iverilog/tgt-vvp/vvp_scope.c

850 lines
21 KiB
C
Raw Normal View History

/*
* Copyright (c) 2001 Stephen Williams (steve@icarus.com)
*
* This source code is free software; you can redistribute it
* and/or modify it in source code form under the terms of the GNU
* General Public License as published by the Free Software
* Foundation; either version 2 of the License, or (at your option)
* any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software
* Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA
*/
#if !defined(WINNT)
2001-06-07 04:12:43 +02:00
#ident "$Id: vvp_scope.c,v 1.29 2001/06/07 02:12:43 steve Exp $"
#endif
# include "vvp_priv.h"
# include <assert.h>
# include <malloc.h>
# include <string.h>
/*
* The draw_scope function draws the major functional items within a
* scope. This includes the scopes themselves, of course. All the
* other functions in this file are in support of that task.
*/
static const char* draw_net_input(ivl_nexus_t nex);
/*
* NEXUS
* ivl builds up the netlist into objects connected together by
* ivl_nexus_t objects. The nexus receives all the drivers of the
* point in the net and resolves the value. The result is then sent to
* all the nets that are connected to the nexus. The nets, then, are
* read to get the value of the nexus.
*
* NETS
* Nets are interesting and special, because a nexus may be connected
* to several of them at once. This can happen, for example, as an
* artifact of module port connects, where the inside and the outside
* of the module are connected through an in-out port. (In fact, ivl
* will simply connect signals that are bound through a port, because
* the input/output/inout properties are enforced as compile time.)
*
* This case is handled by choosing one to receive the value of the
* nexus. This one then feeds to another net at the nexus, and so
* on. The last net is selected as the output of the nexus.
*/
/*
* This function takes a nexus and looks for an input functor. It then
* draws to the output a string that represents that functor. What we
* are trying to do here is find the input to the net that is attached
* to this nexus.
*/
static const char* draw_net_input_drive(ivl_nexus_t nex, ivl_nexus_ptr_t nptr)
{
static char result[2048];
unsigned idx;
unsigned nptr_pin = ivl_nexus_ptr_pin(nptr);
2001-04-30 01:16:31 +02:00
ivl_net_const_t cptr;
ivl_net_logic_t lptr;
ivl_signal_t sptr;
ivl_lpm_t lpm;
lptr = ivl_nexus_ptr_log(nptr);
if (lptr && (ivl_logic_type(lptr) == IVL_LO_BUFZ) &&
(nptr_pin == 0)) {
return draw_net_input(ivl_logic_pin(lptr, 1));
}
2001-04-30 01:16:31 +02:00
if (lptr && (ivl_logic_type(lptr) == IVL_LO_PULLDOWN)) {
2001-05-12 18:34:47 +02:00
return "C<pu0>";
}
if (lptr && (ivl_logic_type(lptr) == IVL_LO_PULLUP)) {
2001-05-12 18:34:47 +02:00
return "C<pu1>";
}
2001-04-30 01:16:31 +02:00
if (lptr && (nptr_pin == 0)) {
sprintf(result, "L_%s", ivl_logic_name(lptr));
return result;
}
2001-04-30 01:16:31 +02:00
sptr = ivl_nexus_ptr_sig(nptr);
if (sptr && (ivl_signal_type(sptr) == IVL_SIT_REG)) {
sprintf(result, "V_%s[%u]", ivl_signal_name(sptr),
nptr_pin);
return result;
}
2001-04-30 01:16:31 +02:00
cptr = ivl_nexus_ptr_con(nptr);
if (cptr) {
const char*bits = ivl_const_bits(cptr);
sprintf(result, "C<%c>", bits[nptr_pin]);
return result;
}
lpm = ivl_nexus_ptr_lpm(nptr);
if (lpm) switch (ivl_lpm_type(lpm)) {
2001-04-30 01:16:31 +02:00
case IVL_LPM_MUX:
for (idx = 0 ; idx < ivl_lpm_width(lpm) ; idx += 1)
if (ivl_lpm_q(lpm, idx) == nex) {
sprintf(result, "L_%s/%u",
ivl_lpm_name(lpm), idx);
return result;
}
2001-06-07 04:12:43 +02:00
case IVL_LPM_ADD:
for (idx = 0 ; idx < ivl_lpm_width(lpm) ; idx += 1)
if (ivl_lpm_q(lpm, idx) == nex) {
sprintf(result, "L_%s[%u]",
ivl_lpm_name(lpm), idx);
return result;
}
}
2001-04-30 01:16:31 +02:00
assert(0);
}
static const char* draw_net_input(ivl_nexus_t nex)
{
static char result[512];
unsigned idx;
ivl_nexus_ptr_t drivers[4];
unsigned ndrivers = 0;
for (idx = 0 ; idx < ivl_nexus_ptrs(nex) ; idx += 1) {
ivl_nexus_ptr_t nptr = ivl_nexus_ptr(nex, idx);
2001-04-30 01:16:31 +02:00
/* Skip input only pins. */
if ((ivl_nexus_ptr_drive0(nptr) == IVL_DR_HiZ)
&& (ivl_nexus_ptr_drive1(nptr) == IVL_DR_HiZ))
2001-04-30 02:00:27 +02:00
continue;
/* Save this driver. */
drivers[ndrivers] = nptr;
ndrivers += 1;
}
/* If the nexus has no drivers, then send a constant HiZ into
the net. */
if (ndrivers == 0)
return "C<z>";
2001-04-30 01:16:31 +02:00
/* If the nexus has exactly one driver, then simply draw it. */
if (ndrivers == 1)
return draw_net_input_drive(nex, drivers[0]);
2001-04-30 01:16:31 +02:00
assert(ndrivers <= 4);
/* Draw a resolver to combine the inputs. */
2001-05-12 18:34:47 +02:00
fprintf(vvp_out, "RS_%s .resolv tri, %s", ivl_nexus_name(nex),
draw_net_input_drive(nex, drivers[0]));
2001-05-12 18:34:47 +02:00
for (idx = 1 ; idx < ndrivers ; idx += 1)
fprintf(vvp_out, ", %s", draw_net_input_drive(nex, drivers[idx]));
2001-05-12 18:34:47 +02:00
for ( ; idx < 4 ; idx += 1)
fprintf(vvp_out, ", C<z>");
fprintf(vvp_out, ";\n");
sprintf(result, "RS_%s", ivl_nexus_name(nex));
return result;
}
/*
* This function looks at the nexus in search for the net to attach
* functor inputs to. Sort the signals in the nexus by name, and
* choose the lexically earliest one.
*/
void draw_input_from_net(ivl_nexus_t nex)
{
unsigned idx;
ivl_signal_t sig = 0;
unsigned sig_pin = 0;
for (idx = 0 ; idx < ivl_nexus_ptrs(nex) ; idx += 1) {
ivl_nexus_ptr_t ptr = ivl_nexus_ptr(nex, idx);
ivl_signal_t tmp = ivl_nexus_ptr_sig(ptr);
if (tmp == 0)
continue;
if (sig == 0) {
sig = tmp;
sig_pin = ivl_nexus_ptr_pin(ptr);
continue;
}
if (strcmp(ivl_signal_name(tmp),ivl_signal_name(sig)) < 0) {
sig = tmp;
sig_pin = ivl_nexus_ptr_pin(ptr);
continue;
}
}
assert(sig);
fprintf(vvp_out, "V_%s[%u]", ivl_signal_name(sig), sig_pin);
}
/*
* This function draws a reg/int/variable in the scope. This is a very
* simple device to draw as there are no inputs to connect so no need
* to scan the nexus.
*/
static void draw_reg_in_scope(ivl_signal_t sig)
{
int msb = ivl_signal_pins(sig) - 1;
int lsb = 0;
const char*signed_flag = ivl_signal_signed(sig)? "/s" : "";
fprintf(vvp_out, "V_%s .var%s \"%s\", %d, %d;\n",
ivl_signal_name(sig), signed_flag,
ivl_signal_basename(sig), msb, lsb);
}
/*
* This function takes a nexus and a signal, and finds the next signal
* (lexically) that is connected to at the same nexus. Return the
* ivl_nexus_ptr_t object to represent that junction.
*/
static ivl_nexus_ptr_t find_net_just_after(ivl_nexus_t nex,
ivl_signal_t sig)
{
ivl_nexus_ptr_t res = 0;
ivl_signal_t res_sig = 0;
unsigned idx;
for (idx = 0 ; idx < ivl_nexus_ptrs(nex) ; idx += 1) {
ivl_nexus_ptr_t ptr = ivl_nexus_ptr(nex, idx);
ivl_signal_t tmp = ivl_nexus_ptr_sig(ptr);
if (tmp == 0)
continue;
if (strcmp(ivl_signal_name(tmp),ivl_signal_name(sig)) <= 0)
continue;
if (res == 0) {
res = ptr;
res_sig = tmp;
continue;
}
if (strcmp(ivl_signal_name(tmp),ivl_signal_name(res_sig)) < 0) {
res = ptr;
res_sig = tmp;
}
}
return res;
}
/*
* This function draws a net. This is a bit more complicated as we
* have to find an appropriate functor to connect to the input.
*/
static void draw_net_in_scope(ivl_signal_t sig)
{
unsigned idx;
int msb = ivl_signal_pins(sig) - 1;
int lsb = 0;
char**args;
const char*signed_flag = ivl_signal_signed(sig)? "/s" : "";
args = (char**)calloc(ivl_signal_pins(sig), sizeof(char*));
/* Connect all the pins of the signal to something. */
for (idx = 0 ; idx < ivl_signal_pins(sig) ; idx += 1) {
ivl_nexus_ptr_t ptr;
ivl_nexus_t nex = ivl_signal_pin(sig, idx);
ptr = find_net_just_after(nex, sig);
if (ptr) {
char tmp[512];
sprintf(tmp, "V_%s[%u]",
ivl_signal_name(ivl_nexus_ptr_sig(ptr)),
ivl_nexus_ptr_pin(ptr));
args[idx] = strdup(tmp);
} else {
args[idx] = strdup(draw_net_input(nex));
}
}
fprintf(vvp_out, "V_%s .net%s \"%s\", %d, %d, %s",
ivl_signal_name(sig), signed_flag,
ivl_signal_basename(sig), msb, lsb, args[0]);
for (idx = 1 ; idx < ivl_signal_pins(sig) ; idx += 1)
fprintf(vvp_out, ", %s", args[idx]);
fprintf(vvp_out, ";\n");
free(args);
}
static void draw_udp_def(ivl_udp_t udp)
{
unsigned init;
int i;
switch (ivl_udp_init(udp))
{
case '0':
init = 0;
break;
case '1':
init = 1;
break;
default:
init = 2;
break;
}
if (ivl_udp_sequ(udp))
fprintf(vvp_out,
"UDP_%s .udp/sequ \"%s\", %d, %d",
ivl_udp_name(udp),
ivl_udp_name(udp),
ivl_udp_nin(udp),
init );
else
fprintf(vvp_out,
"UDP_%s .udp/comb \"%s\", %d",
ivl_udp_name(udp),
ivl_udp_name(udp),
ivl_udp_nin(udp));
for (i=0; i<ivl_udp_rows(udp); i++)
fprintf(vvp_out, "\n ,\"%s\"", ivl_udp_row(udp, i) );
fprintf(vvp_out, ";\n");
}
static void draw_udp_in_scope(ivl_net_logic_t lptr)
{
unsigned pdx;
ivl_udp_t udp = ivl_logic_udp(lptr);
static ivl_udp_t *udps = 0x0;
static int nudps = 0;
int i;
for (i=0; i<nudps; i++)
if (udps[i] == udp)
break;
if (i >= nudps)
{
udps = (ivl_udp_t*)realloc(udps, (nudps+1)*sizeof(ivl_udp_t));
assert(udps);
udps[nudps++] = udp;
draw_udp_def(udp);
}
fprintf(vvp_out, "L_%s .udp UDP_%s",
ivl_logic_name(lptr), ivl_udp_name(udp));
for (pdx = 1 ; pdx < ivl_logic_pins(lptr) ; pdx += 1)
{
ivl_nexus_t nex = ivl_logic_pin(lptr, pdx);
fprintf(vvp_out, ", ");
draw_input_from_net(nex);
}
fprintf(vvp_out, ";\n");
}
2001-03-27 08:27:40 +02:00
static void draw_logic_in_scope(ivl_net_logic_t lptr)
{
unsigned pdx;
const char*ltype = "?";
char identity_val = '0';
2001-03-27 08:27:40 +02:00
switch (ivl_logic_type(lptr)) {
case IVL_LO_UDP:
draw_udp_in_scope(lptr);
return;
case IVL_LO_BUFZ:
2001-03-27 08:27:40 +02:00
/* Skip BUFZ objects. Things that have a bufz as input
will use the input to bufz instead. */
return;
2001-04-30 01:16:31 +02:00
case IVL_LO_PULLDOWN:
case IVL_LO_PULLUP:
/* Skip pullup and pulldown objects. Things that have
pull objects as inputs will instead generate the
appropriate C<?> symbol. */
return;
2001-03-27 08:27:40 +02:00
case IVL_LO_AND:
ltype = "AND";
identity_val = '1';
2001-03-27 08:27:40 +02:00
break;
2001-04-01 23:34:48 +02:00
case IVL_LO_BUF:
ltype = "BUF";
break;
2001-04-30 01:16:31 +02:00
case IVL_LO_BUFIF0:
ltype = "BUFIF0";
break;
case IVL_LO_BUFIF1:
ltype = "BUFIF1";
break;
2001-04-21 04:04:01 +02:00
case IVL_LO_NAND:
ltype = "NAND";
identity_val = '1';
2001-04-21 04:04:01 +02:00
break;
2001-03-27 08:27:40 +02:00
case IVL_LO_NOR:
ltype = "NOR";
break;
case IVL_LO_NOT:
ltype = "NOT";
break;
case IVL_LO_OR:
ltype = "OR";
break;
2001-04-21 04:04:01 +02:00
case IVL_LO_XNOR:
ltype = "XNOR";
break;
2001-04-15 18:37:48 +02:00
case IVL_LO_XOR:
ltype = "XOR";
break;
2001-03-27 08:27:40 +02:00
default:
2001-04-30 01:16:31 +02:00
fprintf(stderr, "vvp.tgt: error: Unhandled logic type: %u\n",
ivl_logic_type(lptr));
2001-03-27 08:27:40 +02:00
ltype = "?";
break;
}
assert(ivl_logic_pins(lptr) <= 5);
fprintf(vvp_out, "L_%s .functor %s", ivl_logic_name(lptr), ltype);
2001-03-27 08:27:40 +02:00
for (pdx = 1 ; pdx < ivl_logic_pins(lptr) ; pdx += 1) {
ivl_nexus_t nex = ivl_logic_pin(lptr, pdx);
fprintf(vvp_out, ", ");
draw_input_from_net(nex);
2001-03-27 08:27:40 +02:00
}
for ( ; pdx < 5 ; pdx += 1) {
fprintf(vvp_out, ", C<%c>", identity_val);
}
2001-03-27 08:27:40 +02:00
fprintf(vvp_out, ";\n");
}
static void draw_event_in_scope(ivl_event_t obj)
{
unsigned nany = ivl_event_nany(obj);
unsigned nneg = ivl_event_nneg(obj);
unsigned npos = ivl_event_npos(obj);
unsigned cnt = 0;
/* Figure out how many probe functors are needed. */
if (nany > 0)
cnt += (nany+3) / 4;
if (nneg > 0)
cnt += (nneg+3) / 4;
if (npos > 0)
cnt += (npos+3) / 4;
if (cnt == 0) {
/* If none are needed, then this is a named event. The
code needed is easy. */
fprintf(vvp_out, "E_%s .event \"%s\";\n",
ivl_event_name(obj), ivl_event_basename(obj));
} else if (cnt > 1) {
unsigned idx;
unsigned ecnt = 0;
for (idx = 0 ; idx < nany ; idx += 4, ecnt += 1) {
unsigned sub, top;
fprintf(vvp_out, "E_%s/%u .event edge",
ivl_event_name(obj), ecnt);
top = idx + 4;
if (nany < top)
top = nany;
for (sub = idx ; sub < top ; sub += 1) {
ivl_nexus_t nex = ivl_event_any(obj, sub);
fprintf(vvp_out, ", ");
draw_input_from_net(nex);
}
fprintf(vvp_out, ";\n");
}
for (idx = 0 ; idx < nneg ; idx += 4, ecnt += 1) {
unsigned sub, top;
fprintf(vvp_out, "E_%s/%u .event negedge",
ivl_event_name(obj), ecnt);
top = idx + 4;
if (nneg < top)
top = nneg;
for (sub = idx ; sub < top ; sub += 1) {
ivl_nexus_t nex = ivl_event_neg(obj, sub);
fprintf(vvp_out, ", ");
draw_input_from_net(nex);
}
fprintf(vvp_out, ";\n");
}
for (idx = 0 ; idx < npos ; idx += 4, ecnt += 1) {
unsigned sub, top;
fprintf(vvp_out, "E_%s/%u .event posedge",
ivl_event_name(obj), ecnt);
top = idx + 4;
if (npos < top)
top = npos;
for (sub = idx ; sub < top ; sub += 1) {
ivl_nexus_t nex = ivl_event_pos(obj, sub);
fprintf(vvp_out, ", ");
draw_input_from_net(nex);
}
fprintf(vvp_out, ";\n");
}
assert(ecnt == cnt);
fprintf(vvp_out, "E_%s .event/or E_%s/0",
ivl_event_name(obj), ivl_event_name(obj));
for (idx = 1 ; idx < cnt ; idx += 1)
fprintf(vvp_out, ", E_%s/%u", ivl_event_name(obj), idx);
fprintf(vvp_out, ";\n");
} else {
unsigned idx;
fprintf(vvp_out, "E_%s .event ", ivl_event_name(obj));
if (nany > 0) {
assert((nneg + npos) == 0);
assert(nany <= 4);
fprintf(vvp_out, "edge");
for (idx = 0 ; idx < nany ; idx += 1) {
ivl_nexus_t nex = ivl_event_any(obj, idx);
fprintf(vvp_out, ", ");
draw_input_from_net(nex);
}
} else if (nneg > 0) {
assert((nany + npos) == 0);
fprintf(vvp_out, "negedge");
for (idx = 0 ; idx < nneg ; idx += 1) {
ivl_nexus_t nex = ivl_event_neg(obj, idx);
fprintf(vvp_out, ", ");
draw_input_from_net(nex);
}
} else {
assert((nany + nneg) == 0);
fprintf(vvp_out, "posedge");
for (idx = 0 ; idx < npos ; idx += 1) {
ivl_nexus_t nex = ivl_event_pos(obj, idx);
fprintf(vvp_out, ", ");
draw_input_from_net(nex);
}
}
fprintf(vvp_out, ";\n");
}
}
2001-06-07 04:12:43 +02:00
static void draw_lpm_add(ivl_lpm_t net)
{
unsigned idx, width;
width = ivl_lpm_width(net);
fprintf(vvp_out, "L_%s .arith/sum %u", ivl_lpm_name(net), width);
for (idx = 0 ; idx < width ; idx += 1) {
ivl_nexus_t a = ivl_lpm_data(net, idx);
fprintf(vvp_out, ", ");
draw_input_from_net(a);
}
for (idx = 0 ; idx < width ; idx += 1) {
ivl_nexus_t b = ivl_lpm_datab(net, idx);
fprintf(vvp_out, ", ");
draw_input_from_net(b);
}
fprintf(vvp_out, ";\n");
}
static void draw_lpm_mux(ivl_lpm_t net)
{
ivl_nexus_t s;
unsigned idx, width;
/* XXXX Only support A-B muxes for now. */
assert(ivl_lpm_size(net) == 2);
assert(ivl_lpm_selects(net) == 1);
width = ivl_lpm_width(net);
s = ivl_lpm_select(net, 0);
for (idx = 0 ; idx < width ; idx += 1) {
ivl_nexus_t a = ivl_lpm_data2(net, 0, idx);
ivl_nexus_t b = ivl_lpm_data2(net, 1, idx);
fprintf(vvp_out, "L_%s/%u .functor MUXZ, ",
ivl_lpm_name(net), idx);
draw_input_from_net(a);
fprintf(vvp_out, ", ");
draw_input_from_net(b);
fprintf(vvp_out, ", ");
draw_input_from_net(s);
fprintf(vvp_out, ", C<1>;\n");
}
}
static void draw_lpm_in_scope(ivl_lpm_t net)
{
switch (ivl_lpm_type(net)) {
2001-06-07 04:12:43 +02:00
case IVL_LPM_ADD:
draw_lpm_add(net);
return;
case IVL_LPM_MUX:
draw_lpm_mux(net);
return;
default:
fprintf(stderr, "XXXX LPM not supported: %s\n",
ivl_lpm_name(net));
}
}
static void draw_mem_in_scope(ivl_memory_t net)
{
int root = ivl_memory_root(net);
int last = root + ivl_memory_size(net) - 1;
int msb = ivl_memory_width(net) - 1;
int lsb = 0;
fprintf(vvp_out, "M_%s .mem \"%s\", %u,%u, %u,%u;\n",
ivl_memory_name(net), ivl_memory_basename(net),
msb, lsb, root, last);
}
int draw_scope(ivl_scope_t net, ivl_scope_t parent)
{
unsigned idx;
if (parent)
fprintf(vvp_out, "S_%s .scope \"%s\", S_%s;\n",
ivl_scope_name(net), ivl_scope_name(net),
ivl_scope_name(parent));
else
fprintf(vvp_out, "S_%s .scope \"%s\";\n",
ivl_scope_name(net), ivl_scope_name(net));
2001-03-25 07:59:46 +02:00
/* Scan the scope for logic devices. For each device, draw out
a functor that connects pin 0 to the output, and the
remaining pins to inputs. */
for (idx = 0 ; idx < ivl_scope_logs(net) ; idx += 1) {
ivl_net_logic_t lptr = ivl_scope_log(net, idx);
2001-03-27 08:27:40 +02:00
draw_logic_in_scope(lptr);
}
2001-03-25 07:59:46 +02:00
/* Scan the signals (reg and net) and draw the appropriate
statements to make the signal function. */
for (idx = 0 ; idx < ivl_scope_sigs(net) ; idx += 1) {
ivl_signal_t sig = ivl_scope_sig(net, idx);
switch (ivl_signal_type(sig)) {
case IVL_SIT_REG:
draw_reg_in_scope(sig);
break;
default:
draw_net_in_scope(sig);
break;
}
}
for (idx = 0 ; idx < ivl_scope_events(net) ; idx += 1) {
ivl_event_t event = ivl_scope_event(net, idx);
draw_event_in_scope(event);
}
for (idx = 0 ; idx < ivl_scope_lpms(net) ; idx += 1) {
ivl_lpm_t lpm = ivl_scope_lpm(net, idx);
draw_lpm_in_scope(lpm);
}
for (idx = 0 ; idx < ivl_scope_mems(net) ; idx += 1) {
ivl_memory_t mem = ivl_scope_mem(net, idx);
draw_mem_in_scope(mem);
}
2001-04-02 04:28:12 +02:00
if (ivl_scope_type(net) == IVL_SCT_TASK)
draw_task_definition(net);
if (ivl_scope_type(net) == IVL_SCT_FUNCTION)
draw_func_definition(net);
2001-04-02 04:28:12 +02:00
2001-03-31 21:29:23 +02:00
ivl_scope_children(net, (ivl_scope_f*) draw_scope, net);
return 0;
}
/*
* $Log: vvp_scope.c,v $
2001-06-07 04:12:43 +02:00
* Revision 1.29 2001/06/07 02:12:43 steve
* Support structural addition.
*
2001-05-12 18:34:47 +02:00
* Revision 1.28 2001/05/12 16:34:47 steve
* Fixup the resolver syntax.
*
* Revision 1.27 2001/05/12 03:31:01 steve
* Generate resolvers for multiple drivers.
*
* Revision 1.26 2001/05/08 23:59:33 steve
* Add ivl and vvp.tgt support for memories in
* expressions and l-values. (Stephan Boettcher)
*
* Revision 1.25 2001/05/06 00:01:02 steve
* Generate code that causes the value of a net to be passed
* passed through all nets of a nexus.
*
* Revision 1.24 2001/05/03 04:55:46 steve
* Generate code for the fully general event or.
*
* Revision 1.23 2001/05/02 04:05:16 steve
* Remove the init parameter of functors, and instead use
* the special C<?> symbols to initialize inputs. This is
* clearer and more regular.
*
2001-04-30 02:00:27 +02:00
* Revision 1.22 2001/04/30 00:00:27 steve
* detect multiple drivers on nexa.
*
2001-04-30 01:16:31 +02:00
* Revision 1.21 2001/04/29 23:16:31 steve
* Add bufif and pull devices.
*
* Revision 1.20 2001/04/26 05:12:02 steve
* Implement simple MUXZ for ?: operators.
*
* Revision 1.19 2001/04/24 02:59:52 steve
* Fix generation of udp/comb definitions.
*
* Revision 1.18 2001/04/24 02:23:58 steve
* Support for UDP devices in VVP (Stephen Boettcher)
*
2001-04-21 04:04:01 +02:00
* Revision 1.17 2001/04/21 02:04:01 steve
* Add NAND and XNOR functors.
*
2001-04-15 18:37:48 +02:00
* Revision 1.16 2001/04/15 16:37:48 steve
* add XOR support.
*
* Revision 1.15 2001/04/14 05:11:49 steve
* Use event/or for wide anyedge statements.
*
* Revision 1.14 2001/04/06 02:28:03 steve
* Generate vvp code for functions with ports.
*
* Revision 1.13 2001/04/05 01:38:24 steve
* Generate signed .net and .var statements.
*
2001-04-02 04:28:12 +02:00
* Revision 1.12 2001/04/02 02:28:13 steve
* Generate code for task calls.
*
2001-04-01 23:34:48 +02:00
* Revision 1.11 2001/04/01 21:34:48 steve
* Recognize the BUF device.
*
* Revision 1.10 2001/04/01 01:48:21 steve
* Redesign event information to support arbitrary edge combining.
*
2001-03-31 21:29:23 +02:00
* Revision 1.9 2001/03/31 19:29:23 steve
* Fix compilation warnings.
*
2001-03-29 05:47:13 +02:00
* Revision 1.8 2001/03/29 03:47:13 steve
* events can take up to 4 inputs.
*
* Revision 1.7 2001/03/28 06:07:40 steve
* Add the ivl_event_t to ivl_target, and use that to generate
* .event statements in vvp way ahead of the thread that uses it.
*
2001-03-27 08:27:40 +02:00
* Revision 1.6 2001/03/27 06:27:41 steve
* Generate code for simple @ statements.
*
2001-03-25 21:36:12 +02:00
* Revision 1.5 2001/03/25 19:36:12 steve
* Draw AND NOR and NOT gates.
*
2001-03-25 07:59:46 +02:00
* Revision 1.4 2001/03/25 05:59:47 steve
* Recursive make check target.
*
* Revision 1.3 2001/03/25 03:53:40 steve
* Include signal bit index in functor input.
*
* Revision 1.2 2001/03/25 03:25:43 steve
* Generate .net statements, and nexus inputs.
*
* Revision 1.1 2001/03/21 01:49:43 steve
* Scan the scopes of a design, and draw behavioral
* blocking assignments of constants to vectors.
*
*/