Seperate islands from tran/switch islands

Tran islands are a kinds of island, so seperate the tran handling
from the core island concept. This will allow for creating new
kinds of islands. (Think analog.)
This commit is contained in:
Stephen Williams 2008-11-29 10:05:31 -08:00
parent fc00bd9a5b
commit d5f1d0e9eb
6 changed files with 552 additions and 476 deletions

View File

@ -81,7 +81,7 @@ concat.o \
dff.o extend.o npmos.o part.o reduce.o resolv.o sfunc.o stop.o symbols.o \
ufunc.o codes.o \
vthread.o schedule.o statistics.o tables.o udp.o vvp_island.o vvp_net.o \
event.o logic.o delay.o words.o $V
event.o logic.o delay.o words.o island_tran.o $V
ifeq (@WIN32@,yes)
# Under Windows (mingw) I need to make the ivl.exe in two steps.

View File

@ -1797,3 +1797,13 @@ void compile_param_real(char*label, char*name, char*value,
free(label);
free(value);
}
void compile_island(char*label, char*type)
{
if (strcmp(type,"tran") == 0)
compile_island_tran(label);
else
assert(0);
free(type);
}

View File

@ -461,12 +461,13 @@ extern void compile_island(char*label, char*type);
extern void compile_island_port(char*label, char*island, char*src);
extern void compile_island_import(char*label, char*island, char*src);
extern void compile_island_export(char*label, char*island);
extern void compile_island_cleanup(void);
extern void compile_island_tran(char*label);
extern void compile_island_tranif(int sense, char*island,
char*ba, char*bb, char*src);
extern void compile_island_tranvp(char*island, char*ba, char*bb,
unsigned width, unsigned part, unsigned off);
extern void compile_island_cleanup(void);
#endif

370
vvp/island_tran.cc Normal file
View File

@ -0,0 +1,370 @@
/*
* Copyright (c) 2008 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
# include "vvp_island.h"
# include "compile.h"
# include "symbols.h"
# include "schedule.h"
# include <list>
using namespace std;
class vvp_island_tran : public vvp_island {
public:
void run_island();
};
struct vvp_island_branch_tran : public vvp_island_branch {
// Behavior. (This stuff should be moved to a derived
// class. The members here are specific to the tran island
// class.)
bool run_test_enabled();
void run_resolution();
bool active_high;
bool enabled_flag;
vvp_net_t*en;
int flags;
unsigned width, part, offset;
};
static inline vvp_island_branch_tran* BRANCH_TRAN(vvp_island_branch*tmp)
{
vvp_island_branch_tran*res = dynamic_cast<vvp_island_branch_tran*>(tmp);
assert(res);
return res;
}
void vvp_island_tran::run_island()
{
// Test to see if any of the branches are enabled.
bool runnable = false;
for (vvp_island_branch*cur = branches_ ; cur ; cur = cur->next_branch) {
vvp_island_branch_tran*tmp = dynamic_cast<vvp_island_branch_tran*>(cur);
assert(tmp);
runnable |= tmp->run_test_enabled();
}
if (runnable == false)
return;
for (vvp_island_branch*cur = branches_ ; cur ; cur = cur->next_branch) {
vvp_island_branch_tran*tmp = dynamic_cast<vvp_island_branch_tran*>(cur);
assert(tmp);
tmp->run_resolution();
}
}
bool vvp_island_branch_tran::run_test_enabled()
{
flags = 0;
vvp_island_port*ep = en? dynamic_cast<vvp_island_port*> (en->fun) : 0;
// If there is no ep port (no "enabled" input) then this is a
// tran branch. Assume it is always enabled.
if (ep == 0) {
enabled_flag = true;
return true;
}
enabled_flag = false;
vvp_bit4_t enable_val = ep->invalue.value(0).value();
if (active_high==true && enable_val != BIT4_1)
return false;
if (active_high==false && enable_val != BIT4_0)
return false;
enabled_flag = true;
return true;
}
static void mark_done_flags(list<vvp_branch_ptr_t>&connections)
{
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
; idx != connections.end() ; idx ++ ) {
vvp_island_branch*tmp_ptr = idx->ptr();
vvp_island_branch_tran*cur = dynamic_cast<vvp_island_branch_tran*>(tmp_ptr);
unsigned tmp_ab = idx->port();
cur->flags |= 1 << tmp_ab;
}
}
static void mark_visited_flags(list<vvp_branch_ptr_t>&connections)
{
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
; idx != connections.end() ; idx ++ ) {
vvp_island_branch*tmp_ptr = idx->ptr();
vvp_island_branch_tran*cur = dynamic_cast<vvp_island_branch_tran*>(tmp_ptr);
assert(cur);
unsigned tmp_ab = idx->port();
cur->flags |= 4 << tmp_ab;
}
}
static void clear_visited_flags(list<vvp_branch_ptr_t>&connections)
{
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
; idx != connections.end() ; idx ++ ) {
vvp_island_branch_tran*tmp_ptr = BRANCH_TRAN(idx->ptr());
unsigned tmp_ab = idx->port();
tmp_ptr->flags &= ~(4 << tmp_ab);
}
}
static vvp_vector8_t get_value_from_branch(vvp_branch_ptr_t cur);
static void resolve_values_from_connections(vvp_vector8_t&val,
list<vvp_branch_ptr_t>&connections)
{
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
; idx != connections.end() ; idx ++ ) {
vvp_vector8_t tmp = get_value_from_branch(*idx);
if (val.size() == 0)
val = tmp;
else if (tmp.size() != 0)
val = resolve(val, tmp);
}
}
static vvp_vector8_t get_value_from_branch(vvp_branch_ptr_t cur)
{
vvp_island_branch_tran*ptr = BRANCH_TRAN(cur.ptr());
assert(ptr);
unsigned ab = cur.port();
unsigned ab_other = ab^1;
// If the branch link is disabled, return nil.
if (ptr->enabled_flag == false)
return vvp_vector8_t();
vvp_branch_ptr_t other (ptr, ab_other);
// If the branch other side is already visited, return nil.
if (ptr->flags & (4<<ab_other))
return vvp_vector8_t();
// Other side net, and port value.
vvp_net_t*net_other = ab? ptr->a : ptr->b;
vvp_vector8_t val_other = island_get_value(net_other);
// recurse
list<vvp_branch_ptr_t> connections;
island_collect_node(connections, other);
mark_visited_flags(connections);
resolve_values_from_connections(val_other, connections);
// Remove visited flag
clear_visited_flags(connections);
if (val_other.size() == 0)
return val_other;
if (ptr->width) {
if (ab == 0) {
val_other = part_expand(val_other, ptr->width, ptr->offset);
} else {
val_other = val_other.subvalue(ptr->offset, ptr->part);
}
}
return val_other;
}
static void push_value_through_branches(const vvp_vector8_t&val,
list<vvp_branch_ptr_t>&connections)
{
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
; idx != connections.end() ; idx ++ ) {
vvp_island_branch_tran*tmp_ptr = BRANCH_TRAN(idx->ptr());
unsigned tmp_ab = idx->port();
unsigned other_ab = tmp_ab^1;
// If other side already done, skip
if (tmp_ptr->flags & (1<<other_ab))
continue;
// If link is not enabled, skip.
if (! tmp_ptr->enabled_flag)
continue;
vvp_net_t*other_net = other_ab? tmp_ptr->b : tmp_ptr->a;
if (tmp_ptr->width == 0) {
// Mark this end as done
tmp_ptr->flags |= (1 << other_ab);
island_send_value(other_net, val);
} if (other_ab == 1) {
// Mark as done
tmp_ptr->flags |= (1 << other_ab);
vvp_vector8_t tmp = val.subvalue(tmp_ptr->offset, tmp_ptr->part);
island_send_value(other_net, tmp);
} else {
// Otherwise, the other side is not fully
// specified, so we can't take this shortcut.
}
}
}
void vvp_island_branch_tran::run_resolution()
{
// Collect all the branch endpoints that are joined to my A
// side.
list<vvp_branch_ptr_t> connections;
bool processed_a_side = false;
vvp_vector8_t val;
if ((flags & 1) == 0) {
processed_a_side = true;
vvp_branch_ptr_t a_side(this, 0);
island_collect_node(connections, a_side);
// Mark my A side as done. Do this early to prevent recursing
// back. All the connections that share this port are also
// done. Make sure their flags are set appropriately.
mark_done_flags(connections);
val = island_get_value(a);
mark_visited_flags(connections); // Mark as visited.
// Now scan the other sides of all the branches connected to
// my A side. The get_value_from_branch() will recurse as
// necessary to depth-first walk the graph.
resolve_values_from_connections(val, connections);
// A side is done.
island_send_value(a, val);
// Clear the visited flags. This must be done so that other
// branches can read this input value.
clear_visited_flags(connections);
// Try to push the calculated value out through the
// branches. This is useful for A-side results because
// there is a high probability that the other side of
// all the connected branches is fully specified by this
// result.
push_value_through_branches(val, connections);
}
// If the B side got taken care of by above, then this branch
// is done. Stop now.
if (flags & 2)
return;
// Repeat the above for the B side.
connections.clear();
island_collect_node(connections, vvp_branch_ptr_t(this, 1));
mark_done_flags(connections);
if (enabled_flag && processed_a_side) {
// If this is a connected branch, then we know from the
// start that we have all the bits needed to complete
// the B side. Even if the B side is a part select, the
// simple part select must be correct because the
// recursive resolve_values_from_connections above must
// of cycled back to the B side of myself when resolving
// the connections.
if (width != 0)
val = val.subvalue(offset, part);
} else {
// If this branch is not enabled, then the B-side must
// be processed on its own.
val = island_get_value(b);
mark_visited_flags(connections);
resolve_values_from_connections(val, connections);
clear_visited_flags(connections);
}
island_send_value(b, val);
}
void compile_island_tran(char*label)
{
vvp_island*use_island = new vvp_island_tran;
compile_island_base(label, use_island);
}
void compile_island_tranif(int sense, char*island, char*pa, char*pb, char*pe)
{
vvp_island*use_island = compile_find_island(island);
assert(use_island);
free(island);
vvp_island_branch_tran*br = new vvp_island_branch_tran;
if (sense)
br->active_high = true;
else
br->active_high = false;
if (pe == 0) {
br->en = 0;
} else {
br->en = use_island->find_port(pe);
assert(br->en);
free(pe);
}
br->width = 0;
br->part = 0;
br->offset = 0;
use_island->add_branch(br, pa, pb);
free(pa);
free(pb);
}
void compile_island_tranvp(char*island, char*pa, char*pb,
unsigned wid, unsigned par, unsigned off)
{
vvp_island*use_island = compile_find_island(island);
assert(use_island);
free(island);
vvp_island_branch_tran*br = new vvp_island_branch_tran;
br->active_high = false;
br->en = 0;
br->width = wid;
br->part = par;
br->offset = off;
use_island->add_branch(br, pa, pb);
free(pa);
free(pb);
}

View File

@ -26,129 +26,8 @@
# include <assert.h>
# include <stdlib.h>
# include <string.h>
#ifdef HAVE_MALLOC_H
# include <malloc.h>
#endif
/*
* Islands are mutually connected bidirectional meshes that have a
* discipline other than the implicit ddiscipline of the rest of the
* run time.
*
* In the vvp input, an island is created with this record:
*
* <label> .island ;
*
* The <label> is the name given to the island. Records after this
* build up the contents of the island. Ports are created like this:
*
* <label> .port <island>, <src> ;
* <label> .import <island>, <src> ;
* <label> .export <island> ;
*
* The .port, .import and .export records create I/O, input and output
* ports. The <label> is the name that branches within the island can
* use to link to the port, and the <island> is the label for the
* island. The input and I/O ports have a <src> label that links to the
* source net from the ddiscrete domain.
*
* Branches within the island may only reference labels within the
* island. This keeps the nets of the ocean of digital away from the
* branches of analog within the island.
*/
class vvp_island_branch;
class vvp_island_node;
class vvp_island : private vvp_gen_event_s {
public:
vvp_island();
virtual ~vvp_island();
// Ports call this method to flag that something happened at
// the input. The island will use this to create an active
// event. The run_run() method will then be called by the
// scheduler to process whatever happened.
void flag_island();
// This is the method that is called, eventually, to process
// whatever happened. The derived island class implements this
// method to give the island its character.
virtual void run_island() =0;
protected:
// The base class collects a list of all the branches in the
// island. The derived island class can access this list for
// scanning the mesh.
vvp_island_branch*branches_;
public: /* These methods are used during linking. */
// Add a port to the island. The key is added to the island
// ports symbol table.
void add_port(const char*key, vvp_net_t*net);
// Add a branch to the island.
void add_branch(vvp_island_branch*branch, const char*pa, const char*pb);
vvp_net_t* find_port(const char*key);
// Call this method when linking is done.
void compile_cleanup(void);
private:
void run_run();
bool flagged_;
private:
// During link, the vvp_island keeps these symbol tables for
// mapping labels local to the island. When linking is done,
// the compile_cleanup() method removes these tables.
symbol_map_s<vvp_net_t>*ports_;
symbol_map_s<vvp_island_branch>*anodes_;
symbol_map_s<vvp_island_branch>*bnodes_;
};
/*
* An island port is a functor that connects to the ddiscrete
* discipline outside the island. (There is also a vvp_net_t object
* that refers to this port.) When data comes to the port from outside,
* it is collected and saved, and the island is notified. When code
* inside the island sends data out of the island, it uses the "out"
* pointer from the vvp_net_t that refers to this object.
*/
class vvp_island_port : public vvp_net_fun_t {
public:
explicit vvp_island_port(vvp_island*ip);
~vvp_island_port();
virtual void recv_vec4(vvp_net_ptr_t port, const vvp_vector4_t&bit,
vvp_context_t);
virtual void recv_vec4_pv(vvp_net_ptr_t port, const vvp_vector4_t&bit,
unsigned base, unsigned wid, unsigned vwid,
vvp_context_t);
virtual void recv_vec8(vvp_net_ptr_t port, const vvp_vector8_t&bit);
vvp_vector8_t invalue;
vvp_vector8_t outvalue;
private:
vvp_island*island_;
private: // not implemented
vvp_island_port(const vvp_island_port&);
vvp_island_port& operator = (const vvp_island_port&);
};
static vvp_vector8_t get_value(vvp_net_t*net)
{
vvp_island_port*fun = dynamic_cast<vvp_island_port*>(net->fun);
return fun->invalue;
}
static void send_value(vvp_net_t*net, const vvp_vector8_t&val)
void island_send_value(vvp_net_t*net, const vvp_vector8_t&val)
{
vvp_island_port*fun = dynamic_cast<vvp_island_port*>(net->fun);
if (fun->outvalue .eeq(val))
@ -158,39 +37,6 @@ static void send_value(vvp_net_t*net, const vvp_vector8_t&val)
vvp_send_vec8(net->out, fun->outvalue);
}
/*
* Branches are connected together to form a mesh of branches. Each
* endpoint (there are two) connects circularly to other branch
* endpoints that are connected together. This list of endpoints forms
* a node. Thus it is possible for branches to fully specify the mesh
* of the island.
*/
typedef vvp_sub_pointer_t<vvp_island_branch> vvp_branch_ptr_t;
struct vvp_island_branch {
virtual ~vvp_island_branch();
// Keep a list of branches in the island.
vvp_island_branch*next_branch;
// branch mesh connectivity. There is a pointer for each end
// that participates in a circular list.
vvp_sub_pointer_t<vvp_island_branch> link[2];
// Port connections
vvp_net_t*a;
vvp_net_t*b;
// Behavior. (This stuff should be moved to a derived
// class. The members here are specific to the tran island
// class.)
bool run_test_enabled();
void run_resolution();
bool active_high;
bool enabled_flag;
vvp_net_t*en;
int flags;
unsigned width, part, offset;
};
/*
* Implementations...
*/
@ -351,54 +197,6 @@ vvp_island_branch::~vvp_island_branch()
{
}
/* **** TRANIF SUPPORT **** */
class vvp_island_tran : public vvp_island {
public:
void run_island();
};
void vvp_island_tran::run_island()
{
// Test to see if any of the branches are enabled.
bool runnable = false;
for (vvp_island_branch*cur = branches_ ; cur ; cur = cur->next_branch) {
runnable |= cur->run_test_enabled();
}
if (runnable == false)
return;
for (vvp_island_branch*cur = branches_ ; cur ; cur = cur->next_branch)
cur->run_resolution();
}
bool vvp_island_branch::run_test_enabled()
{
flags = 0;
vvp_island_port*ep = en? dynamic_cast<vvp_island_port*> (en->fun) : 0;
// If there is no ep port (no "enabled" input) then this is a
// tran branch. Assume it is always enabled.
if (ep == 0) {
enabled_flag = true;
return true;
}
enabled_flag = false;
vvp_bit4_t enable_val = ep->invalue.value(0).value();
if (active_high==true && enable_val != BIT4_1)
return false;
if (active_high==false && enable_val != BIT4_0)
return false;
enabled_flag = true;
return true;
}
static vvp_branch_ptr_t next(vvp_branch_ptr_t cur)
{
vvp_island_branch*ptr = cur.ptr();
@ -406,221 +204,13 @@ static vvp_branch_ptr_t next(vvp_branch_ptr_t cur)
return ptr->link[ab];
}
static void collect_node(list<vvp_branch_ptr_t>&conn, vvp_branch_ptr_t cur)
void island_collect_node(list<vvp_branch_ptr_t>&conn, vvp_branch_ptr_t cur)
{
conn .push_back(cur);
for (vvp_branch_ptr_t idx = next(cur) ; idx != cur ; idx = next(idx))
conn.push_back(idx);
}
static void mark_done_flags(list<vvp_branch_ptr_t>&connections)
{
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
; idx != connections.end() ; idx ++ ) {
vvp_island_branch*tmp_ptr = idx->ptr();
unsigned tmp_ab = idx->port();
tmp_ptr->flags |= 1 << tmp_ab;
}
}
static void mark_visited_flags(list<vvp_branch_ptr_t>&connections)
{
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
; idx != connections.end() ; idx ++ ) {
vvp_island_branch*tmp_ptr = idx->ptr();
unsigned tmp_ab = idx->port();
tmp_ptr->flags |= 4 << tmp_ab;
}
}
static void clear_visited_flags(list<vvp_branch_ptr_t>&connections)
{
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
; idx != connections.end() ; idx ++ ) {
vvp_island_branch*tmp_ptr = idx->ptr();
unsigned tmp_ab = idx->port();
tmp_ptr->flags &= ~(4 << tmp_ab);
}
}
static vvp_vector8_t get_value_from_branch(vvp_branch_ptr_t cur);
static void resolve_values_from_connections(vvp_vector8_t&val,
list<vvp_branch_ptr_t>&connections)
{
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
; idx != connections.end() ; idx ++ ) {
vvp_vector8_t tmp = get_value_from_branch(*idx);
if (val.size() == 0)
val = tmp;
else if (tmp.size() != 0)
val = resolve(val, tmp);
}
}
static vvp_vector8_t get_value_from_branch(vvp_branch_ptr_t cur)
{
vvp_island_branch*ptr = cur.ptr();
unsigned ab = cur.port();
unsigned ab_other = ab^1;
// If the branch link is disabled, return nil.
if (ptr->enabled_flag == false)
return vvp_vector8_t();
vvp_branch_ptr_t other (ptr, ab_other);
// If the branch other side is already visited, return nil.
if (ptr->flags & (4<<ab_other))
return vvp_vector8_t();
// Other side net, and port value.
vvp_net_t*net_other = ab? ptr->a : ptr->b;
vvp_vector8_t val_other = get_value(net_other);
// recurse
list<vvp_branch_ptr_t> connections;
collect_node(connections, other);
mark_visited_flags(connections);
resolve_values_from_connections(val_other, connections);
// Remove visited flag
clear_visited_flags(connections);
if (val_other.size() == 0)
return val_other;
if (ptr->width) {
if (ab == 0) {
val_other = part_expand(val_other, ptr->width, ptr->offset);
} else {
val_other = val_other.subvalue(ptr->offset, ptr->part);
}
}
return val_other;
}
static void push_value_through_branches(const vvp_vector8_t&val,
list<vvp_branch_ptr_t>&connections)
{
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
; idx != connections.end() ; idx ++ ) {
vvp_island_branch*tmp_ptr = idx->ptr();
unsigned tmp_ab = idx->port();
unsigned other_ab = tmp_ab^1;
// If other side already done, skip
if (tmp_ptr->flags & (1<<other_ab))
continue;
// If link is not enabled, skip.
if (! tmp_ptr->enabled_flag)
continue;
vvp_net_t*other_net = other_ab? tmp_ptr->b : tmp_ptr->a;
if (tmp_ptr->width == 0) {
// Mark this end as done
tmp_ptr->flags |= (1 << other_ab);
send_value(other_net, val);
} if (other_ab == 1) {
// Mark as done
tmp_ptr->flags |= (1 << other_ab);
vvp_vector8_t tmp = val.subvalue(tmp_ptr->offset, tmp_ptr->part);
send_value(other_net, tmp);
} else {
// Otherwise, the other side is not fully
// specified, so we can't take this shortcut.
}
}
}
void vvp_island_branch::run_resolution()
{
// Collect all the branch endpoints that are joined to my A
// side.
list<vvp_branch_ptr_t> connections;
bool processed_a_side = false;
vvp_vector8_t val;
if ((flags & 1) == 0) {
processed_a_side = true;
vvp_branch_ptr_t a_side(this, 0);
collect_node(connections, a_side);
// Mark my A side as done. Do this early to prevent recursing
// back. All the connections that share this port are also
// done. Make sure their flags are set appropriately.
mark_done_flags(connections);
val = get_value(a);
mark_visited_flags(connections); // Mark as visited.
// Now scan the other sides of all the branches connected to
// my A side. The get_value_from_branch() will recurse as
// necessary to depth-first walk the graph.
resolve_values_from_connections(val, connections);
// A side is done.
send_value(a, val);
// Clear the visited flags. This must be done so that other
// branches can read this input value.
clear_visited_flags(connections);
// Try to push the calculated value out through the
// branches. This is useful for A-side results because
// there is a high probability that the other side of
// all the connected branches is fully specified by this
// result.
push_value_through_branches(val, connections);
}
// If the B side got taken care of by above, then this branch
// is done. Stop now.
if (flags & 2)
return;
// Repeat the above for the B side.
connections.clear();
collect_node(connections, vvp_branch_ptr_t(this, 1));
mark_done_flags(connections);
if (enabled_flag && processed_a_side) {
// If this is a connected branch, then we know from the
// start that we have all the bits needed to complete
// the B side. Even if the B side is a part select, the
// simple part select must be correct because the
// recursive resolve_values_from_connections above must
// of cycled back to the B side of myself when resolving
// the connections.
if (width != 0)
val = val.subvalue(offset, part);
} else {
// If this branch is not enabled, then the B-side must
// be processed on its own.
val = get_value(b);
mark_visited_flags(connections);
resolve_values_from_connections(val, connections);
clear_visited_flags(connections);
}
send_value(b, val);
}
/* **** COMPILE/LINK SUPPORT **** */
/*
@ -632,23 +222,22 @@ void vvp_island_branch::run_resolution()
static list<vvp_island*> island_list;
static symbol_map_s<vvp_island>* island_table = 0;
void compile_island(char*label, char*type)
void compile_island_base(char*label, vvp_island*use_island)
{
if (island_table == 0)
island_table = new symbol_map_s<vvp_island>;
vvp_island*use_island = 0;
if (strcmp(type,"tran") == 0) {
use_island = new vvp_island_tran;
} else {
assert(0);
}
island_table->sym_set_value(label, use_island);
island_list.push_back(use_island);
free(label);
free(type);
}
vvp_island* compile_find_island(const char*island)
{
assert(island_table);
vvp_island*use_island = island_table->sym_get_value(island);
assert(use_island);
return use_island;
}
void compile_island_port(char*label, char*island, char*src)
@ -701,58 +290,6 @@ void compile_island_import(char*label, char*island, char*src)
free(label);
}
void compile_island_tranif(int sense, char*island, char*pa, char*pb, char*pe)
{
assert(island_table);
vvp_island*use_island = island_table->sym_get_value(island);
assert(use_island);
free(island);
vvp_island_branch*br = new vvp_island_branch;
if (sense)
br->active_high = true;
else
br->active_high = false;
if (pe == 0) {
br->en = 0;
} else {
br->en = use_island->find_port(pe);
assert(br->en);
free(pe);
}
br->width = 0;
br->part = 0;
br->offset = 0;
use_island->add_branch(br, pa, pb);
free(pa);
free(pb);
}
void compile_island_tranvp(char*island, char*pa, char*pb,
unsigned wid, unsigned par, unsigned off)
{
assert(island_table);
vvp_island*use_island = island_table->sym_get_value(island);
assert(use_island);
free(island);
vvp_island_branch*br = new vvp_island_branch;
br->active_high = false;
br->en = 0;
br->width = wid;
br->part = par;
br->offset = off;
use_island->add_branch(br, pa, pb);
free(pa);
free(pb);
}
void compile_island_cleanup(void)
{
// Call the per-island cleanup to get rid of local symbol tables.

View File

@ -21,7 +21,165 @@
# include "config.h"
# include "vvp_net.h"
# include "symbols.h"
# include "schedule.h"
# include <list>
# include <assert.h>
/*
* Islands are mutually connected bidirectional meshes that have a
* discipline other than the implicit ddiscipline of the rest of the
* run time.
*
* In the vvp input, an island is created with this record:
*
* <label> .island ;
*
* The <label> is the name given to the island. Records after this
* build up the contents of the island. Ports are created like this:
*
* <label> .port <island>, <src> ;
* <label> .import <island>, <src> ;
* <label> .export <island> ;
*
* The .port, .import and .export records create I/O, input and output
* ports. The <label> is the name that branches within the island can
* use to link to the port, and the <island> is the label for the
* island. The input and I/O ports have a <src> label that links to the
* source net from the ddiscrete domain.
*
* Branches within the island may only reference labels within the
* island. This keeps the nets of the ocean of digital away from the
* branches of analog within the island.
*/
class vvp_island_branch;
class vvp_island_node;
class vvp_island : private vvp_gen_event_s {
public:
vvp_island();
virtual ~vvp_island();
// Ports call this method to flag that something happened at
// the input. The island will use this to create an active
// event. The run_run() method will then be called by the
// scheduler to process whatever happened.
void flag_island();
// This is the method that is called, eventually, to process
// whatever happened. The derived island class implements this
// method to give the island its character.
virtual void run_island() =0;
protected:
// The base class collects a list of all the branches in the
// island. The derived island class can access this list for
// scanning the mesh.
vvp_island_branch*branches_;
public: /* These methods are used during linking. */
// Add a port to the island. The key is added to the island
// ports symbol table.
void add_port(const char*key, vvp_net_t*net);
// Add a branch to the island.
void add_branch(vvp_island_branch*branch, const char*pa, const char*pb);
vvp_net_t* find_port(const char*key);
// Call this method when linking is done.
void compile_cleanup(void);
private:
void run_run();
bool flagged_;
private:
// During link, the vvp_island keeps these symbol tables for
// mapping labels local to the island. When linking is done,
// the compile_cleanup() method removes these tables.
symbol_map_s<vvp_net_t>*ports_;
symbol_map_s<vvp_island_branch>*anodes_;
symbol_map_s<vvp_island_branch>*bnodes_;
};
/*
* An island port is a functor that connects to the ddiscrete
* discipline outside the island. (There is also a vvp_net_t object
* that refers to this port.) When data comes to the port from outside,
* it is collected and saved, and the island is notified. When code
* inside the island sends data out of the island, it uses the "out"
* pointer from the vvp_net_t that refers to this object.
*/
class vvp_island_port : public vvp_net_fun_t {
public:
explicit vvp_island_port(vvp_island*ip);
~vvp_island_port();
virtual void recv_vec4(vvp_net_ptr_t port, const vvp_vector4_t&bit,
vvp_context_t);
virtual void recv_vec4_pv(vvp_net_ptr_t port, const vvp_vector4_t&bit,
unsigned base, unsigned wid, unsigned vwid,
vvp_context_t);
virtual void recv_vec8(vvp_net_ptr_t port, const vvp_vector8_t&bit);
vvp_vector8_t invalue;
vvp_vector8_t outvalue;
private:
vvp_island*island_;
private: // not implemented
vvp_island_port(const vvp_island_port&);
vvp_island_port& operator = (const vvp_island_port&);
};
inline vvp_vector8_t island_get_value(vvp_net_t*net)
{
vvp_island_port*fun = dynamic_cast<vvp_island_port*>(net->fun);
return fun->invalue;
}
extern void island_send_value(vvp_net_t*net, const vvp_vector8_t&val);
/*
* Branches are connected together to form a mesh of branches. Each
* endpoint (there are two) connects circularly to other branch
* endpoints that are connected together. This list of endpoints forms
* a node. Thus it is possible for branches to fully specify the mesh
* of the island.
*/
typedef vvp_sub_pointer_t<vvp_island_branch> vvp_branch_ptr_t;
struct vvp_island_branch {
virtual ~vvp_island_branch();
// Keep a list of branches in the island.
vvp_island_branch*next_branch;
// branch mesh connectivity. There is a pointer for each end
// that participates in a circular list.
vvp_sub_pointer_t<vvp_island_branch> link[2];
// Port connections
vvp_net_t*a;
vvp_net_t*b;
};
/*
* This function collections into the conn list all the branch ends
* that are connected together with the reference branch endpoint
* cur. All these branch ends together form a "node" of the branch
* network.
*/
extern void island_collect_node(std::list<vvp_branch_ptr_t>&conn, vvp_branch_ptr_t cur);
/*
* These functions support compile/linking.
*/
extern void compile_island_base(char*label, vvp_island*use_island);
extern vvp_island* compile_find_island(const char*island_name);
#endif