lcaname = net->attribute(perm_string::literal("XNF-LCA")).as_string();
|
|
if (lcaname != "") {
|
|
draw_sym_with_lcaname(out_, lcaname, net);
|
|
return;
|
|
}
|
|
|
|
assert(net->attribute(perm_string::literal("XNF-LCA")) == verinum(""));
|
|
|
|
/* Create a DFF object for each bit of width. The symbol name
|
|
has the index number appended so that read XNF may be able
|
|
to buss them. If the NetNet objects connected to the Q
|
|
output of the DFF have an initial value, the write an INIT=
|
|
parameter to set the power-up value. */
|
|
|
|
for (unsigned idx = 0 ; idx < net->width() ; idx += 1) {
|
|
|
|
verinum::V ival = link_get_ival(net->pin_Q(idx));
|
|
|
|
out_ << "SYM, " << mangle(net->name()) << "<" << idx << ">, DFF, ";
|
|
|
|
switch (ival) {
|
|
case verinum::V0:
|
|
out_ << "INIT=R, ";
|
|
break;
|
|
case verinum::V1:
|
|
out_ << "INIT=S, ";
|
|
break;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
out_ << "LIBVER=2.0.0" << endl;
|
|
draw_pin(out_, "Q", net->pin_Q(idx));
|
|
draw_pin(out_, "D", net->pin_Data(idx));
|
|
|
|
if (net->attribute(perm_string::literal("Clock:LPM_Polarity")) == verinum("INVERT"))
|
|
draw_pin(out_, "~C", net->pin_Clock());
|
|
else
|
|
draw_pin(out_, "C", net->pin_Clock());
|
|
|
|
if (net->pin_Enable().is_linked())
|
|
draw_pin(out_, "CE", net->pin_Enable());
|
|
|
|
out_ << "END" << endl;
|
|
}
|
|
}
|
|
|
|
/*
|
|
* Generate an LPM_MUX.
|
|
*
|
|
* XXXX NOTE: For now, this only supports combinational LPM_MUX
|
|
* devices that have a single select input. These are typically
|
|
* generated from ?: expressions.
|
|
*/
|
|
void target_xnf::lpm_mux(const NetMux*net)
|
|
{
|
|
assert(net->sel_width() == 1);
|
|
assert(net->size() == 2);
|
|
|
|
for (unsigned idx = 0 ; idx < net->width() ; idx += 1) {
|
|
|
|
out_ << "SYM, " << mangle(net->name()) << "<" << idx << ">,"
|
|
<< " EQN, EQN=(I0 * I2) + (~I0 * I1)" << endl;
|
|
|
|
draw_pin(out_, "I0", net->pin_Sel(0));
|
|
draw_pin(out_, "I1", net->pin_Data(idx,0));
|
|
draw_pin(out_, "I2", net->pin_Data(idx,1));
|
|
draw_pin(out_, "O", net->pin_Result(idx));
|
|
|
|
out_ << "END" << endl;
|
|
}
|
|
|
|
}
|
|
|
|
void target_xnf::lpm_ram_dq(const NetRamDq*ram)
|
|
{
|
|
assert(ram->count_partners() == 1);
|
|
|
|
for (unsigned idx = 0 ; idx < ram->width() ; idx += 1) {
|
|
out_ << "SYM, " << mangle(ram->name())
|
|
<< "<" << idx << ">, RAMS" << endl;
|
|
|
|
draw_pin(out_, "O", ram->pin_Q(idx));
|
|
draw_pin(out_, "D", ram->pin_Data(idx));
|
|
draw_pin(out_, "WE", ram->pin_WE());
|
|
draw_pin(out_, "WCLK", ram->pin_InClock());
|
|
for (unsigned adr = 0 ; adr < ram->awidth() ; adr += 1) {
|
|
ostringstream tmp;
|
|
tmp << "A" << adr;
|
|
draw_pin(out_, tmp.str(), ram->pin_Address(adr));
|
|
}
|
|
|
|
out_ << "END" << endl;
|
|
}
|
|
}
|
|
|
|
bool target_xnf::net_const(const NetConst*c)
|
|
{
|
|
unsigned x_bits = 0;
|
|
for (unsigned idx = 0 ; idx < c->pin_count() ; idx += 1) {
|
|
verinum::V v=c->value(idx);
|
|
const Link& lnk = c->pin(idx);
|
|
|
|
switch (v) {
|
|
case verinum::V0:
|
|
out_ << " PWR, 0, " << choose_sig_name(&lnk) << endl;
|
|
break;
|
|
case verinum::V1:
|
|
out_ << " PWR, 1, " << choose_sig_name(&lnk) << endl;
|
|
break;
|
|
case verinum::Vz:
|
|
break;
|
|
default:
|
|
x_bits += 1;
|
|
if (x_bits == 1)
|
|
cerr << "xnf: error: Unknown (x) const bit value"
|
|
<< " assigned to " << choose_sig_name(&lnk)
|
|
<< endl;
|
|
break;
|
|
}
|
|
}
|
|
|
|
return x_bits == 0;
|
|
}
|
|
|
|
/*
|
|
* The logic gates I know so far can be translated directly into XNF
|
|
* standard symbol types. This is a fairly obvious transformation.
|
|
*/
|
|
void target_xnf::logic(const NetLogic*net)
|
|
{
|
|
// The XNF-LCA attribute overrides anything I might guess
|
|
// about this object.
|
|
string lca = net->attribute(perm_string::literal("XNF-LCA")).as_string();
|
|
if (lca != "") {
|
|
draw_sym_with_lcaname(out_, lca, net);
|
|
return;
|
|
}
|
|
|
|
out_ << "SYM, " << mangle(net->name()) << ", ";
|
|
switch (net->type()) {
|
|
case NetLogic::AND:
|
|
out_ << "AND";
|
|
break;
|
|
case NetLogic::BUF:
|
|
out_ << "BUF";
|
|
break;
|
|
case NetLogic::NAND:
|
|
out_ << "NAND";
|
|
break;
|
|
case NetLogic::NOR:
|
|
out_ << "NOR";
|
|
break;
|
|
case NetLogic::NOT:
|
|
out_ << "INV";
|
|
break;
|
|
case NetLogic::OR:
|
|
out_ << "OR";
|
|
break;
|
|
case NetLogic::XNOR:
|
|
out_ << "XNOR";
|
|
break;
|
|
case NetLogic::XOR:
|
|
out_ << "XOR";
|
|
break;
|
|
case NetLogic::BUFIF0:
|
|
case NetLogic::BUFIF1:
|
|
out_ << "TBUF";
|
|
break;
|
|
default:
|
|
cerr << "internal error: XNF: Unhandled logic type." << endl;
|
|
break;
|
|
}
|
|
out_ << ", LIBVER=2.0.0" << endl;
|
|
|
|
/* All of these kinds of devices have an output on pin 0. */
|
|
draw_pin(out_, "O", net->pin(0));
|
|
|
|
/* Most devices have inputs called I<N> for all the remaining
|
|
pins. The TBUF devices are slightly different, but
|
|
essentially the same structure. */
|
|
switch (net->type()) {
|
|
|
|
case NetLogic::BUFIF0:
|
|
assert(net->pin_count() == 3);
|
|
draw_pin(out_, "I", net->pin(1));
|
|
draw_pin(out_, "~T", net->pin(2));
|
|
break;
|
|
|
|
case NetLogic::BUFIF1:
|
|
assert(net->pin_count() == 3);
|
|
draw_pin(out_, "I", net->pin(1));
|
|
draw_pin(out_, "T", net->pin(2));
|
|
break;
|
|
|
|
default:
|
|
if (net->pin_count() == 2) {
|
|
draw_pin(out_, "I", net->pin(1));
|
|
} else for (unsigned idx = 1; idx < net->pin_count(); idx += 1) {
|
|
string name = "I";
|
|
assert(net->pin_count() <= 11);
|
|
name += (char)('0'+idx-1);
|
|
draw_pin(out_, name, net->pin(idx));
|
|
}
|
|
break;
|
|
}
|
|
|
|
out_ << "END" << endl;
|
|
}
|
|
|
|
bool target_xnf::bufz(const NetBUFZ*net)
|
|
{
|
|
static int warned_once=0;
|
|
if (!warned_once) {
|
|
cerr << "0:0: internal warning: BUFZ objects found "
|
|
<< "in XNF netlist." << endl;
|
|
cerr << "0:0: : I'll make BUFs for them."
|
|
<< endl;
|
|
warned_once=1;
|
|
}
|
|
out_ << "SYM, " << mangle(net->name()) << ", BUF, LIBVER=2.0.0" << endl;
|
|
assert(net->pin_count() == 2);
|
|
draw_pin(out_, "O", net->pin(0));
|
|
draw_pin(out_, "I", net->pin(1));
|
|
out_ << "END" << endl;
|
|
|
|
return true;
|
|
}
|
|
|
|
void target_xnf::udp(const NetUDP*net)
|
|
{
|
|
string lca = net->attribute(perm_string::literal("XNF-LCA")).as_string();
|
|
|
|
// I only know how to draw a UDP if it has the XNF-LCA
|
|
// attribute attached to it.
|
|
if (lca == "") {
|
|
cerr << "I don't understand this UDP." << endl;
|
|
return;
|
|
}
|
|
|
|
draw_sym_with_lcaname(out_, lca, net);
|
|
}
|
|
|
|
static target_xnf target_xnf_obj;
|
|
|
|
extern const struct target tgt_xnf = { "xnf", &target_xnf_obj };
|
|
|
|
/*
|
|
* $Log: t-xnf.cc,v $
|
|
* Revision 1.52 2004/02/20 18:53:36 steve
|
|
* Addtrbute keys are perm_strings.
|
|
*
|
|
* Revision 1.51 2004/02/18 17:11:58 steve
|
|
* Use perm_strings for named langiage items.
|
|
*
|
|
* Revision 1.50 2003/11/10 20:59:04 steve
|
|
* Design::get_flag returns const char* instead of string.
|
|
*
|
|
* Revision 1.49 2003/07/05 20:42:08 steve
|
|
* Fix some enumeration warnings.
|
|
*
|
|
* Revision 1.48 2003/06/24 01:38:03 steve
|
|
* Various warnings fixed.
|
|
*
|
|
* Revision 1.47 2003/01/30 16:23:08 steve
|
|
* Spelling fixes.
|
|
*
|
|
* Revision 1.46 2003/01/14 21:16:18 steve
|
|
* Move strstream to ostringstream for compatibility.
|
|
*
|
|
* Revision 1.45 2002/08/12 01:35:01 steve
|
|
* conditional ident string using autoconfig.
|
|
*
|
|
* Revision 1.44 2002/05/23 03:08:52 steve
|
|
* Add language support for Verilog-2001 attribute
|
|
* syntax. Hook this support into existing $attribute
|
|
* handling, and add number and void value types.
|
|
*
|
|
* Add to the ivl_target API new functions for access
|
|
* of complex attributes attached to gates.
|
|
*
|
|
* Revision 1.43 2001/07/25 03:10:50 steve
|
|
* Create a config.h.in file to hold all the config
|
|
* junk, and support gcc 3.0. (Stephan Boettcher)
|
|
*
|
|
* Revision 1.42 2001/06/30 20:11:15 steve
|
|
* typo in CYMODE=EXAMINE-CI string.
|
|
*
|
|
* Revision 1.41 2001/03/27 03:31:06 steve
|
|
* Support error code from target_t::end_design method.
|
|
*
|
|
* Revision 1.40 2001/02/10 03:22:49 steve
|
|
* Report errors when XNF code has constant X values. (PR#128)
|
|
*
|
|
* Revision 1.39 2000/11/29 23:15:54 steve
|
|
* More informative BUFZ warning.
|
|
*
|
|
* Revision 1.38 2000/11/29 02:54:49 steve
|
|
* Add XNF support for NE comparators.
|
|
*
|
|
* Revision 1.37 2000/11/29 01:34:17 steve
|
|
* Typo writing I pins to AND gates in compare.
|
|
*
|
|
* Revision 1.36 2000/11/22 21:18:20 steve
|
|
* Connect the CE if it is linked at all.
|
|
*
|
|
* Revision 1.35 2000/08/14 04:39:57 steve
|
|
* add th t-dll functions for net_const, net_bufz and processes.
|
|
*
|
|
* Revision 1.34 2000/08/09 03:43:45 steve
|
|
* Move all file manipulation out of target class.
|
|
*
|
|
* Revision 1.33 2000/08/08 01:50:42 steve
|
|
* target methods need not take a file stream.
|
|
*
|
|
* Revision 1.32 2000/07/14 06:12:58 steve
|
|
* Move inital value handling from NetNet to Nexus
|
|
* objects. This allows better propogation of inital
|
|
* values.
|
|
*
|
|
* Clean up constant propagation a bit to account
|
|
* for regs that are not really values.
|
|
*
|
|
* Revision 1.31 2000/06/28 18:38:54 steve
|
|
* Use nexus type to get nexus name.
|
|
*
|
|
* Revision 1.30 2000/06/25 19:59:42 steve
|
|
* Redesign Links to include the Nexus class that
|
|
* carries properties of the connected set of links.
|
|
*
|
|
* Revision 1.29 2000/05/14 17:55:04 steve
|
|
* Support initialization of FF Q value.
|
|
*
|
|
* Revision 1.28 2000/05/08 05:29:43 steve
|
|
* no need for nobufz functor.
|
|
*
|
|
* Revision 1.27 2000/05/07 04:37:56 steve
|
|
* Carry strength values from Verilog source to the
|
|
* pform and netlist for gates.
|
|
*
|
|
* Change vvm constants to use the driver_t to drive
|
|
* a constant value. This works better if there are
|
|
* multiple drivers on a signal.
|
|
*
|
|
* Revision 1.26 2000/04/23 23:03:13 steve
|
|
* automatically generate macro interface code.
|
|
*
|
|
* Revision 1.25 2000/04/23 21:15:07 steve
|
|
* Emit code for the bufif devices.
|
|
*
|
|
* Revision 1.24 2000/04/20 02:34:47 steve
|
|
* Generate code for identity compare. Use gates.
|
|
*
|
|
* Revision 1.23 2000/02/23 02:56:55 steve
|
|
* Macintosh compilers do not support ident.
|
|
*
|
|
* Revision 1.22 1999/12/17 03:38:46 steve
|
|
* NetConst can now hold wide constants.
|
|
*
|
|
* Revision 1.21 1999/12/16 18:54:32 steve
|
|
* Capture the carry out of carry-chain addition.
|
|
*
|
|
* Revision 1.20 1999/12/16 02:42:15 steve
|
|
* Simulate carry output on adders.
|
|
*
|
|
* Revision 1.19 1999/12/05 19:30:43 steve
|
|
* Generate XNF RAMS from synthesized memories.
|
|
*
|
|
* Revision 1.18 1999/11/19 03:02:25 steve
|
|
* Detect flip-flops connected to opads and turn
|
|
* them into OUTFF devices. Inprove support for
|
|
* the XNF-LCA attribute in the process.
|
|
*
|
|
* Revision 1.17 1999/11/17 18:52:09 steve
|
|
* Add algorithm for choosing nexus name from attached signals.
|
|
*
|
|
* Revision 1.16 1999/11/17 01:31:28 steve
|
|
* Clean up warnings that add_sub got from Alliance
|
|
*
|
|
* Revision 1.15 1999/11/06 04:51:42 steve
|
|
* Support writing some XNF things into an NCF file.
|
|
*
|
|
* Revision 1.14 1999/11/05 18:43:12 steve
|
|
* fix syntax of EQN record.
|
|
*
|
|
* Revision 1.13 1999/11/05 07:10:45 steve
|
|
* Include the obvious XOR gates in the adders.
|
|
*
|
|
* Revision 1.12 1999/11/05 04:40:40 steve
|
|
* Patch to synthesize LPM_ADD_SUB from expressions,
|
|
* Thanks to Larry Doolittle. Also handle constants
|
|
* in expressions.
|
|
*
|
|
* Synthesize adders in XNF, based on a patch from
|
|
* Larry. Accept synthesis of constants from Larry
|
|
* as is.
|
|
*
|
|
* Revision 1.11 1999/11/04 03:53:26 steve
|
|
* Patch to synthesize unary ~ and the ternary operator.
|
|
* Thanks to Larry Doolittle <LRDoolittle@lbl.gov>.
|
|
*
|
|
* Add the LPM_MUX device, and integrate it with the
|
|
* ternary synthesis from Larry. Replace the lpm_mux
|
|
* generator in t-xnf.cc to use XNF EQU devices to
|
|
* put muxs into function units.
|
|
*
|
|
* Rewrite elaborate_net for the PETernary class to
|
|
* also use the LPM_MUX device.
|
|
*
|
|
* Revision 1.10 1999/11/02 04:55:34 steve
|
|
* Add the synthesize method to NetExpr to handle
|
|
* synthesis of expressions, and use that method
|
|
* to improve r-value handling of LPM_FF synthesis.
|
|
*
|
|
* Modify the XNF target to handle LPM_FF objects.
|
|
*
|
|
* Revision 1.9 1999/08/25 22:22:08 steve
|
|
* handle bufz in XNF backend.
|
|
*
|
|
* Revision 1.8 1999/08/18 04:00:02 steve
|
|
* Fixup spelling and some error messages. <LRDoolittle@lbl.gov>
|
|
*
|
|
* Revision 1.7 1999/07/17 03:39:11 steve
|
|
* simplified process scan for targets.
|
|
*
|
|
* Revision 1.6 1998/12/09 02:43:19 steve
|
|
* Fix 2pin logic gates.
|
|
*
|
|
* Revision 1.5 1998/12/07 04:53:17 steve
|
|
* Generate OBUF or IBUF attributes (and the gates
|
|
* to garry them) where a wire is a pad. This involved
|
|
* figuring out enough of the netlist to know when such
|
|
* was needed, and to generate new gates and signales
|
|
* to handle what's missing.
|
|
*
|
|
* Revision 1.4 1998/12/02 04:37:13 steve
|
|
* Add the nobufz function to eliminate bufz objects,
|
|
* Object links are marked with direction,
|
|
* constant propagation is more careful will wide links,
|
|
* Signal folding is aware of attributes, and
|
|
* the XNF target can dump UDP objects based on LCA
|
|
* attributes.
|
|
*
|
|
* Revision 1.3 1998/11/23 00:20:24 steve
|
|
* NetAssign handles lvalues as pin links
|
|
* instead of a signal pointer,
|
|
* Wire attributes added,
|
|
* Ability to parse UDP descriptions added,
|
|
* XNF generates EXT records for signals with
|
|
* the PAD attribute.
|
|
*
|
|
* Revision 1.2 1998/11/18 04:25:22 steve
|
|
* Add -f flags for generic flag key/values.
|
|
*
|
|
* Revision 1.1 1998/11/16 05:03:53 steve
|
|
* Add the sigfold function that unlinks excess
|
|
* signal nodes, and add the XNF target.
|
|
*
|
|
*/
|
|
|