iverilog/vhdlpp/subprogram.cc

311 lines
8.9 KiB
C++
Raw Normal View History

/*
* Copyright (c) 2013-2014 Stephen Williams (steve@icarus.com)
* Copyright CERN 2013 / Stephen Williams (steve@icarus.com)
* Copyright CERN 2015
* @author Maciej Suminski (maciej.suminski@cern.ch)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
# include "subprogram.h"
# include "entity.h"
# include "vtype.h"
# include "sequential.h"
# include "ivl_assert.h"
# include "compiler.h"
# include <cassert>
using namespace std;
Subprogram::Subprogram(perm_string nam, list<InterfacePort*>*ports,
const VType*return_type)
: name_(nam), parent_(0), ports_(ports), return_type_(return_type), statements_(0)
{
}
Subprogram::~Subprogram()
{
}
void Subprogram::set_parent(const ScopeBase*par)
{
ivl_assert(*this, parent_ == 0);
parent_ = par;
}
void Subprogram::set_program_body(list<SequentialStmt*>*stmt)
{
ivl_assert(*this, statements_==0);
statements_ = stmt;
fix_port_types();
}
// Functor used to add type casting to each return statement.
struct cast_return_type : public SeqStmtVisitor {
cast_return_type(const VType*ret_type) : ret_(ret_type) {}
void operator() (SequentialStmt*s)
{
ReturnStmt*ret;
if((ret = dynamic_cast<ReturnStmt*>(s))) {
ret->cast_to(ret_);
}
}
private:
const VType*ret_;
};
void Subprogram::fix_port_types()
{
// Check function parameters for unbounded vectors and possibly fix it.
// Try to settle at a fixed width return type.
if(fixed_return_type())
return;
// Check if the returned type is an unbounded vector.
if(check_unb_vector(return_type_)) {
if(!statements_)
return;
// Go through the statement list and add type casting to return
// statements to comply with the modified return type.
for (std::list<SequentialStmt*>::iterator s = statements_->begin()
; s != statements_->end(); ++s) {
cast_return_type r(return_type_);
(*s)->visit(r);
}
}
}
void Subprogram::fix_variables() {
for(std::map<perm_string, Variable*>::iterator it = new_variables_.begin(); it != new_variables_.end(); ++it) {
Variable*var = it->second;
const VType*type = var->peek_type();
if(type->is_variable_length(this)) {
const VTypeArray*arr = dynamic_cast<const VTypeArray*>(type);
// Currently we handle only one dimensional variables
assert(arr->dimensions() == 1);
// Now substitute the variable type
VTypeArray*new_array = static_cast<VTypeArray*>(arr->clone());
new_array->evaluate_ranges(this);
it->second = new Variable(var->peek_name(), new_array);
delete var;
}
}
}
VTypeArray*Subprogram::fix_logic_darray(const VTypeArray*type)
{
Expression*zero = new ExpInteger(0);
std::vector<VTypeArray::range_t> sub_range;
sub_range.push_back(VTypeArray::range_t(zero, zero));
return new VTypeArray(type, sub_range);
}
bool Subprogram::check_unb_vector(const VType*&type)
{
if(const VTypeArray*arr = dynamic_cast<const VTypeArray*>(type)) {
if(arr->dimensions() == 1 && arr->dimension(0).is_box() ) {
type = get_global_typedef(fix_logic_darray(arr));
return true;
}
}
return false;
}
bool Subprogram::compare_specification(Subprogram*that) const
{
if (name_ != that->name_)
return false;
if (return_type_==0) {
if (that->return_type_!=0)
return false;
} else {
if (that->return_type_==0)
return false;
if (! return_type_->type_match(that->return_type_))
return false;
}
if (ports_==0) {
if (that->ports_!=0)
return false;
} else {
if (that->ports_==0)
return false;
if (ports_->size() != that->ports_->size())
return false;
}
return true;
}
const InterfacePort*Subprogram::find_param(perm_string nam) const
{
if(!ports_)
return NULL;
for (std::list<InterfacePort*>::const_iterator it = ports_->begin()
; it != ports_->end(); ++it) {
if((*it)->name == nam)
return *it;
}
return NULL;
}
const VType*Subprogram::peek_param_type(int idx) const
{
if(!ports_ || idx < 0 || (size_t)idx >= ports_->size())
return NULL;
std::list<InterfacePort*>::const_iterator p = ports_->begin();
std::advance(p, idx);
return (*p)->type;
}
Subprogram*Subprogram::make_instance(std::vector<Expression*> arguments, ScopeBase*scope) {
assert(arguments.size() == ports_->size());
std::list<InterfacePort*>*ports = new std::list<InterfacePort*>;
int i = 0;
// Change the argument types to match the ones that were used during
// the function call
for(std::list<InterfacePort*>::iterator it = ports_->begin();
it != ports_->end(); ++it) {
InterfacePort*p = new InterfacePort(**it);
p->type = arguments[i++]->peek_type()->clone();
assert(p->type);
ports->push_back(p);
}
char buf[80];
snprintf(buf, sizeof(buf), "__%s_%p", name_.str(), ports);
perm_string new_name = lex_strings.make(buf);
Subprogram*instance = new Subprogram(new_name, ports, return_type_);
// Copy variables
for(std::map<perm_string,Variable*>::iterator it = new_variables_.begin();
it != new_variables_.end(); ++it) {
Variable*v = new Variable(it->first, it->second->peek_type()->clone());
instance->new_variables_[it->first] = v;
}
instance->set_parent(scope);
instance->set_program_body(statements_);
scope->bind_subprogram(new_name, instance);
return instance;
}
struct check_return_type : public SeqStmtVisitor {
check_return_type(const Subprogram*subp) : subp_(subp), ret_type_(NULL) {}
void operator() (SequentialStmt*s)
{
ReturnStmt*ret;
if((ret = dynamic_cast<ReturnStmt*>(s))) {
const Expression*expr = ret->peek_expr();
const VType*t = NULL;
if(const ExpName*n = dynamic_cast<const ExpName*>(expr)) {
if(Variable*v = subp_->find_variable(n->peek_name()))
t = v->peek_type();
} else {
t = expr->peek_type();
}
if(!t) { // cannot determine the type at least in one case
ret_type_ = NULL;
return;
}
if(!ret_type_) { // this is first processed return statement
ret_type_ = t;
} else if(!t->type_match(ret_type_)) {
// the function can return different types,
// we cannot have fixed width
ret_type_ = NULL;
return;
}
}
}
const VType*get_type() const { return ret_type_; }
private:
const Subprogram*subp_;
const VType*ret_type_;
};
bool Subprogram::fixed_return_type(void)
{
if(!statements_)
return false;
check_return_type r(this);
for (std::list<SequentialStmt*>::iterator s = statements_->begin()
; s != statements_->end(); ++s) {
(*s)->visit(r);
}
VType*return_type = const_cast<VType*>(r.get_type());
if(return_type && !return_type->is_unbounded()) {
// Let's check if the variable length can be evaluated without any scope.
// If not, then it is depends on information about e.g. function params
if(return_type->is_variable_length(NULL)) {
if(VTypeArray*arr = dynamic_cast<VTypeArray*>(return_type))
arr->evaluate_ranges(this);
}
return_type_ = return_type;
return true;
} else {
return false;
}
}
void Subprogram::write_to_stream(ostream&fd) const
{
fd << " function " << name_ << "(";
if (ports_ && ! ports_->empty()) {
list<InterfacePort*>::const_iterator cur = ports_->begin();
InterfacePort*curp = *cur;
fd << curp->name << " : ";
curp->type->write_to_stream(fd);
for (++cur ; cur != ports_->end() ; ++cur) {
curp = *cur;
fd << "; " << curp->name << " : ";
curp->type->write_to_stream(fd);
}
}
fd << ") return ";
return_type_->write_to_stream(fd);
fd << ";" << endl;
}