Merge branch 'master' into work6
This commit is contained in:
commit
55dbbf8ee1
3
PGate.h
3
PGate.h
|
|
@ -166,7 +166,8 @@ class PGBuiltin : public PGate {
|
|||
unsigned calculate_array_count_(Design*, NetScope*,
|
||||
long&high, long&low) const;
|
||||
|
||||
unsigned calculate_output_count_(void) const;
|
||||
void calculate_gate_and_lval_count_(unsigned&gate_count,
|
||||
unsigned&lval_count) const;
|
||||
|
||||
NetNode* create_gate_for_output_(Design*, NetScope*,
|
||||
perm_string gate_name,
|
||||
|
|
|
|||
87
elaborate.cc
87
elaborate.cc
|
|
@ -271,26 +271,35 @@ unsigned PGBuiltin::calculate_array_count_(Design*des, NetScope*scope,
|
|||
return count;
|
||||
}
|
||||
|
||||
unsigned PGBuiltin::calculate_output_count_(void) const
|
||||
void PGBuiltin::calculate_gate_and_lval_count_(unsigned&gate_count,
|
||||
unsigned&lval_count) const
|
||||
{
|
||||
unsigned output_count;
|
||||
|
||||
switch (type()) {
|
||||
case BUF:
|
||||
case NOT:
|
||||
if (pin_count() > 2) output_count = pin_count() - 1;
|
||||
else output_count = 1;
|
||||
if (pin_count() > 2) gate_count = pin_count() - 1;
|
||||
else gate_count = 1;
|
||||
lval_count = gate_count;
|
||||
break;
|
||||
case PULLDOWN:
|
||||
case PULLUP:
|
||||
output_count = pin_count();
|
||||
gate_count = pin_count();
|
||||
lval_count = gate_count;
|
||||
break;
|
||||
case TRAN:
|
||||
case RTRAN:
|
||||
case TRANIF0:
|
||||
case TRANIF1:
|
||||
case RTRANIF0:
|
||||
case RTRANIF1:
|
||||
gate_count = 1;
|
||||
lval_count = 2;
|
||||
break;
|
||||
default:
|
||||
output_count = 1;
|
||||
gate_count = 1;
|
||||
lval_count = 1;
|
||||
break;
|
||||
}
|
||||
|
||||
return output_count;
|
||||
}
|
||||
|
||||
NetNode* PGBuiltin::create_gate_for_output_(Design*des, NetScope*scope,
|
||||
|
|
@ -694,22 +703,28 @@ void PGBuiltin::elaborate(Design*des, NetScope*scope) const
|
|||
unsigned array_count = calculate_array_count_(des, scope, high, low);
|
||||
if (array_count == 0) return;
|
||||
|
||||
unsigned output_count = calculate_output_count_();
|
||||
unsigned gate_count = 0, lval_count = 0;
|
||||
calculate_gate_and_lval_count_(gate_count, lval_count);
|
||||
|
||||
/* Now we have a gate count. Elaborate the output expressions
|
||||
only. We do it early so that we can see if we can make
|
||||
wide gates instead of an array of gates. */
|
||||
/* Now we have a gate count. Elaborate the lval (output or
|
||||
bi-directional) expressions only. We do it early so that
|
||||
we can see if we can make wide gates instead of an array
|
||||
of gates. */
|
||||
|
||||
vector<NetNet*>lval_sigs (output_count);
|
||||
vector<NetNet*>lval_sigs (lval_count);
|
||||
|
||||
for (unsigned idx = 0 ; idx < output_count ; idx += 1) {
|
||||
for (unsigned idx = 0 ; idx < lval_count ; idx += 1) {
|
||||
if (pin(idx) == 0) {
|
||||
cerr << get_fileline() << ": error: Logic gate port "
|
||||
"expressions are not optional." << endl;
|
||||
des->errors += 1;
|
||||
return;
|
||||
}
|
||||
if (lval_count > gate_count)
|
||||
lval_sigs[idx] = pin(idx)->elaborate_bi_net(des, scope);
|
||||
else
|
||||
lval_sigs[idx] = pin(idx)->elaborate_lnet(des, scope);
|
||||
|
||||
// The only way this should return zero is if an error
|
||||
// happened, so for that case just return.
|
||||
if (lval_sigs[idx] == 0) return;
|
||||
|
|
@ -757,19 +772,19 @@ void PGBuiltin::elaborate(Design*des, NetScope*scope) const
|
|||
des, scope);
|
||||
|
||||
/* Allocate all the netlist nodes for the gates. */
|
||||
vector<NetNode*>cur (array_count*output_count);
|
||||
vector<NetNode*>cur (array_count*gate_count);
|
||||
|
||||
/* Now make as many gates as the bit count dictates. Give each
|
||||
a unique name, and set the delay times. */
|
||||
|
||||
for (unsigned idx = 0 ; idx < array_count*output_count ; idx += 1) {
|
||||
unsigned array_idx = idx/output_count;
|
||||
unsigned output_idx = idx%output_count;
|
||||
for (unsigned idx = 0 ; idx < array_count*gate_count ; idx += 1) {
|
||||
unsigned array_idx = idx/gate_count;
|
||||
unsigned gate_idx = idx%gate_count;
|
||||
|
||||
ostringstream tmp;
|
||||
unsigned index = (low < high)? (low+array_idx) : (low-array_idx);
|
||||
|
||||
tmp << name << "<" << index << "." << output_idx << ">";
|
||||
tmp << name << "<" << index << "." << gate_idx << ">";
|
||||
perm_string inm = lex_strings.make(tmp.str());
|
||||
|
||||
cur[idx] = create_gate_for_output_(des, scope, inm, instance_width);
|
||||
|
|
@ -808,7 +823,7 @@ void PGBuiltin::elaborate(Design*des, NetScope*scope) const
|
|||
return;
|
||||
}
|
||||
NetNet*sig = 0;
|
||||
if (idx < output_count) {
|
||||
if (idx < lval_count) {
|
||||
sig = lval_sigs[idx];
|
||||
|
||||
} else {
|
||||
|
|
@ -872,11 +887,11 @@ void PGBuiltin::elaborate(Design*des, NetScope*scope) const
|
|||
// Although in Verilog proper a multiple
|
||||
// output gate has only 1 input, this conditional
|
||||
// handles gates with N outputs and M inputs.
|
||||
if (idx < output_count) {
|
||||
if (idx < gate_count) {
|
||||
connect(cur[idx]->pin(0), sig->pin(0));
|
||||
} else {
|
||||
for (unsigned dev = 0 ; dev < output_count; dev += 1)
|
||||
connect(cur[dev]->pin(idx-output_count+1), sig->pin(0));
|
||||
for (unsigned dev = 0 ; dev < gate_count; dev += 1)
|
||||
connect(cur[dev]->pin(idx-gate_count+1), sig->pin(0));
|
||||
}
|
||||
|
||||
} else if (sig->vector_width() == 1) {
|
||||
|
|
@ -886,26 +901,32 @@ void PGBuiltin::elaborate(Design*des, NetScope*scope) const
|
|||
output port, connect it to all array_count
|
||||
devices that have outputs at this
|
||||
position. Otherwise, idx is an input to all
|
||||
array_count*output_count devices. */
|
||||
array_count*gate_count devices. */
|
||||
|
||||
if (idx < output_count) {
|
||||
if (idx < gate_count) {
|
||||
for (unsigned gdx = 0 ; gdx < array_count ; gdx += 1) {
|
||||
unsigned dev = gdx*output_count;
|
||||
unsigned dev = gdx*gate_count;
|
||||
connect(cur[dev+idx]->pin(0), sig->pin(0));
|
||||
}
|
||||
} else {
|
||||
unsigned use_idx = idx - output_count + 1;
|
||||
unsigned use_idx = idx - gate_count + 1;
|
||||
for (unsigned gdx = 0 ; gdx < cur.size() ; gdx += 1)
|
||||
connect(cur[gdx]->pin(use_idx), sig->pin(0));
|
||||
}
|
||||
|
||||
} else if (sig->vector_width() == array_count) {
|
||||
|
||||
/* Bi-directional switches should get collapsed into
|
||||
a single wide instance, so should never reach this
|
||||
point. Check this is so, as the following code
|
||||
doesn't handle bi-directional connections. */
|
||||
ivl_assert(*this, lval_count == gate_count);
|
||||
|
||||
/* Handle the general case that each bit of the
|
||||
value is connected to a different instance. In
|
||||
this case, the output is handled slightly
|
||||
different from the inputs. */
|
||||
if (idx < output_count) {
|
||||
if (idx < gate_count) {
|
||||
NetConcat*cc = new NetConcat(scope,
|
||||
scope->local_symbol(),
|
||||
sig->vector_width(),
|
||||
|
|
@ -918,7 +939,7 @@ void PGBuiltin::elaborate(Design*des, NetScope*scope) const
|
|||
|
||||
/* Connect the outputs of the gates to the concat. */
|
||||
for (unsigned gdx = 0 ; gdx < array_count; gdx += 1) {
|
||||
unsigned dev = gdx*output_count;
|
||||
unsigned dev = gdx*gate_count;
|
||||
connect(cur[dev+idx]->pin(0), cc->pin(gdx+1));
|
||||
|
||||
NetNet*tmp2 = new NetNet(scope,
|
||||
|
|
@ -944,9 +965,9 @@ void PGBuiltin::elaborate(Design*des, NetScope*scope) const
|
|||
tmp2->local_flag(true);
|
||||
tmp2->data_type(sig->data_type());
|
||||
connect(tmp1->pin(0), tmp2->pin(0));
|
||||
unsigned use_idx = idx - output_count + 1;
|
||||
unsigned dev = gdx*output_count;
|
||||
for (unsigned gdx2 = 0 ; gdx2 < output_count ; gdx2 += 1)
|
||||
unsigned use_idx = idx - gate_count + 1;
|
||||
unsigned dev = gdx*gate_count;
|
||||
for (unsigned gdx2 = 0 ; gdx2 < gate_count ; gdx2 += 1)
|
||||
connect(cur[dev+gdx2]->pin(use_idx), tmp1->pin(0));
|
||||
}
|
||||
|
||||
|
|
|
|||
|
|
@ -1,5 +1,5 @@
|
|||
/*
|
||||
* Copyright (c) 2008-2010 Stephen Williams (steve@icarus.com)
|
||||
* Copyright (c) 2008-2011 Stephen Williams (steve@icarus.com)
|
||||
*
|
||||
* This source code is free software; you can redistribute it
|
||||
* and/or modify it in source code form under the terms of the GNU
|
||||
|
|
@ -33,34 +33,17 @@ class vvp_island_tran : public vvp_island {
|
|||
|
||||
struct vvp_island_branch_tran : public vvp_island_branch {
|
||||
|
||||
// Behavior. (This stuff should be moved to a derived
|
||||
// class. The members here are specific to the tran island
|
||||
// class.)
|
||||
vvp_island_branch_tran(vvp_net_t*en__, bool active_high__,
|
||||
unsigned width__, unsigned part__,
|
||||
unsigned offset__);
|
||||
bool run_test_enabled();
|
||||
void run_resolution();
|
||||
|
||||
void clear_resolution_flags() { flags_ &= ~0x0f; }
|
||||
|
||||
void mark_done(unsigned ab) { flags_ |= 1 << ab; }
|
||||
bool test_done(unsigned ab) const { return flags_ & (1<<ab); }
|
||||
|
||||
void clear_visited(unsigned ab) { flags_ &= ~(4 << ab); }
|
||||
void mark_visited(unsigned ab) { flags_ |= 4 << ab; }
|
||||
bool test_visited(unsigned ab) const { return flags_ & (4<<ab); }
|
||||
|
||||
// Use the peek only for diagnostic purposes.
|
||||
int peek_flags() const { return flags_; }
|
||||
void run_output();
|
||||
|
||||
vvp_net_t*en;
|
||||
unsigned width, part, offset;
|
||||
bool active_high;
|
||||
bool enabled_flag;
|
||||
|
||||
private:
|
||||
int flags_;
|
||||
};
|
||||
|
||||
vvp_island_branch_tran::vvp_island_branch_tran(vvp_net_t*en__,
|
||||
|
|
@ -71,7 +54,6 @@ vvp_island_branch_tran::vvp_island_branch_tran(vvp_net_t*en__,
|
|||
: en(en__), width(width__), part(part__), offset(offset__),
|
||||
active_high(active_high__)
|
||||
{
|
||||
flags_ = 0;
|
||||
enabled_flag = en__ ? false : true;
|
||||
}
|
||||
|
||||
|
|
@ -91,10 +73,7 @@ void vvp_island_tran::run_island()
|
|||
{
|
||||
// Test to see if any of the branches are enabled. This loop
|
||||
// tests the enabled inputs for all the branches and caches
|
||||
// the results in the enabled_flag for each branch. The
|
||||
// run_test_enabled() method also clears all the processing
|
||||
// flags for the branches so that we are in a good start
|
||||
// state.
|
||||
// the results in the enabled_flag for each branch.
|
||||
bool runnable = false;
|
||||
for (vvp_island_branch*cur = branches_ ; cur ; cur = cur->next_branch) {
|
||||
vvp_island_branch_tran*tmp = dynamic_cast<vvp_island_branch_tran*>(cur);
|
||||
|
|
@ -108,13 +87,17 @@ void vvp_island_tran::run_island()
|
|||
assert(tmp);
|
||||
tmp->run_resolution();
|
||||
}
|
||||
|
||||
// Now output the resolved values.
|
||||
for (vvp_island_branch*cur = branches_ ; cur ; cur = cur->next_branch) {
|
||||
vvp_island_branch_tran*tmp = dynamic_cast<vvp_island_branch_tran*>(cur);
|
||||
assert(tmp);
|
||||
tmp->run_output();
|
||||
}
|
||||
}
|
||||
|
||||
bool vvp_island_branch_tran::run_test_enabled()
|
||||
{
|
||||
// Clear all the flags.
|
||||
clear_resolution_flags();
|
||||
|
||||
vvp_island_port*ep = en? dynamic_cast<vvp_island_port*> (en->fun) : 0;
|
||||
|
||||
// If there is no ep port (no "enabled" input) then this is a
|
||||
|
|
@ -158,260 +141,133 @@ bool vvp_island_branch_tran::run_test_enabled()
|
|||
return true;
|
||||
}
|
||||
|
||||
static void island_send_value(list<vvp_branch_ptr_t>&connections, const vvp_vector8_t&val)
|
||||
static void push_value_through_branches(const vvp_vector8_t&val,
|
||||
list<vvp_branch_ptr_t>&connections);
|
||||
|
||||
static void push_value_through_branch(const vvp_vector8_t&val,
|
||||
vvp_branch_ptr_t cur)
|
||||
{
|
||||
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
|
||||
; idx != connections.end() ; ++ idx ) {
|
||||
vvp_island_branch_tran*branch = BRANCH_TRAN(cur.ptr());
|
||||
|
||||
vvp_island_branch*tmp_ptr = idx->ptr();
|
||||
// If the branch is not enabled, skip.
|
||||
if (! branch->enabled_flag)
|
||||
return;
|
||||
|
||||
unsigned tmp_ab = idx->port();
|
||||
island_send_value(tmp_ab? tmp_ptr->b : tmp_ptr->a, val);
|
||||
}
|
||||
}
|
||||
unsigned src_ab = cur.port();
|
||||
unsigned dst_ab = src_ab^1;
|
||||
|
||||
static void mark_done_flags(list<vvp_branch_ptr_t>&connections)
|
||||
{
|
||||
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
|
||||
; idx != connections.end() ; ++ idx ) {
|
||||
vvp_net_t*dst_net = dst_ab? branch->b : branch->a;
|
||||
vvp_island_port*dst_port = dynamic_cast<vvp_island_port*>(dst_net->fun);
|
||||
|
||||
vvp_island_branch*tmp_ptr = idx->ptr();
|
||||
vvp_island_branch_tran*cur = dynamic_cast<vvp_island_branch_tran*>(tmp_ptr);
|
||||
vvp_vector8_t old_val = dst_port->value;
|
||||
|
||||
unsigned tmp_ab = idx->port();
|
||||
cur->mark_done(tmp_ab);
|
||||
}
|
||||
}
|
||||
// If the port on the other side has not yet been visited,
|
||||
// get its input value.
|
||||
if (dst_port->value.size() == 0)
|
||||
dst_port->value = island_get_value(dst_net);
|
||||
|
||||
static void mark_visited_flags(list<vvp_branch_ptr_t>&connections)
|
||||
{
|
||||
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
|
||||
; idx != connections.end() ; ++ idx ) {
|
||||
// If we don't yet have an initial value for the port, skip.
|
||||
if (dst_port->value.size() == 0)
|
||||
return;
|
||||
|
||||
vvp_island_branch*tmp_ptr = idx->ptr();
|
||||
vvp_island_branch_tran*cur = dynamic_cast<vvp_island_branch_tran*>(tmp_ptr);
|
||||
assert(cur);
|
||||
// Now resolve the pushed value with whatever values we have
|
||||
// previously collected (and resolved) for the port.
|
||||
if (branch->width == 0) {
|
||||
// There are no part selects.
|
||||
dst_port->value = resolve(dst_port->value, val);
|
||||
|
||||
unsigned tmp_ab = idx->port();
|
||||
cur->mark_visited(tmp_ab);
|
||||
}
|
||||
}
|
||||
|
||||
static void clear_visited_flags(list<vvp_branch_ptr_t>&connections)
|
||||
{
|
||||
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
|
||||
; idx != connections.end() ; ++ idx ) {
|
||||
|
||||
vvp_island_branch_tran*tmp_ptr = BRANCH_TRAN(idx->ptr());
|
||||
|
||||
unsigned tmp_ab = idx->port();
|
||||
tmp_ptr->clear_visited(tmp_ab);
|
||||
}
|
||||
}
|
||||
|
||||
static vvp_vector8_t get_value_from_branch(vvp_branch_ptr_t cur);
|
||||
|
||||
static void resolve_values_from_connections(vvp_vector8_t&val,
|
||||
list<vvp_branch_ptr_t>&connections)
|
||||
{
|
||||
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
|
||||
; idx != connections.end() ; ++ idx ) {
|
||||
vvp_vector8_t tmp = get_value_from_branch(*idx);
|
||||
if (val.size() == 0)
|
||||
val = tmp;
|
||||
else if (tmp.size() != 0)
|
||||
val = resolve(val, tmp);
|
||||
}
|
||||
}
|
||||
|
||||
static vvp_vector8_t get_value_from_branch(vvp_branch_ptr_t cur)
|
||||
{
|
||||
vvp_island_branch_tran*ptr = BRANCH_TRAN(cur.ptr());
|
||||
assert(ptr);
|
||||
unsigned ab = cur.port();
|
||||
unsigned ab_other = ab^1;
|
||||
|
||||
// If the branch link is disabled, return nil.
|
||||
if (ptr->enabled_flag == false)
|
||||
return vvp_vector8_t();
|
||||
|
||||
vvp_branch_ptr_t other (ptr, ab_other);
|
||||
|
||||
// If the branch other side is already visited, return
|
||||
// nil. This prevents recursion loops.
|
||||
if (ptr->test_visited(ab_other))
|
||||
return vvp_vector8_t();
|
||||
|
||||
// Other side net, and port value.
|
||||
vvp_net_t*net_other = ab? ptr->a : ptr->b;
|
||||
vvp_vector8_t val_other = island_get_value(net_other);
|
||||
|
||||
// recurse
|
||||
list<vvp_branch_ptr_t> connections;
|
||||
island_collect_node(connections, other);
|
||||
mark_visited_flags(connections);
|
||||
|
||||
resolve_values_from_connections(val_other, connections);
|
||||
|
||||
// Remove/unwind visited flags
|
||||
clear_visited_flags(connections);
|
||||
|
||||
if (val_other.size() == 0)
|
||||
return val_other;
|
||||
|
||||
if (ptr->width) {
|
||||
if (ab == 0) {
|
||||
val_other = part_expand(val_other, ptr->width, ptr->offset);
|
||||
} else if (dst_ab == 1) {
|
||||
// The other side is a strict subset (part select)
|
||||
// of this side.
|
||||
vvp_vector8_t tmp = val.subvalue(branch->offset, branch->part);
|
||||
dst_port->value = resolve(dst_port->value, tmp);
|
||||
|
||||
} else {
|
||||
val_other = val_other.subvalue(ptr->offset, ptr->part);
|
||||
|
||||
}
|
||||
// The other side is a superset of this side.
|
||||
vvp_vector8_t tmp = part_expand(val, branch->width, branch->offset);
|
||||
dst_port->value = resolve(dst_port->value, tmp);
|
||||
}
|
||||
|
||||
return val_other;
|
||||
// If the resolved value for the port has changed, push the new
|
||||
// value back into the network.
|
||||
if (! dst_port->value.eeq(old_val)) {
|
||||
list<vvp_branch_ptr_t> connections;
|
||||
|
||||
vvp_branch_ptr_t dst_side(branch, dst_ab);
|
||||
island_collect_node(connections, dst_side);
|
||||
|
||||
push_value_through_branches(dst_port->value, connections);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* Try to recursively push a fully resolved value back through the
|
||||
* graph. This can save many span iterations through the graph by
|
||||
* marking as done that are obviously and easily done. But it is
|
||||
* better to be conservative here.
|
||||
*
|
||||
* The connections list is filled with connections that are already
|
||||
* marked done, and the val is the resolved value. We are going to try
|
||||
* to follow branches to see if we can push the value further and mark
|
||||
* the other side done as well.
|
||||
*/
|
||||
static void push_value_through_branches(const vvp_vector8_t&val,
|
||||
list<vvp_branch_ptr_t>&connections)
|
||||
{
|
||||
for (list<vvp_branch_ptr_t>::iterator idx = connections.begin()
|
||||
; idx != connections.end() ; ++ idx ) {
|
||||
|
||||
vvp_island_branch_tran*tmp_ptr = BRANCH_TRAN(idx->ptr());
|
||||
unsigned tmp_ab = idx->port();
|
||||
unsigned other_ab = tmp_ab^1;
|
||||
|
||||
// If other side already done, skip
|
||||
if (tmp_ptr->test_done(other_ab))
|
||||
continue;
|
||||
|
||||
// If link is not enabled, skip.
|
||||
if (! tmp_ptr->enabled_flag)
|
||||
continue;
|
||||
|
||||
vvp_net_t*other_net = other_ab? tmp_ptr->b : tmp_ptr->a;
|
||||
|
||||
if (tmp_ptr->width == 0) {
|
||||
// There are no part selects, so we can safely
|
||||
// Mark this end as done.
|
||||
tmp_ptr->mark_done(other_ab);
|
||||
island_send_value(other_net, val);
|
||||
|
||||
} else if (other_ab == 1) {
|
||||
// The other side is a strict subset (part select)
|
||||
// of this side, so we can mark this end as done.
|
||||
tmp_ptr->mark_done(other_ab);
|
||||
vvp_vector8_t tmp = val.subvalue(tmp_ptr->offset, tmp_ptr->part);
|
||||
island_send_value(other_net, tmp);
|
||||
|
||||
} else {
|
||||
// Otherwise, the other side is not fully
|
||||
// specified (is a subset of the done side) so we
|
||||
// can't take this shortcut.
|
||||
}
|
||||
push_value_through_branch(val, *idx);
|
||||
}
|
||||
}
|
||||
|
||||
/*
|
||||
* This method resolves the value for a branch recursively. It uses
|
||||
* recursive descent to span the graph of branches, collecting values
|
||||
* that need to be resolved together.
|
||||
* recursive descent to span the graph of branches, pushing values
|
||||
* through the network until a stable state is reached.
|
||||
*/
|
||||
void vvp_island_branch_tran::run_resolution()
|
||||
{
|
||||
// Collect all the branch endpoints that are joined to my A
|
||||
// side.
|
||||
list<vvp_branch_ptr_t> connections;
|
||||
bool processed_a_side = false;
|
||||
vvp_vector8_t val;
|
||||
vvp_island_port*port;
|
||||
|
||||
// The "flags" member is a bitmask that marks whether an
|
||||
// endpoint of a branch has been visited. If flags&1, then the
|
||||
// A side has been visited. If flags&2, then the B side has
|
||||
// been visited. The flags help us avoid recursion when doing
|
||||
// spanning trees.
|
||||
|
||||
// If the A side has already been completed, then skip it.
|
||||
if (! test_done(0)) {
|
||||
processed_a_side = true;
|
||||
// If the A side port hasn't already been visited, then push
|
||||
// its input value through all the branches connected to it.
|
||||
port = dynamic_cast<vvp_island_port*>(a->fun);
|
||||
if (port->value.size() == 0) {
|
||||
vvp_branch_ptr_t a_side(this, 0);
|
||||
island_collect_node(connections, a_side);
|
||||
|
||||
// Mark my A side as done. Do this early to prevent recursing
|
||||
// back. All the connections that share this port are also
|
||||
// done. Make sure their flags are set appropriately.
|
||||
mark_done_flags(connections);
|
||||
|
||||
// Start with my branch-point value.
|
||||
val = island_get_value(a);
|
||||
mark_visited_flags(connections); // Mark as visited.
|
||||
|
||||
|
||||
// Now scan the other sides of all the branches connected to
|
||||
// my A side. The get_value_from_branch() will recurse as
|
||||
// necessary to depth-first walk the graph.
|
||||
resolve_values_from_connections(val, connections);
|
||||
|
||||
// A side is done.
|
||||
island_send_value(connections, val);
|
||||
|
||||
// Clear the visited flags. This must be done so that other
|
||||
// branches can read this input value.
|
||||
clear_visited_flags(connections);
|
||||
|
||||
// Try to push the calculated value out through the
|
||||
// branches. This is useful for A-side results because
|
||||
// there is a high probability that the other side of
|
||||
// all the connected branches is fully specified by this
|
||||
// result.
|
||||
push_value_through_branches(val, connections);
|
||||
}
|
||||
|
||||
// If the B side got taken care of by above, then this branch
|
||||
// is done. Stop now.
|
||||
if (test_done(1))
|
||||
return;
|
||||
|
||||
// Repeat the above for the B side.
|
||||
port->value = island_get_value(a);
|
||||
if (port->value.size() != 0)
|
||||
push_value_through_branches(port->value, connections);
|
||||
|
||||
connections.clear();
|
||||
island_collect_node(connections, vvp_branch_ptr_t(this, 1));
|
||||
mark_done_flags(connections);
|
||||
|
||||
if (enabled_flag && processed_a_side) {
|
||||
// If this is a connected branch, then we know from the
|
||||
// start that we have all the bits needed to complete
|
||||
// the B side. Even if the B side is a part select, the
|
||||
// simple part select must be correct because the
|
||||
// recursive resolve_values_from_connections above must
|
||||
// of cycled back to the B side of myself when resolving
|
||||
// the connections.
|
||||
if (width != 0)
|
||||
val = val.subvalue(offset, part);
|
||||
|
||||
} else {
|
||||
|
||||
// If this branch is not enabled, then the B-side must
|
||||
// be processed on its own.
|
||||
val = island_get_value(b);
|
||||
mark_visited_flags(connections);
|
||||
resolve_values_from_connections(val, connections);
|
||||
clear_visited_flags(connections);
|
||||
}
|
||||
|
||||
island_send_value(connections, val);
|
||||
// Do the same for the B side port. Note that if the branch
|
||||
// is enabled, the B side port will have already been visited
|
||||
// when we resolved the A side port.
|
||||
port = dynamic_cast<vvp_island_port*>(b->fun);
|
||||
if (port->value.size() == 0) {
|
||||
vvp_branch_ptr_t b_side(this, 1);
|
||||
island_collect_node(connections, b_side);
|
||||
|
||||
port->value = island_get_value(b);
|
||||
if (port->value.size() != 0)
|
||||
push_value_through_branches(port->value, connections);
|
||||
|
||||
connections.clear();
|
||||
}
|
||||
}
|
||||
|
||||
void vvp_island_branch_tran::run_output()
|
||||
{
|
||||
vvp_island_port*port;
|
||||
|
||||
// If the A side port hasn't already been updated, send the
|
||||
// resolved value to the output.
|
||||
port = dynamic_cast<vvp_island_port*>(a->fun);
|
||||
if (port->value.size() != 0) {
|
||||
island_send_value(a, port->value);
|
||||
port->value = vvp_vector8_t::nil;
|
||||
}
|
||||
|
||||
// Do the same for the B side port.
|
||||
port = dynamic_cast<vvp_island_port*>(b->fun);
|
||||
if (port->value.size() != 0) {
|
||||
island_send_value(b, port->value);
|
||||
port->value = vvp_vector8_t::nil;
|
||||
}
|
||||
}
|
||||
|
||||
void compile_island_tran(char*label)
|
||||
|
|
@ -454,7 +310,7 @@ void compile_island_tranvp(char*island, char*pa, char*pb,
|
|||
free(island);
|
||||
|
||||
vvp_island_branch_tran*br = new vvp_island_branch_tran(NULL, false,
|
||||
wid, par, off) ;
|
||||
wid, par, off);
|
||||
|
||||
use_island->add_branch(br, pa, pb);
|
||||
|
||||
|
|
|
|||
|
|
@ -1,7 +1,7 @@
|
|||
#ifndef __vvp_island_H
|
||||
#define __vvp_island_H
|
||||
/*
|
||||
* Copyright (c) 2008 Stephen Williams (steve@icarus.com)
|
||||
* Copyright (c) 2008,2011 Stephen Williams (steve@icarus.com)
|
||||
*
|
||||
* This source code is free software; you can redistribute it
|
||||
* and/or modify it in source code form under the terms of the GNU
|
||||
|
|
@ -139,6 +139,7 @@ class vvp_island_port : public vvp_net_fun_t {
|
|||
public:
|
||||
vvp_vector8_t invalue;
|
||||
vvp_vector8_t outvalue;
|
||||
vvp_vector8_t value;
|
||||
|
||||
private:
|
||||
vvp_island*island_;
|
||||
|
|
|
|||
Loading…
Reference in New Issue