Fix using array elements in expressions with an array element lval.

When you have an expression like this (extreme example):

a[idx[1]][idx[2]*4 +: 4] <= #(idx[3]) 4'ha;

where a is a reg array and idx is a reg or net array.  The retrieval
of idx[2] was clobbering index register 3, which was set before
evaluating the part offset expression, then used in the %set/av of the
array value.  (likewise for idx[1] and idx[3]])

To avoid this issue, this patch adds and uses a new instruction
%ix/mov which simply copies one indexed register to another.  When
necessary, expressions are first evaluated into temporary registers to
avoid clobbering, then moved in to place before the %*/av instruction.
This commit is contained in:
Jared Casper 2013-07-30 23:20:37 -07:00 committed by Cary R
parent ec8081f983
commit 51ca2d1243
6 changed files with 65 additions and 16 deletions

View File

@ -380,13 +380,18 @@ static void set_vec_to_lval_slice(ivl_lval_t lval, unsigned bit, unsigned wid)
/* Here we have a part select write into an array word. */
unsigned skip_set = transient_id++;
if (word_ix) {
int part_off_reg = allocate_word();
draw_eval_expr_into_integer(part_off_ex, part_off_reg);
fprintf(vvp_out, " %%jmp/1 t_%u, 4;\n", skip_set);
draw_eval_expr_into_integer(word_ix, 3);
fprintf(vvp_out, " %%jmp/1 t_%u, 4;\n", skip_set);
fprintf(vvp_out, " %%ix/mov 1, %u;\n", part_off_reg);
clr_word(part_off_reg);
} else {
draw_eval_expr_into_integer(part_off_ex, 1);
fprintf(vvp_out, " %%jmp/1 t_%u, 4;\n", skip_set);
fprintf(vvp_out, " %%ix/load 3, %lu, 0;\n", use_word);
}
draw_eval_expr_into_integer(part_off_ex, 1);
fprintf(vvp_out, " %%jmp/1 t_%u, 4;\n", skip_set);
fprintf(vvp_out, " %%set/av v%p, %u, %u;\n",
sig, bit, wid);
fprintf(vvp_out, "t_%u ;\n", skip_set);

View File

@ -46,15 +46,22 @@ static void assign_to_array_r_word(ivl_signal_t lsig, ivl_expr_t word_ix,
ivl_expr_t dexp, unsigned nevents)
{
unsigned end_assign = transient_id++;
int word_ix_reg = 3;
/* if we have to evaluate a delay expression, evaluate word index into
temp register */
if (dexp != 0) {
word_ix_reg = allocate_word();
}
/* This code is common to all the different types of array delays. */
if (number_is_immediate(word_ix, IMM_WID, 0) &&
!number_is_unknown(word_ix)) {
fprintf(vvp_out, " %%ix/load 3, %lu, 0; address\n",
get_number_immediate(word_ix));
fprintf(vvp_out, " %%ix/load %u, %lu, 0; address\n",
word_ix_reg, get_number_immediate(word_ix));
} else {
/* Calculate array word index into index register 3 */
draw_eval_expr_into_integer(word_ix, 3);
draw_eval_expr_into_integer(word_ix, word_ix_reg);
/* Skip assignment if word expression is not defined. */
unsigned do_assign = transient_id++;
fprintf(vvp_out, " %%jmp/0 t_%u, 4;\n", do_assign);
@ -67,8 +74,10 @@ static void assign_to_array_r_word(ivl_signal_t lsig, ivl_expr_t word_ix,
/* Calculated delay... */
int delay_index = allocate_word();
draw_eval_expr_into_integer(dexp, delay_index);
fprintf(vvp_out, " %%ix/mov 3, %u;\n", word_ix_reg);
fprintf(vvp_out, " %%assign/ar/d v%p, %d;\n", lsig,
delay_index);
clr_word(word_ix_reg);
clr_word(delay_index);
} else if (nevents != 0) {
/* Event control delay... */
@ -107,8 +116,11 @@ static void assign_to_array_word(ivl_signal_t lsig, ivl_expr_t word_ix,
unsigned nevents)
{
unsigned skip_assign = transient_id++;
int word_ix_reg = 3;
int part_off_reg = 1;
int delay_index;
unsigned long part_off = 0;
if (part_off_ex == 0) {
part_off = 0;
} else if (number_is_immediate(part_off_ex, IMM_WID, 0) &&
@ -117,34 +129,54 @@ static void assign_to_array_word(ivl_signal_t lsig, ivl_expr_t word_ix,
part_off_ex = 0;
}
if (dexp != 0) {
word_ix_reg = allocate_word();
part_off_reg = allocate_word();
} else if (part_off_ex) {
word_ix_reg = allocate_word();
}
/* This code is common to all the different types of array delays. */
if (number_is_immediate(word_ix, IMM_WID, 0) &&
!number_is_unknown(word_ix)) {
fprintf(vvp_out, " %%ix/load 3, %lu, 0; address\n",
fprintf(vvp_out, " %%ix/load %d, %lu, 0; address\n", word_ix_reg,
get_number_immediate(word_ix));
} else {
/* Calculate array word index into index register 3 */
draw_eval_expr_into_integer(word_ix, 3);
/* Calculate array word index into word index register */
draw_eval_expr_into_integer(word_ix, word_ix_reg);
/* Skip assignment if word expression is not defined. */
fprintf(vvp_out, " %%jmp/1 t_%u, 4;\n", skip_assign);
}
/* Store expression width into index word 0 */
fprintf(vvp_out, " %%ix/load 0, %u, 0; word width\n", width);
if (part_off_ex) {
draw_eval_expr_into_integer(part_off_ex, 1);
draw_eval_expr_into_integer(part_off_ex, part_off_reg);
/* If the index expression has XZ bits, skip the assign. */
fprintf(vvp_out, " %%jmp/1 t_%u, 4;\n", skip_assign);
if (dexp == 0) {
fprintf(vvp_out, " %%ix/mov 3, %u;\n", word_ix_reg);
clr_word(word_ix_reg);
}
} else {
/* Store word part select into index 1 */
fprintf(vvp_out, " %%ix/load 1, %lu, 0; part off\n", part_off);
/* Store word part select into part_off_reg */
fprintf(vvp_out, " %%ix/load %d, %lu, 0; part off\n",
part_off_reg, part_off);
}
if (dexp != 0) {
/* Calculated delay... */
int delay_index = allocate_word();
delay_index = allocate_word();
draw_eval_expr_into_integer(dexp, delay_index);
}
/* Store expression width into index word 0 */
fprintf(vvp_out, " %%ix/load 0, %u, 0; word width\n", width);
if (dexp != 0) {
fprintf(vvp_out, " %%ix/mov 1, %u;\n", part_off_reg);
fprintf(vvp_out, " %%ix/mov 3, %u;\n", word_ix_reg);
fprintf(vvp_out, " %%assign/av/d v%p, %d, %u;\n", lsig,
delay_index, bit);
clr_word(part_off_reg);
clr_word(word_ix_reg);
clr_word(delay_index);
} else if (nevents != 0) {
/* Event control delay... */
@ -159,7 +191,7 @@ static void assign_to_array_word(ivl_signal_t lsig, ivl_expr_t word_ix,
* delay we need to put it into an index register.
*/
if (hig_d != 0) {
int delay_index = allocate_word();
delay_index = allocate_word();
fprintf(vvp_out, " %%ix/load %d, %lu, %lu;\n",
delay_index, low_d, hig_d);
fprintf(vvp_out, " %%assign/av/d v%p, %d, %u;\n", lsig,

View File

@ -115,6 +115,7 @@ extern bool of_IX_GET_S(vthread_t thr, vvp_code_t code);
extern bool of_IX_LOAD(vthread_t thr, vvp_code_t code);
extern bool of_IX_MUL(vthread_t thr, vvp_code_t code);
extern bool of_IX_SUB(vthread_t thr, vvp_code_t code);
extern bool of_IX_MOV(vthread_t thr, vvp_code_t code);
extern bool of_JMP(vthread_t thr, vvp_code_t code);
extern bool of_JMP0(vthread_t thr, vvp_code_t code);
extern bool of_JMP0XZ(vthread_t thr, vvp_code_t code);

View File

@ -161,6 +161,7 @@ static const struct opcode_table_s opcode_table[] = {
{ "%ix/getv",of_IX_GETV,2, {OA_BIT1, OA_FUNC_PTR, OA_NONE} },
{ "%ix/getv/s",of_IX_GETV_S,2, {OA_BIT1, OA_FUNC_PTR, OA_NONE} },
{ "%ix/load",of_IX_LOAD,3, {OA_NUMBER, OA_BIT1, OA_BIT2} },
{ "%ix/mov", of_IX_MOV, 2, {OA_BIT1, OA_BIT2, OA_NONE} },
{ "%ix/mul", of_IX_MUL, 3, {OA_NUMBER, OA_BIT1, OA_BIT2} },
{ "%ix/sub", of_IX_SUB, 3, {OA_NUMBER, OA_BIT1, OA_BIT2} },
{ "%jmp", of_JMP, 1, {OA_CODE_PTR, OA_NONE, OA_NONE} },

View File

@ -553,6 +553,10 @@ register by the immediate value. The 64 bit immediate value is built
from the two 32 bit chunks <low> and <high> (see %ix/load above).
The <idx> value selects the index register.
* %ix/mov <dst>, <src>
This instruction simply sets the index register <dst> to the value of
the index register <src>.
* %jmp <code-label>

View File

@ -2828,6 +2828,12 @@ bool of_IX_LOAD(vthread_t thr, vvp_code_t cp)
return true;
}
bool of_IX_MOV(vthread_t thr, vvp_code_t cp)
{
thr->words[cp->bit_idx[0]].w_int = thr->words[cp->bit_idx[1]].w_int;
return true;
}
/*
* Load a vector into an index register. The format of the
* opcode is: