Update fstapi.{c,h} files to match GTKWave 3.3.17.

The files generated after this patch is applied are not backwardly
compatible with older versions of the API.
This commit is contained in:
Cary R 2010-11-30 18:27:55 -08:00 committed by Stephen Williams
parent d0b063b4a4
commit 25c1795fb7
2 changed files with 408 additions and 31 deletions

View File

@ -20,13 +20,31 @@
* DEALINGS IN THE SOFTWARE.
*/
#ifdef _WAVE_USE_CONFIG_HDR
#include <config.h>
#endif
#include "fstapi.h"
#include "fastlz.h"
/* this define is to force writer backward compatibility with old readers */
#ifndef FST_DYNAMIC_ALIAS_DISABLE
/* note that Judy versus Jenkins requires more experimentation: they are */
/* functionally equivalent though it appears Jenkins is slightly faster. */
/* in addition, Jenkins is not bound by the LGPL. */
#ifdef _WAVE_HAVE_JUDY
#include <Judy.h>
#else
typedef const void *Pcvoid_t;
typedef void *Pvoid_t;
typedef void **PPvoid_t;
#define JudyHSIns(a,b,c,d) JenkinsIns((a),(b),(c),(hashmask))
#define JudyHSFreeArray(a,b) JenkinsFree((a),(hashmask))
void JenkinsFree(void *base_i, uint32_t hashmask);
void **JenkinsIns(void *base_i, unsigned char *mem, uint32_t length, uint32_t hashmask);
#endif
#endif
#undef FST_DEBUG
#define FST_BREAK_SIZE (128 * 1024 * 1024)
@ -1029,9 +1047,20 @@ off_t unc_memreq = 0; /* for reader */
unsigned char *packmem;
unsigned int packmemlen;
uint32_t *vm4ip;
struct fstWriterContext *xc = (struct fstWriterContext *)ctx;
#ifndef FST_DYNAMIC_ALIAS_DISABLE
Pvoid_t PJHSArray = (Pvoid_t) NULL;
#ifndef _WAVE_HAVE_JUDY
uint32_t hashmask = xc->maxhandle;
hashmask |= hashmask >> 1;
hashmask |= hashmask >> 2;
hashmask |= hashmask >> 4;
hashmask |= hashmask >> 8;
hashmask |= hashmask >> 16;
#endif
#endif
if((!xc)||(xc->vchg_siz <= 1)||(xc->already_in_flush)) return;
xc->already_in_flush = 1; /* should really do this with a semaphore */
@ -1179,15 +1208,43 @@ for(i=0;i<xc->maxhandle;i++)
rc = compress2(dmem, &destlen, scratchpnt, wrlen, 4);
if(rc == Z_OK)
{
fpos += fstWriterVarint(f, wrlen);
fpos += destlen;
fstFwrite(dmem, destlen, 1, f);
#ifndef FST_DYNAMIC_ALIAS_DISABLE
PPvoid_t pv = JudyHSIns(&PJHSArray, dmem, destlen, NULL);
if(*pv)
{
uint32_t pvi = (long)(*pv);
vm4ip[2] = -pvi;
}
else
{
*pv = (void *)(long)(i+1);
#endif
fpos += fstWriterVarint(f, wrlen);
fpos += destlen;
fstFwrite(dmem, destlen, 1, f);
#ifndef FST_DYNAMIC_ALIAS_DISABLE
}
#endif
}
else
{
fpos += fstWriterVarint(f, 0);
fpos += wrlen;
fstFwrite(scratchpnt, wrlen, 1, f);
#ifndef FST_DYNAMIC_ALIAS_DISABLE
PPvoid_t pv = JudyHSIns(&PJHSArray, scratchpnt, wrlen, NULL);
if(*pv)
{
uint32_t pvi = (long)(*pv);
vm4ip[2] = -pvi;
}
else
{
*pv = (void *)(long)(i+1);
#endif
fpos += fstWriterVarint(f, 0);
fpos += wrlen;
fstFwrite(scratchpnt, wrlen, 1, f);
#ifndef FST_DYNAMIC_ALIAS_DISABLE
}
#endif
}
}
else
@ -1205,23 +1262,65 @@ for(i=0;i<xc->maxhandle;i++)
rc = fastlz_compress(scratchpnt, wrlen, dmem);
if(rc < destlen)
{
fpos += fstWriterVarint(f, wrlen);
fpos += rc;
fstFwrite(dmem, rc, 1, f);
#ifndef FST_DYNAMIC_ALIAS_DISABLE
PPvoid_t pv = JudyHSIns(&PJHSArray, dmem, rc, NULL);
if(*pv)
{
uint32_t pvi = (long)(*pv);
vm4ip[2] = -pvi;
}
else
{
*pv = (void *)(long)(i+1);
#endif
fpos += fstWriterVarint(f, wrlen);
fpos += rc;
fstFwrite(dmem, rc, 1, f);
#ifndef FST_DYNAMIC_ALIAS_DISABLE
}
#endif
}
else
{
fpos += fstWriterVarint(f, 0);
fpos += wrlen;
fstFwrite(scratchpnt, wrlen, 1, f);
#ifndef FST_DYNAMIC_ALIAS_DISABLE
PPvoid_t pv = JudyHSIns(&PJHSArray, scratchpnt, wrlen, NULL);
if(*pv)
{
uint32_t pvi = (long)(*pv);
vm4ip[2] = -pvi;
}
else
{
*pv = (void *)(long)(i+1);
#endif
fpos += fstWriterVarint(f, 0);
fpos += wrlen;
fstFwrite(scratchpnt, wrlen, 1, f);
#ifndef FST_DYNAMIC_ALIAS_DISABLE
}
#endif
}
}
}
else
{
fpos += fstWriterVarint(f, 0);
fpos += wrlen;
fstFwrite(scratchpnt, wrlen, 1, f);
#ifndef FST_DYNAMIC_ALIAS_DISABLE
PPvoid_t pv = JudyHSIns(&PJHSArray, scratchpnt, wrlen, NULL);
if(*pv)
{
uint32_t pvi = (long)(*pv);
vm4ip[2] = -pvi;
}
else
{
*pv = (void *)(long)(i+1);
#endif
fpos += fstWriterVarint(f, 0);
fpos += wrlen;
fstFwrite(scratchpnt, wrlen, 1, f);
#ifndef FST_DYNAMIC_ALIAS_DISABLE
}
#endif
}
vm4ip[3] = 0;
@ -1231,6 +1330,10 @@ for(i=0;i<xc->maxhandle;i++)
}
}
#ifndef FST_DYNAMIC_ALIAS_DISABLE
JudyHSFreeArray(&PJHSArray, NULL);
#endif
free(packmem); packmem = NULL; packmemlen = 0;
prevpos = 0; zerocnt = 0;
@ -1251,8 +1354,16 @@ for(i=0;i<xc->maxhandle;i++)
zerocnt = 0;
}
fpos += fstWriterVarint(f, ((vm4ip[2] - prevpos) << 1) | 1);
prevpos = vm4ip[2];
if(vm4ip[2] & 0x80000000)
{
fpos += fstWriterVarint(f, 0); /* signal */
fpos += fstWriterVarint(f, (-(int32_t)vm4ip[2]));
}
else
{
fpos += fstWriterVarint(f, ((vm4ip[2] - prevpos) << 1) | 1);
prevpos = vm4ip[2];
}
vm4ip[2] = 0;
vm4ip[3] = 0; /* clear out tchn idx */
}
@ -1317,7 +1428,13 @@ fstWriterUint64(xc->handle, unc_memreq); /* amount of buffer memory required i
fflush(xc->handle);
fseeko(xc->handle, xc->section_start-1, SEEK_SET); /* write out FST_BL_VCDATA over FST_BL_SKIP */
#ifndef FST_DYNAMIC_ALIAS_DISABLE
fputc(FST_BL_VCDATA_DYN_ALIAS, xc->handle);
#else
fputc(FST_BL_VCDATA, xc->handle);
#endif
fflush(xc->handle);
fseeko(xc->handle, endpos, SEEK_SET); /* seek to end of file */
@ -2827,7 +2944,7 @@ if(gzread_pass_status)
xc->date[FST_HDR_DATE_SIZE] = 0;
}
}
else if(sectype == FST_BL_VCDATA)
else if((sectype == FST_BL_VCDATA) || (sectype == FST_BL_VCDATA_DYN_ALIAS))
{
if(hdr_incomplete)
{
@ -3128,7 +3245,7 @@ for(;;)
}
blkpos++;
if(sectype != FST_BL_VCDATA)
if((sectype != FST_BL_VCDATA) && (sectype != FST_BL_VCDATA_DYN_ALIAS))
{
blkpos += seclen;
continue;
@ -3432,8 +3549,8 @@ for(;;)
free(chain_table_lengths);
vc_maxhandle_largest = vc_maxhandle;
chain_table = malloc((vc_maxhandle+1) * sizeof(off_t));
chain_table_lengths = malloc((vc_maxhandle+1) * sizeof(uint32_t));
chain_table = calloc((vc_maxhandle+1), sizeof(off_t));
chain_table_lengths = calloc((vc_maxhandle+1), sizeof(uint32_t));
}
if(!chain_table || !chain_table_lengths) goto block_err;
@ -3441,18 +3558,28 @@ for(;;)
pnt = chain_cmem;
idx = 0;
pval = 0;
do
{
int skiplen;
uint64_t val = fstGetVarint32(pnt, &skiplen);
if(!val)
{
pnt += skiplen;
val = fstGetVarint32(pnt, &skiplen);
chain_table[idx] = 0; /* need to explicitly zero as calloc above might not run */
chain_table_lengths[idx] = -val; /* because during this loop iter would give stale data! */
idx++;
}
else
if(val&1)
{
pval = chain_table[idx] = pval + (val >> 1);
if(idx) { chain_table_lengths[pidx] = pval - chain_table[pidx]; }
pidx = idx++;
}
else
else
{
int loopcnt = val >> 1;
for(i=0;i<loopcnt;i++)
@ -3465,6 +3592,22 @@ for(;;)
} while (pnt != (chain_cmem + chain_clen));
chain_table[idx] = indx_pos - vc_start;
chain_table_lengths[pidx] = chain_table[idx] - chain_table[pidx];
for(i=0;i<idx;i++)
{
int32_t v32 = chain_table_lengths[i];
if((v32 < 0) && (!chain_table[i]))
{
v32 = -v32;
v32--;
if(((uint32_t)v32) < i) /* sanity check */
{
chain_table[i] = chain_table[v32];
chain_table_lengths[i] = chain_table_lengths[v32];
}
}
}
#ifdef FST_DEBUG
printf("\tdecompressed chain idx len: %"PRIu32"\n", idx);
#endif
@ -3521,7 +3664,7 @@ for(;;)
if(rc != Z_OK)
{
printf("\tclen: %d (rc=%d)\n", (int)val, rc);
printf("\tfac: %d clen: %d (rc=%d)\n", (int)i, (int)val, rc);
exit(255);
}
@ -3941,7 +4084,7 @@ for(;;)
}
blkpos++;
if(sectype != FST_BL_VCDATA)
if((sectype != FST_BL_VCDATA) && (sectype != FST_BL_VCDATA_DYN_ALIAS))
{
blkpos += seclen;
continue;
@ -3963,7 +4106,7 @@ for(;;)
beg_tim2 = fstReaderUint64(xc->f);
end_tim2 = fstReaderUint64(xc->f);
if((sectype != FST_BL_VCDATA) || (!seclen) || (beg_tim2 != tim))
if(((sectype != FST_BL_VCDATA)&&(sectype != FST_BL_VCDATA_DYN_ALIAS)) || (!seclen) || (beg_tim2 != tim))
{
blkpos = prev_blkpos;
break;
@ -4096,8 +4239,8 @@ chain_cmem = malloc(chain_clen);
fseeko(xc->f, indx_pos, SEEK_SET);
fstFread(chain_cmem, chain_clen, 1, xc->f);
xc->rvat_chain_table = malloc((xc->rvat_vc_maxhandle+1) * sizeof(off_t));
xc->rvat_chain_table_lengths = malloc((xc->rvat_vc_maxhandle+1) * sizeof(uint32_t));
xc->rvat_chain_table = calloc((xc->rvat_vc_maxhandle+1), sizeof(off_t));
xc->rvat_chain_table_lengths = calloc((xc->rvat_vc_maxhandle+1), sizeof(uint32_t));
pnt = chain_cmem;
idx = 0;
@ -4106,7 +4249,16 @@ do
{
int skiplen;
uint64_t val = fstGetVarint32(pnt, &skiplen);
if(!val)
{
pnt += skiplen;
val = fstGetVarint32(pnt, &skiplen);
xc->rvat_chain_table[idx] = 0;
xc->rvat_chain_table_lengths[idx] = -val;
idx++;
}
else
if(val&1)
{
pval = xc->rvat_chain_table[idx] = pval + (val >> 1);
@ -4129,6 +4281,21 @@ free(chain_cmem);
xc->rvat_chain_table[idx] = indx_pos - xc->rvat_vc_start;
xc->rvat_chain_table_lengths[pidx] = xc->rvat_chain_table[idx] - xc->rvat_chain_table[pidx];
for(i=0;i<idx;i++)
{
int32_t v32 = xc->rvat_chain_table_lengths[i];
if((v32 < 0) && (!xc->rvat_chain_table[i]))
{
v32 = -v32;
v32--;
if(((uint32_t)v32) < i) /* sanity check */
{
xc->rvat_chain_table[i] = xc->rvat_chain_table[v32];
xc->rvat_chain_table_lengths[i] = xc->rvat_chain_table_lengths[v32];
}
}
}
#ifdef FST_DEBUG
printf("\tdecompressed chain idx len: %"PRIu32"\n", idx);
#endif
@ -4389,3 +4556,212 @@ if(xc->signal_lens[facidx] == 1)
/* return(NULL); */
}
/**********************************************************************/
#ifndef FST_DYNAMIC_ALIAS_DISABLE
#ifndef _WAVE_HAVE_JUDY
/***********************/
/*** ***/
/*** jenkins hash ***/
/*** ***/
/***********************/
/*
--------------------------------------------------------------------
mix -- mix 3 32-bit values reversibly.
For every delta with one or two bits set, and the deltas of all three
high bits or all three low bits, whether the original value of a,b,c
is almost all zero or is uniformly distributed,
* If mix() is run forward or backward, at least 32 bits in a,b,c
have at least 1/4 probability of changing.
* If mix() is run forward, every bit of c will change between 1/3 and
2/3 of the time. (Well, 22/100 and 78/100 for some 2-bit deltas.)
mix() was built out of 36 single-cycle latency instructions in a
structure that could supported 2x parallelism, like so:
a -= b;
a -= c; x = (c>>13);
b -= c; a ^= x;
b -= a; x = (a<<8);
c -= a; b ^= x;
c -= b; x = (b>>13);
...
Unfortunately, superscalar Pentiums and Sparcs can't take advantage
of that parallelism. They've also turned some of those single-cycle
latency instructions into multi-cycle latency instructions. Still,
this is the fastest good hash I could find. There were about 2^^68
to choose from. I only looked at a billion or so.
--------------------------------------------------------------------
*/
#define mix(a,b,c) \
{ \
a -= b; a -= c; a ^= (c>>13); \
b -= c; b -= a; b ^= (a<<8); \
c -= a; c -= b; c ^= (b>>13); \
a -= b; a -= c; a ^= (c>>12); \
b -= c; b -= a; b ^= (a<<16); \
c -= a; c -= b; c ^= (b>>5); \
a -= b; a -= c; a ^= (c>>3); \
b -= c; b -= a; b ^= (a<<10); \
c -= a; c -= b; c ^= (b>>15); \
}
/*
--------------------------------------------------------------------
j_hash() -- hash a variable-length key into a 32-bit value
k : the key (the unaligned variable-length array of bytes)
len : the length of the key, counting by bytes
initval : can be any 4-byte value
Returns a 32-bit value. Every bit of the key affects every bit of
the return value. Every 1-bit and 2-bit delta achieves avalanche.
About 6*len+35 instructions.
The best hash table sizes are powers of 2. There is no need to do
mod a prime (mod is sooo slow!). If you need less than 32 bits,
use a bitmask. For example, if you need only 10 bits, do
h = (h & hashmask(10));
In which case, the hash table should have hashsize(10) elements.
If you are hashing n strings (uint8_t **)k, do it like this:
for (i=0, h=0; i<n; ++i) h = hash( k[i], len[i], h);
By Bob Jenkins, 1996. bob_jenkins@burtleburtle.net. You may use this
code any way you wish, private, educational, or commercial. It's free.
See http://burtleburtle.net/bob/hash/evahash.html
Use for hash table lookup, or anything where one collision in 2^^32 is
acceptable. Do NOT use for cryptographic purposes.
--------------------------------------------------------------------
*/
static uint32_t j_hash(uint8_t *k, uint32_t length, uint32_t initval)
{
uint32_t a,b,c,len;
/* Set up the internal state */
len = length;
a = b = 0x9e3779b9; /* the golden ratio; an arbitrary value */
c = initval; /* the previous hash value */
/*---------------------------------------- handle most of the key */
while (len >= 12)
{
a += (k[0] +((uint32_t)k[1]<<8) +((uint32_t)k[2]<<16) +((uint32_t)k[3]<<24));
b += (k[4] +((uint32_t)k[5]<<8) +((uint32_t)k[6]<<16) +((uint32_t)k[7]<<24));
c += (k[8] +((uint32_t)k[9]<<8) +((uint32_t)k[10]<<16)+((uint32_t)k[11]<<24));
mix(a,b,c);
k += 12; len -= 12;
}
/*------------------------------------- handle the last 11 bytes */
c += length;
switch(len) /* all the case statements fall through */
{
case 11: c+=((uint32_t)k[10]<<24);
case 10: c+=((uint32_t)k[9]<<16);
case 9 : c+=((uint32_t)k[8]<<8);
/* the first byte of c is reserved for the length */
case 8 : b+=((uint32_t)k[7]<<24);
case 7 : b+=((uint32_t)k[6]<<16);
case 6 : b+=((uint32_t)k[5]<<8);
case 5 : b+=k[4];
case 4 : a+=((uint32_t)k[3]<<24);
case 3 : a+=((uint32_t)k[2]<<16);
case 2 : a+=((uint32_t)k[1]<<8);
case 1 : a+=k[0];
/* case 0: nothing left to add */
}
mix(a,b,c);
/*-------------------------------------------- report the result */
return(c);
}
/********************************************************************/
/***************************/
/*** ***/
/*** judy HS emulation ***/
/*** ***/
/***************************/
struct collchain_t
{
struct collchain_t *next;
void *payload;
uint32_t fullhash, length;
unsigned char mem[1];
};
void **JenkinsIns(void *base_i, unsigned char *mem, uint32_t length, uint32_t hashmask)
{
struct collchain_t ***base = (struct collchain_t ***)base_i;
uint32_t hf, h;
struct collchain_t **ar;
struct collchain_t *chain, *pchain;
if(!*base)
{
*base = calloc(1, (hashmask + 1) * sizeof(void *));
}
ar = *base;
h = (hf = j_hash(mem, length, length)) & hashmask;
pchain = chain = ar[h];
while(chain)
{
if((chain->fullhash == hf) && (chain->length == length) && !memcmp(chain->mem, mem, length))
{
if(pchain != chain) /* move hit to front */
{
pchain->next = chain->next;
chain->next = ar[h];
ar[h] = chain;
}
return(&(chain->payload));
}
pchain = chain;
chain = chain->next;
}
chain = calloc(1, sizeof(struct collchain_t) + length - 1);
memcpy(chain->mem, mem, length);
chain->fullhash = hf;
chain->length = length;
chain->next = ar[h];
ar[h] = chain;
return(&(chain->payload));
}
void JenkinsFree(void *base_i, uint32_t hashmask)
{
struct collchain_t ***base = (struct collchain_t ***)base_i;
uint32_t h;
struct collchain_t **ar;
struct collchain_t *chain, *chain_next;
if(base && *base)
{
ar = *base;
for(h=0;h<=hashmask;h++)
{
chain = ar[h];
while(chain)
{
chain_next = chain->next;
free(chain);
chain = chain_next;
}
}
free(*base);
*base = NULL;
}
}
#endif
#endif

View File

@ -46,6 +46,7 @@ enum fstBlockType {
FST_BL_BLACKOUT = 2,
FST_BL_GEOM = 3,
FST_BL_HIER = 4,
FST_BL_VCDATA_DYN_ALIAS = 5,
FST_BL_ZWRAPPER = 254, /* indicates that whole trace is gz wrapped */
FST_BL_SKIP = 255 /* used while block is being written */